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Abstract

Heterogeneous players are matched into interconnected pairwise contests
across multiple battlefields. Each organizer independently sets her contest
rules to maximize effort provision on her respective battlefield. The conven-
tional wisdom of leveling the playing field may fail in this environment. How-
ever, an even-odds equilibrium always exists, in which all contests are resolved
with equal winning probabilities. Further, we identify sufficient conditions—
concerning contest technologies and network structure—that mitigate network
externalities and restore the level-playing-field principle, such that each orga-
nizer prefers a fully balanced contest regardless of others’ choices. We provide
alternative sufficient conditions under which the even-odds equilibrium remains
unique, even when an organizer does not necessarily prefer a fully balanced con-
test.
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1 Introduction
Economic agents often compete across multiple fronts and are connected—directly

or indirectly—through networks. One’s action on a battlefield not only influences local
outcomes but also generates spillover remotely and globally. Consider, for example, a
tech firm participating in multiple R&D challenges. If the firm assigns its top research
team to a prioritized project, its competitor on a parallel project may face less pressure
and reallocate resources elsewhere; the firm’s choice may thus affect competition in
contests in which it is not directly involved and against rivals it does not confront
head-to-head. A similar dynamic would arise, for instance, when professional athletes
plan their seasons, with each conserving stamina for preferred tournaments. These
interactions—among multiple agents across multiple battlefields—form a network of
interconnected contests with complex externalities.

Significant scholarly efforts have been devoted to examining the strategic inter-
actions over networks and exploring how the nature of the underlying game—e.g.,
strategic substitutability or complementarity—determine the equilibrium and opti-
mal intervention (Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010; Galeotti,
Golub, and Goyal, 2020). Contests in networks deserve to be examined systemati-
cally, given the nonmonotone best responses often inherent in contest games (Dixit,
1987), which yield unique and important implications for strategic analysis of the
game and optimal design of contest rules.1 This property, for instance, underpins
the conventional wisdom of leveling the playing field: A more balanced contest—one
that encourages the underdog to challenge the favorite—incentivizes greater efforts,
which sheds light on a plethora of practices that aim to promote closer competitions.
Consider, for instance, the handicap systems in golf tournaments and horse racing, as
well as the various measures to support small and medium-sized enterprises (SME)
set by the U.S. Small Business Administration (SBA) in federal procurement.2

The economics literature has formally established that, to incentivize effort, a
contest should prevent the emergence of dominant players in equilibrium—thus en-

1As Dixit (1987) demonstrates, players’ best responses are often nonmonotone in contest games:
In contrast to Cournot or Bertrand competitions, one’s effort choice is a strategic complement to
that of his opponent when he is in the lead, while it is a strategic substitute when he is behind.

2Many horse-racing tournaments—e.g., the Grand National or the Melbourne Cup—require that
horses with higher initial ratings carry heavier weight. A similar mechanism—aero handicap—is
implemented in Formula One (F1) championships, in which teams that performed better in previous
seasons are allocated reduced aerodynamic testing time.
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suring that no contender can win with a probability exceeding 1/2, which implies
that a two-player contest must be resolved with equal winning odds.3 However, this
level-playing-field principle is established in settings of standalone contests. Imag-
ine instead an organizer who sets the contest rules on her own turf to attract effort
and attention from contenders who face competing opportunities elsewhere—e.g., a
buyer running an R&D challenge to seek for an innovative technical solution when
other projects are available to a pool of overlapped bidders. She needs to account for
contenders’ strategic trade-offs across multiple contests, anticipate the choices of com-
peting organizers, and understand how her choice of local contest rules is transmitted
through the network. This complexity casts doubt on the conventional wisdom of
leveling the playing field.

Consider a simple case with each competing player subject to a resource constraint.
Suppose that an organizer handicaps the frontrunner. This generates a direct local
effect that intensifies competitions in her own contest. Meanwhile, a player’s increased
effort on her battlefield may come at the expense of reduced effort elsewhere. This
causes an indirect network effect, because the local shift in efforts alters contenders’
marginal benefits and costs of efforts across all other contests. 4 The global impact
requires that all contenders reset their effort choices everywhere. These spillovers may
feed back to the original battlefield through the network, and the overall outcome is
a priori unclear. Section 2.2 provides an intuitive example in which the indirect
network effect prevails: An organizer may prefer an imbalanced contest over an even
race, which violates the level-playing-field principle.

To our knowledge, this paper presents the first formal analysis of decentralized
contest design in a networked contest game to explore the boundaries of the level-
playing-field principle and shed further light on its nature in a broader context.

Snapshot of the Model Interactions are modeled as a two-stage game. In the first
stage, multiple organizers simultaneously set the contest rules for their respective bat-
tlefields. In the second stage, economic agents—whom we refer to as “players”—are

3See, e.g., Fu and Wu (2020), who show in a broad context that the optimal two-player contest
always yields equal winning probabilities in equilibrium; when the contest involves three or more
players, the optimum requires that each player’s equilibrium winning odds be strictly below 1/2.

4König, Rohner, Thoenig, and Zilibotti (2017) and Amarasinghe, Raschky, Zenou, and Zhou
(2026), for example, provide empirical evidence of spillovers from changes in local conditions in
networked conflicts. Cortes-Corrales and Gorny (2025) examine the unintended knock-on effects of
varying one player’s strength throughout a network.
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matched into pairwise contests, with each modeled as a two-player generalized Tullock
contest. Players simultaneously allocate efforts across the contests they participate
in. Each player either incurs a convex cost based on the aggregate effort exerted
across all contests he participates in (a “pure-cost” case) or is subject to a budget
constraint (a “pure-budget” case). As a result, increasing effort on one battlefield
limits the player’s ability to contribute to others.

Players differ in their contest technologies, cost functions, or resource endowments.
This creates room for each organizer to structure her contest in order to exploit play-
ers’ heterogeneity. The organizer imposes a multiplicative bias on each player’s impact
function. This function translates effort into output, and the choice of biases deter-
mines players’ relative competitiveness, which tilts the balance of the contest. Such
biases encapsulate diverse mechanisms observed in real-world competition. It can be
a weighted scoring rule, such as handicap systems in golf tournaments. It can also
reflect the various measures of actual productivity interventions, including technical
support (e.g., mentorship in Mozilla’s Open Innovation Challenge); resource subsidies
(e.g., the U.S. Department of Defense’s Small Business Innovation Research program
(Lichtenberg, 1990)); capacity-building for SMEs (e.g., counseling and training in fed-
eral procurement bids); and preferential industrial policies that target specific firms
(Franke, Kanzow, Leininger, and Schwartz, 2013).

We characterize the subgame perfect Nash equilibrium (SPNE) of the two-stage
game. Specifically, this paper addresses (i) whether and when an organizer prefers
to set biases to level her playing field in a networked environment and (ii) whether
balanced competitions emerge in equilibrium, as they do in standalone contests.

Technical Nature of the Analysis Analyzing the SPNE of this two-stage net-
worked contest game presents several technical challenges. Players compete in parallel
contests, and organizers are linked indirectly through the overlapped competitions.
Understanding these intertwined decisions requires a comprehensive account of the
network externalities and nuanced strategic interdependence at and across two dif-
ferent levels of strategic interactions—i.e., the networked contests and interactions
among competing organizers who set rules for subsequent contests.

First, given a profile of biases set in the first stage, there is no closed-form solu-
tion for the second-stage equilibrium of the networked contest. Organizers’ objective
functions are only implicitly characterized by equilibrium conditions and cannot be
directly used to construct explicit best-response mappings.
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Second, to establish a given profile of contest rules as an SPNE, we have to
verify that each organizer’s choice constitutes a global best response to others’ chosen
biases. However, organizers’ payoff are generally non-explicit and non-concave due
to cross-battlefield externalities and strategic interdependencies. Standard first-order
conditions are thus insufficient for proving global first-stage optimality.

Third, even if equilibrium existence can be established by verifying that every
organizer has no profitable deviation from a candidate profile, proving uniqueness
presents substantially greater analytical challenges. Ruling out all potential alter-
native equilibria across every subgame is analytically infeasible, given the lack of
closed-form solutions and the complex interdependencies among battlefields.

Summary of Findings We develop novel methods to address these difficulties and
obtain lucid results. We first identify a unique profile of contest rules under which
all contests are resolved with equal winning probabilities; we show that this profile
constitutes an SPNE, which we term the even-odds equilibrium (Theorem 1). This
demonstrates that balanced competition remains an equilibrium outcome despite the
complexity introduced by the network structure. To verify the existence of such an
equilibrium, we resort to a global deviation argument: For any organizer, we consider
a non-local deviation in her choice of biases and compare the resulting second-stage
equilibria before and after the deviation. This approach allows us to verify global
optimality without relying on closed-form solutions or concavity in organizers’ payoff.

We then examine the uniqueness of the even-odds equilibrium. The analysis con-
sists of two layers. First, we ask whether the level-playing-field principle holds in a
network—i.e., whether an organizer would choose to level her battlefield regardless of
contest rules elsewhere. We provide sufficient conditions for this to be the case, which
automatically guarantee equilibrium uniqueness (Theorem 2). Specifically, this fol-
lows if either (i) each player’s impact function (i.e., the function that maps effort into
contest output) is sufficiently concave or (ii) the network is acyclic. These conditions
mitigate the intricate indirect effects of a rule change on a battlefield: The former lim-
its spillovers across battlefields, while the latter shuts down feedback loops. However,
even when these conditions are not satisfied, uniqueness may still hold. We provide
a set of weaker conditions under which equal winning odds arise on all battlefields,
even if an individual organizer does not unconditionally prefer a level playing field
(Theorem 3). The concavity of impact functions can be milder, and the network may
contain cycles. These results demonstrate the critical roles played by contest tech-
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nologies and prevailing network structures in shaping equilibrium outcomes, which
we discuss in more detail after presenting the formal analysis (Section 3.3).

It is noteworthy that it is infeasible to examine all subgames to rule out non-even-
odds equilibria in this framework. We develop a targeted approach to overcome the
analytical challenge. Suppose that an alternative equilibrium exists with uneven win-
ning odds. For any given bias profile, we identify the least balanced battlefield—which
will be formally defined later—and assess whether the organizer of that battlefield
can profitably deviate. Though the second-stage equilibrium is implicit, we are able
to compare outcomes before and after any hypothetical deviation and show that a
profitable deviation always exists. This construction rules out all candidate equilibria
that do not induce even winning odds everywhere.

We also consider two extensions. First, we analyze a sequential-move version of
the game in which organizers set contest rules in a predetermined order. When-
ever the sufficient conditions for the level-playing-field principle hold in the baseline
model, the equilibrium outcome remains invariant to the timing of moves: A unique
SPNE exists, replicating the equilibrium rule profile of the simultaneous-move game
(Theorem 4). Second, we consider a centralized organizer who sets contest rules for
all battlefields to maximize an objective that strictly increases in each player’s total
effort. Again , a unique equilibrium emerges with equal winning rates across contests
(Theorem 5). This yields a useful policy insight: Decentralized rule-setting by self-
interested organizers can—under certain conditions—achieve the same outcome as
centralized planning, which suggests the potential efficiency of delegation in contest
design.

Link to Literature Our paper belongs to the extensive literature on strategic inter-
actions among economic agents within networks, such as Ballester, Calvó-Armengol,
and Zenou (2006); Bramoullé, Kranton, and D’amours (2014); Galeotti, Goyal, Jack-
son, Vega-Redondo, and Yariv (2010); and Galeotti, Golub, and Goyal (2020). A
growing body of literature focuses on contests and conflicts within networks (Dziu-
biński, Goyal, and Vigier, 2016). These studies vary significantly in their assumptions
regarding the mechanisms that link players and structure contests or conflicts.

Dziubiński, Goyal, and Minarsch (2021), for instance, examine a conflict network
in which a ruler attacks connected “nodes” successively to acquire and accumulate
resources. Dziubiński, Goyal, and Zhou (2025) assume that each player’s effort in
one battlefield generates spillovers and helps him win the battles on neighboring
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battlefields. Goyal and Vigier (2014) study an attacker-defender game, in which
the attacker and defender allocate combative efforts across nodes. König, Rohner,
Thoenig, and Zilibotti (2017) assume that each player’s entry in his (single) contest
is determined by his own effort, positive spillovers from allies, and negative spillovers
from enemies. In contrast, Hiller (2017) allows players to form either positive links
(alliances that aid in conflict) or negative links (direct conflicts).

Our paper more closely relates to Franke and Öztürk (2015); Xu, Zenou, and
Zhou (2022); and Li and Zhou (2025), in which multiple players are matched into
contests across a network and allocate efforts among battlefields. Franke and Öztürk
(2015) assume bilateral contests on each battlefield, focusing on specific network
structures such as regular, complete bipartite, and star-shaped configurations. They
adopt convex cost functions, in which increased effort on one battlefield raises ef-
fort costs elsewhere. Based on a conflict network à la Franke and Öztürk (2015),
Cortes-Corrales and Gorny (2025) demonstrate how a change in a player’s strength
triggers spillovers throughout the network. Xu et al. (2022) substantially generalize
the framework of Franke and Öztürk (2015) by allowing multilateral contests, budget
constraints, and unrestricted network structures. They employ variational inequal-
ities to overcome technical challenges, establish equilibrium existence, and provide
conditions for equilibrium uniqueness. Under quadratic costs and bilateral contests
on each battlefield, Li and Zhou (2025) examine comparative statics within acyclic
networks, and analyze how shocks propagate throughout the network. Despite the
lack of closed-form solutions, they remarkably demonstrate that comparative statics
can be pinned down using sign functions.5 6

Our paper differs from this literature in two significant respects. First, our model
incorporates strategic interactions across two layers: Players compete within a net-
work, while organizers indirectly interact through players’ strategic effort choices in
response to independently set contest rules. Second, we specifically focus on orga-

5Matros and Rietzke (2024) and Sun, Xu, and Zhou (2023) also contribute to this strand of the
literature. Unlike Franke and Öztürk (2015), Matros and Rietzke (2024) require that each player
commit to a single effort level that applies identically across all contests they participate in. Sun
et al. (2023) analyze both constrained (uniform effort) and unconstrained effort allocation regimes.
They show that, for Tullock contest success functions in semi-symmetric networks, the two regimes
produce the same total effort and equilibrium payoffs.

6In addition to the theoretical contributions, several notable studies empirically examine conflicts
in networks, including Jackson and Nei (2015), Berman and Couttenier (2015), König et al. (2017),
Harari and Ferrara (2018), Berman et al. (2021), and Amarasinghe et al. (2026).
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nizers’ strategic choices of contest rules. Contest design is not considered by Franke
and Öztürk (2015) or Xu et al. (2022). Li and Zhou’s (2025) comparative statics
offer useful insights for contest design. However, their analysis primarily concerns
externalities that arise from interventions on an individual battlefield. Our anal-
ysis accommodates both decentralized and centralized contest designs, and enable
simultaneous and sequential rule-setting across all battlefields. Dziubiński, Goyal,
and Zhou (2025) explore the design of network structure to maximize efforts or util-
ities. They focus on a centralized design problem, while we assume a given network
structure and let the contest rule on each battlefield be set by a respective organizer.

Our paper naturally connects to the literature on multi-battle contests (e.g.,
Kovenock and Roberson, 2012; Snyder, 1989; Klumpp and Polborn, 2006; Konrad and
Kovenock, 2009; Fu, Lu, and Pan, 2015). In particular, this study is closely related to
the research stream that examines players’ allocation of scarce resources across bat-
tlefields, a line of work that dates back to Borel (1921) and Borel and Ville (1938).
The discrete version of the game is known as the Colonel Blotto game, with notable
contributions including Friedman (1958), Roberson (2006), Kvasov (2007), Kovenock
and Roberson (2012), Roberson and Kvasov (2012), and Fu and Iyer (2019).7

Our paper distinguishes itself from these studies along three dimensions. First,
we allow for multiple players to be matched in contests across a network, whereas
the literature predominantly assumes that two players compete in every battlefield.
Second, our model accommodates both a pure-cost case with strictly convex cost func-
tions and a pure-budget case, as seen in most Colonel Blotto game studies. Third,
and most importantly, the networked contests in our model are subgames that fol-
low decentralized decisions by contest organizers; none of the aforementioned studies
consider contest rule setting.8

Finally, each organizer in our model competes for players’ effort investment on
her own battlefield. This renders our paper conceptually linked to the literature on
competing contests, with Azmat and Möller (2009, 2018) and Morgan, Sisak, and

7Friedman (1958) analyzes two firms that allocate fixed advertising budgets across multiple mar-
keting areas. Roberson (2006) fully characterizes the equilibrium of a Colonel Blotto game. Kovenock
and Roberson (2012) introduce asymmetric prize valuations. Kvasov (2007) and Roberson and
Kvasov (2012) relax the zero-sum assumption and allow for alternative uses of resources. Fu and
Iyer (2019) accommodate rent-augmenting investment other than rent-seeking efforts.

8Feng and Lu (2018) and Feng, Jiao, Kuang, and Lu (2024) also consider contest design. However,
they adopt team-based contest structures as in Fu, Lu, and Pan (2015). Their focus lies in the
decisions of a central planner who governs the entire contest architecture.
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Várdy (2018) as leading contributions. Unlike our setting, these studies typically
assume that each player chooses which contest to enter, so organizers compete for
contestants’ discrete entry decisions. Körpeoğlu, Korpeoglu, and Hafalır (2022) allow
solvers to participate in multiple contests, but their focus lies in comparing exclusivity
versus non-exclusivity in contest design.

2 Preliminaries
In this section, we first lay out the primitives of our model, then provide an

example to illustrate the nuances caused by the network.

2.1 Model Setup

A finite set of risk-neutral players N ≡ {1, 2, . . . , N} compete within a connected
network.9 For the sake of tractability, we focus on bilateral contests. Each player i ∈
N competes head-to-head with another on at least one battlefield. Let E ≡ {a, b, . . .}
denote the set of battlefields and e ∈ E an indicative battlefield. The network can
then be represented by Γ ⊂ N ×E , where (i, e) ∈ Γ if and only if player i is involved
in the contest on battlefield e. Further, let Ei ≡ {e ∈ E : (i, e) ∈ Γ} denote the set
of battlefields with player i’s participation and N e ≡ {i ∈ N : (i, e) ∈ Γ} the set of
players who compete on battlefield e, with |N e| = 2 for all e ∈ E .

The bilateral contest network Γ described above can model a rich class of in-
terconnected contest games. Figure 1 depicts three examples. In each subfigure,
the network is represented as a multigraph, whereby the vertices represent players
and the edges between vertices represent battlefields. Figure 1a represents a stylized
single-battle contest, in which players 1 and 2 fight on a battlefield a; Figure 1b
depicts a triangular network structure in which three players are matched to three
pairwise battles; Figure 1c represents a two-player multi-battle contest, in which two
players compete against each other simultaneously on battlefields a and b.

Each battlefield e ∈ E is governed by an organizer and the game proceeds in two
stages. In the first stage, organizers each set the rules for the contests on their own
battlefields. In the second stage, having observed the rule set for each contest, players
simultaneously exert their efforts to vie for wins.

9For disconnected networks, we can always decompose them into several connected components
and our results remain intact.
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(a) Standalone contest

a

bc
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3

(b) Triangular contest

a

b

1 2
(c) Multi-battle contest

Figure 1: Examples of Network Structures

Second Stage: Contests and Payoffs The contest between players i and j on
battlefield e is modeled as a generalized Tullock contest. Put formally, fixing the
profile of efforts xe ≡ (xe

i , x
e
j) the players exert on battlefield e, player i wins with a

probability

pei (x
e
i , x

e
j) =


αe
if

e
i (x

e
i )

αe
if

e
i (x

e
i ) + αe

jf
e
j (x

e
j)
, xe

i + xe
j > 0,

1

2
, xe

i + xe
j = 0,

(1)

and player j wins with the complementary probability, i.e., pej(xe
i , x

e
j) = 1−pei (x

e
i , x

e
j).

Following the tradition of the contest literature, we call f e
i (·) player i’s impact

function on battlefield e, which indicates the player’s contest technology on this bat-
tlefield and satisfies f e

i (0) = 0, (f e
i )

′(·) > 0, and (f e
i )

′′(·) ≤ 0. Further, the parameters
αe
i and αe

j , with αe
i , α

e
j > 0 and αe

i +αe
j = 1, are the multiplicative biases the organizer

on battlefield e assigns to players i and j, respectively, which determine their relative
competitiveness in the contest.

Fixing player i’s effort profile xi ≡ (xe
i )e∈Ei across all battlefields that involve him,

let Xi ≡
∑

e∈Ei x
e
i denote his total effort. The player bears a cost of ci(Xi). Players are

subject to either resource constraints or regular cost functions.10 In the former (pure
budget) case, each player i’s effort cost can technically take the form of ci(Xi) = 0 for
all Xi ∈ [0, X i] and ci(Xi) = +∞ for all Xi ∈ [X i,+∞), where X i ∈ (0,+∞) is the

10This assumption is imposed for expositional convenience. Our analysis can easily be extended
to the case in which some players are subject to a resource constraint while others have a regular
effort cost function.
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maximum effort at his disposal. In the latter (pure cost) case, we set X i to +∞ and
let ci(·) be twice differentiable and satisfy ci(0) = 0, c′i(·) > 0, and c′′i (·) > 0.

A victory on battlefield e ∈ E yields a prize value of ve > 0 to the winner. A
player i’s expected payoff in the game is thus

πi(xi,x−i) =
∑
e∈Ei

vepei (x
e)− ci(Xi),

where x−i ≡ (x1, . . . ,xi−1,xi+1, . . . ,xN) is the profile of effort strategies of all players
other than i.

First Stage: Decentralized Contest Rule Setting in a Network In the begin-
ning of the game, the organizer of each battlefield sets the rules for her battle. More
formally, the organizer for each battlefield e ∈ E with N e = {i, j} imposes multiplica-
tive biases (αe

i , α
e
j) on players’ impact functions, with αe

i , α
e
j > 0 and αe

i + αe
j = 1;

they set the rules simultaneously, and all (αe
i , α

e
j) become commonly known prior to

the second stage of the game.
An organizer values the effort supplied by each player on her battlefield, so she

chooses (αe
i , α

e
j) to maximize an objective function Λe(xe), which strictly increases

with xe
i for each i ∈ N e.

Summary The two-stage game can be described by G ≡
〈
Γ,
(
f e
i (·)
)
(i,e)∈Γ,

(
ci(·)

)
i∈N ,(

Λe(·)
)
e∈E

〉
, where Γ represents the network structure,

(
f e
i (·)
)
(i,e)∈Γ the set of impact

functions,
(
ci(·)

)
i∈N the set of players’ effort cost functions, and

(
Λe(·)

)
e∈E the set of

organizers’ objective functions. Organizers each set (αe
i , α

e
j) in the first stage of the

game, and players simultaneously sink their efforts afterward. We adopt subgame
perfect Nash equilibrium (SPNE) in pure strategies as the solution concept.

2.2 An Illustrative Example

The literature espouses the merit of leveling the playing field in standalone contests
(Dixit, 1987). Fu and Wu (2020) establish in a broad context that the optimal contest
induces equal equilibrium winning odds in bilateral contests. We now provide a simple
example to show that this level-playing-field principle may lose its bite when a contest
is embedded in a network.

Example 1 (Optimality of Imbalanced Competitions in a Network) Sup-
pose that N = {1, 2, 3}, E = {a, b, c}, and Γ is a bilateral contest network with tri-
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(a) Player 1’s effort: xa1
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(c) Total effort: Λa

Figure 2: Equilibrium effort and organizer’s objective on battlefield a.

angular structure, as depicted in Figure 1b. Let f e
1 (x

e
1) = 0.02xe

1 for each e ∈ E1
and f e

i (x
e
i ) = xe

i for all i ∈ {2, 3} and e ∈ Ei. Consider a pure budget case
with (X1, X2, X3) = (2420, 62.4, 20). The prizes for winning the battles are, re-
spectively, (va, vb, vc) = (16.344, 17, 3). Fix the biases on battlefields b and c at
αb = (αb

2, α
b
3) = (0.1, 0.9) and αc = (αc

3, α
c
1) = (0.1, 0.9), respectively.

A level playing field—i.e., with pa1 = pb2 = 1/2—requires setting αa
1 = αa

2 = 1/2.
Suppose that the organizer on battlefield a seeks to maximize total effort in the battle,
i.e., Λa = xa

1 +xa
2. Figure 2c plots Λa as a function of αa

1. It shows that total effort is
minimized by setting αa

1 = αa
2 = 1/2, although the players win with equal probability.

In this context, leveling the playing field maximizes player 2’s effort (see Fig-
ure 2b), while minimizing player 1’s (see Figure 2a). Given player 1’s greater re-
source endowment, the total effort on this battlefield primarily relies on his input and
is minimized when pa1 = pb2 = 1/2.

As αa
1 increases and approaches 1/2, two effects are triggered. First, a more level

playing field intensifies competition on battlefield a, prompting both players to in-
crease their efforts—what we term the direct local effect, consistent with conventional
wisdom. Second, this direct effect induces an indirect network effect: It propagates
throughout the network, reshaping effort incentives on other battlefields; these shifts
then feed back into battlefield a, further influencing xa

1 and xa
2.

To illustrate these effects, consider the following thought experiment, focusing on
how variations in αa

1 affect player 1’s effort choice. Fix the biases on battlefields b

and c—(αb
2, α

b
3) = (αc

3, α
c
1) = (0.1, 0.9)—and consider an initial case with αa

1 < 1/2 <

αa
2. Figure 3a shows players’ relative standing on each battlefield under this set of

biases. In this setting, player 2 is the frontrunner on battlefield a, since his winning
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player 1 player 2 player 3
battlefield a weak strong -
battlefield b - weak strong
battlefield c strong - weak

(a) Relative strength between players

a

bc

1 2

3

xa1 ↑ local
effect xa2 ↑

xb2 ↓

xb3 ↓xc3 ↑

xc1 ↑

xa1 ↓ network
effect

(b) Equilibrium effort incentives

Figure 3: Illustration of the direct local effect and the indirect network effect.

probability exceeds 1/2. Now suppose that αa
1 is increased toward 1/2. This change

favors the underdog, player 1. As predicted by the direct local effect, both players
intensify their efforts in response (see Figure 3b).

However, an increase in xa
2 would force player 2 to reduce his effort xb

2 on battlefield
b, due to his budget constraint. By Figure 3a, player 2 is initially the underdog on
battlefield b. A decrease in xb

2 gives the initial frontrunner on battlefield b—player
3—an easier win, which allows the player to scale back his effort xb

3 and redirect the
saved resources to battlefield c. In turn, player 1—the initial leader on battlefield
c—must respond to the more aggressive player 3 by raising his effort xc

1. Ultimately,
the increased demand on player 1’s resources devoted to battlefield c forces him to
reduce his effort xa

1 on battlefield a, as shown in Figure 3b.
The indirect network effect counteracts the direct local effect in shaping player

1’s effort choice. As αa
1 increases and approaches 1/2, the indirect effect dominates,

leading to a lower equilibrium effort xa
1 on battlefield a (see Figure 2a). In contrast,

the direct and indirect effects reinforce each other for player 2, resulting in an increase
in his effort on battlefield a as αa

1 approaches 1/2 (see Figure 2b).

3 Analysis
Assuming a nondegenerate conflict network—i.e., with |E| ≥ 2—we now solve the

game by backward induction.11 Section 3.1 characterizes and discusses the second-
11The analysis for the case of |E| = 1 is straightforward.
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stage equilibrium; Section 3.2 establishes an SPNE of the game in which all organizers
level their own playing field such that players win each contest with equal probability.
Section 3.3 examines equilibrium uniqueness.

3.1 Second-stage Equilibrium

The second-stage game is a collection of bilateral contests interconnected through
a network. The equilibrium existence in this setting has been established by Xu,
Zenou, and Zhou (2022), and we restate their result in our context as follows.

Lemma 1 (Xu, Zenou, and Zhou, 2022) Fixing a profile of contest rules α =

{αe}e∈E , there exists a Nash equilibrium in the second-stage game. Specifically, the
equilibrium effort profile x∗(α) = {xe(α)}e∈E , together with a set of parameters
{λi}i∈N , satisfies the following first-order conditions:

vepei (x
e)
[
1− pei (x

e)
]
= λig

e
i (x

e
i ) (2)

and

ve × αe
i (f

e
i )

′(0)

αe
jf

e
j (x

e
j)

≤ λi, whenever xe
i = 0, (3)

where gei := f e
i /(f

e
i )

′. In the pure-cost case, λi = c′i(Xi); in the pure-budget case,
Xi = X i and λis are the Lagrangian multipliers for budget constraints.

Lemma 1 provides the necessary conditions that characterize equilibrium efforts.
Specifically, (2) must be satisfied in the equilibrium whenever a player exerts a pos-
itive effort xe

i . When a player exerts zero effort in a contest, condition (2) holds
automatically, and the equilibrium further requires condition (3), which is obtained
by substituting xe

i = 0 into the complementary slackness conditions.
By Xu et al. (2022), if the second-stage equilibrium is interior—i.e., when each

player exerts a positive effort in every contest he participates in—then the equilibrium
must be unique. As a result, a unique equilibrium always emerges in the pure-cost
case, since no player would completely forgo a contest. However, in the pure-budget
case, multiple equilibria may arise. We adapt Example 4 of Xu et al. (2022) to
illustrate this possibility in our context.

Example 2 (Multiple Equilibria in the Second-stage Game) Suppose that
N = {1, 2, 3}, E = {a, b, c}, and Γ is a triangular network as shown in Figure 1b.
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Further, set f e
i (x

e
i ) = xe

i for each (i, e) ∈ Γ. Each player has a fixed budget, with
(X1, X2, X3) = (X1, 1, 1) and X1 > 8. The prize values are (va, vb, vc) = (1, 1, 1).
Fixing a set of neutral biases, with αa = αb = αc = (1/2, 1/2), there exists a
continuum of equilibria

{
(xa

1, x
c
1, x

a
2, x

b
2, x

b
3, x

c
3) = (z,X1−z, 0, 1, 1, 0)|4 ≤ z ≤ X1−4

}
in the second-stage contest game.

In this case, player 1 is endowed with an excessively large budget. His opponents
simply forgo competing against him—i.e., player 2 on battlefield a and player 3 on
battlefield c—and instead concentrate their limited resources on the competition be-
tween themselves—i.e., the contest on battlefield b. Player 1’s effort allocation is
optimal if it is sufficient to deter players 2 and 3. This condition can be satisfied by a
range of effort levels, giving rise to multiple equilibria in the second-stage game. This
complicates the overall equilibrium analysis, as the organizers’ rule-setting decisions
in the first stage may depend on which second-stage equilibrium is selected. However,
our next result eliminates this concern.

For notational efficiency, let X (α) denote the set of all second-stage equilibria
corresponding to a given α.

Proposition 1 (Equilibrium Property) Let
(
α∗,x∗(·)

)
be an SPNE of the game

G. The following statements hold:

(i) The second-stage equilibrium x∗(α∗) on the equilibrium path is unique—i.e.,∣∣X (α∗)
∣∣ = 1. Moreover, (3) holds with equality at

(
α∗,x∗(α∗)

)
.

(ii) Fix any α′ ̸= α∗ off the equilibrium path and an arbitrary effort profile x(α′) ∈
X (α′). Then

(
α∗, {x∗(α∗),x(α′)}α′ ̸=α∗

)
also constitutes an SPNE of the whole

game G.

This result is nontrivial. Despite the possibility of multiple equilibria for the
second-stage contest game, Proposition 1(i) shows that such multiplicity does not
arise on the equilibrium path of any SPNE. It is worth noting that multiple equilibria
are unique to pure-budget cases and, as illustrated in Example 2, some players exert
zero effort on certain battlefields in these equilibria. Multiple equilibria emerge when a
dominant player (e.g., player 1 in Example 2) has enough resources to deter opponents
across several battlefields, which affords him flexibility in how he allocates effort
among them. However, this flexibility is at odds with the organizers’ objective of
eliciting effort. In the first stage of the game, an organizer will strategically adjust the
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contest rules (i.e., by heavily handicapping the dominant player) to avoid completely
discouraging the weaker player and intensify the competition on her battlefield. This
ensures a unique second-stage outcome on the equilibrium path.

Proposition 1(ii) further shows that an equilibrium outcome
(
α∗,x∗(α∗)

)
is robust

even to equilibrium selection off the path: A profile
(
α∗,x∗(α∗)

)
can still be sustained

as the equilibrium outcome of an SPNE even if multiple equilibria arise off-path,
and for a profile of contest rules α′ ̸= α∗, an alternative second-stage equilibrium
x(α′) ̸= x∗(α′) is selected. As a result, once we pin down an outcome

(
α∗,x∗(α∗)

)
,

we can construct an SPNE
(
α∗,x∗(·)

)
of the game by arbitrarily selecting a second-

stage equilibrium x ∈ X (α) for α ̸= α∗.
The reasoning is as follows. Suppose, to the contrary, that an equilibrium outcome(

α∗,x∗(α∗)
)

is sensitive to off-path equilibrium selection. Then there must exist some
battlefield e0 whose organizer can profitably deviate unilaterally to an alternative
contest rule (αe0)′; moreover, the bias profile α′ ≡

(
(αe0)′, (α−e0)∗

)
induces multiple

second-stage equilibria that differ in the effort profiles on battlefield e0. However,
this deviation is unlikely to be profitable for the organizer, since some player on the
deviator’s battlefield exerts zero effort. This contradiction implies that the choice of
off-path equilibrium is irrelevant whenever an outcome can be sustained by an SPNE.

Proposition 1 paves the way for our equilibrium result. We can describe an SPNE
simply by its equilibrium outcome

(
α∗,x∗(α∗)

)
without loss of generality.

3.2 Even-odds Equilibrium as SPNE

In this part, we construct an SPNE of the game. We call an SPNE an even-odds
equilibrium if players win each contest with equal probability, i.e., (pei )∗ = 1/2 for all
(i, e) ∈ Γ. Our first main result ensues.

Theorem 1 (Existence of Even-odds Equilibrium) Fix a game G. An even-
odds equilibrium always exists. There is a unique profile of contest rules α∗∗ that leads
to the equilibrium outcome of equal winning odds on every battlefield. As a result,
the even-odds equilibrium can be described by a unique associated equilibrium outcome(
α∗∗,x∗∗(α∗∗)

)
.

Theorem 1 establishes that there always exists an SPNE in which the players in
each contest win with equal probability. Further, the profile of contest rules that
induces the even-odds outcome in the second-stage game is unique. Three remarks

15



are in order. First, the result differs subtly from the conventional wisdom of leveling
the playing field in the contest design literature. The literature typically considers a
centralized design problem in which an organizer manipulates the competitive balance
of a standalone contest (Lazear and Rosen, 1981; Dixit, 1987; Che and Gale, 1998).
In contrast, we consider a decentralized design problem in which organizers indepen-
dently manage their own battlefields within a network. An organizer’s choice of biases
factors in (i) the biases to be set by others and (ii) its implications for all players’
second-stage effort choices x(α) within the network—including those not involved
in her battle—as Example 1 illustrates. Second, in the even-odds equilibrium, no
single organizer is willing to unilaterally deviate from α∗∗; however, it is noteworthy
that leveling the playing field is not necessarily optimal for an organizer if others do
not level their playing fields. Third, while Theorem 1 establishes that the even-odds
outcome can be sustained as a part of an SPNE, it does not verify its uniqueness. We
discuss equilibrium uniqueness in Section 3.3.

Next, we delve into the fundamentals of the equilibrium and its analysis. As ex-
plained above, solving for the equilibrium is technically challenging. First, unlike a
standalone contest, a closed-form solution to x(α)—the equilibrium efforts in the net-
worked contest game—is unavailable. Second, the dynamic and reflexive interactions
across the network causes irregularity to organizers’ payoff functions, as illustrated
in Figure 2c. As a result, fixing a potential candidate equilibrium—although the
first-order conditions of players’ equilibrium efforts with respect to the biases can
be obtained by Lemma 1—it is almost impossible to verify the (local) second-order
condition, let alone its global optimality.

We develop a novel approach that examines organizers’ nonlocal deviations to
verify the equilibrium instead of analyzing their best responses. We first establish
the existence of a unique profile of biases α∗∗ that yields the even-odds outcome on
every battlefield in the second stage; it remains to verify that α∗∗ indeed constitutes
a first-stage equilibrium. In what follows, we provide a sketch of the proof. For
expositional efficiency, we focus on the pure-cost case. The proof for the pure-budget
case is similar, except that the expression of λi may differ. We will highlight these
distinctions when necessary.

Suppose, to the contrary, that α∗∗ is not a part of an equilibrium. Then there
exists a battlefield e0 ∈ E whose organizer can set α̃e0 ̸= (αe0)∗∗ to induce greater
effort from at least one player on her battlefield. Let x̃, λ̃, and p̃ denote the second-
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stage equilibrium efforts, marginal effort costs, and winning probabilities under the
bias profile α̃ ≡

(
α̃e0 , (α−e0)∗∗

)
, respectively. Similarly, we denote equilibrium vari-

ables under the bias profile α∗∗ with double asterisks. The following lemma helps us
predict how each player’s equilibrium total effort changes in response to the organizer
of battlefield e0’s deviation from (αe0)∗∗.

Lemma 2 (Individual Player’s Overall Effort Incentive) For each i ∈ N ,
λ̃i ≤ λ∗∗

i .

Under α∗∗, the competition on every battlefield is perfectly balanced. A deviation
on battlefield e0 disrupts not only the competitive balance of e0 itself but also that
of interconnected battlefields. Intuitively, this deviation generates negative overall
incentives for players across the network. Lemma 2 confirms and formalizes this
intuition: Every player’s equilibrium marginal effort cost λi weakly decreases following
the deviation. Given the strict convexity of the effort cost functions, their respective
equilibrium total efforts in the contest also weakly decrease accordingly.

The next lemma concerns the spillover of the deviation to players’ efforts on other
individual battlefields.

Lemma 3 (Individual Player’s Incentive on a Battlefield) Fix an arbitrary
battlefield e ̸= e0 with N e = {i, j}, and suppose λ̃i/λ

∗∗
i ≤ λ̃j/λ

∗∗
j . Then x̃e

i ≥ (xe
i )

∗∗.

The deviation on battlefield e0 triggers complex spillovers to interconnected con-
tests, which alters players’ marginal benefits and the marginal costs of efforts on
other battlefields. While each player’s total effort unambiguously decreases, it re-
mains unclear how an individual adjusts effort on a specific battlefield other than e0.
Intuitively, the universal decline in marginal cost induced by the spillover tends to en-
courage players to increase effort on other battlefields. The ratio λ̃i/λ

∗∗
i captures the

impact on player i’s marginal cost: A lower ratio indicates a sharper decline in cost
reduction and therefore a more significant increase in effort incentive from the cost
side. Lemma 3 confirms that the player who experiences the greater cost reduction
will indeed increase effort in response.

We are ready to prove Theorem 1. Let s denote the player with the lowest ra-
tio λ̃i/λ

∗∗
i among all i ∈ N . By Lemma 3, following the organizer’s deviation on

battlefield e0, the player exerts weakly greater effort on all other battlefields—i.e.,
x̃e
s ≥ (xe

s)
∗∗ for all e ∈ Es and e ̸= e0. Two possible cases arise: Player s is either

involved in the contest on battlefield e0 or not.
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Case (a): s /∈ N e0. Lemma 3 implies that player s’s effort weakly increases in all
contests he participates in (he is not involved in the contest on battlefield e0).
Therefore, his total effort weakly increases following the deviation on battlefield
e0. Meanwhile, Lemma 2 predicts that his total effort would weakly decrease.
We can then conclude that his total effort remains unchanged, with λ̃s = λ∗∗

s .
By definition, player s has the lowest ratio λ̃s/λ

∗∗
s = 1; together with Lemma 2,

we can establish that the marginal effort costs of all players remain unchanged,
i.e., λ̃i/λ

∗∗
i = 1 for all i ∈ N .

Let i0 and j0 denote the players on battlefield e0. Recall that players win with
equality probability and thus exert positive effort in all their contests; therefore,
the first-order condition (2)—i.e., vepei (xe)

[
1− pei (x

e)
]
= λig

e
i (x

e
i )—holds for

all i ∈ N and e ∈ E under the bias profile α∗∗. It follows that x̃e0
i0
≤ (xe0

i0
)∗∗ and

x̃e0
j0
≤ (xe0

j0
)∗∗, because p̃e0i0 (1− p̃e0i0 ) ≤ 1/4 = (pe0j0 )

∗∗(1− (pe0j0 )
∗∗). This contradicts

the assumption that setting α̃e0 is a profitable deviation for the organizer on
battlefield e0.

Case (b): s ∈ N e0. Assume, for contradiction, that setting α̃e0 is a profitable de-
viation for the organizer on battlefield e0. If x̃e0

s > (xe0
s )∗∗, then we must have

X̃s > X∗∗
s by Lemma 3. Consequently, λ̃s = c′s(X̃s) > c′s(X

∗∗
s ) = λ∗∗

s , which
contradicts Lemma 2.

Alternatively, suppose x̃e0
s ≤ (xe0

s )∗∗. Then the other player on battlefield e0,
denoted by j0, must exert strictly more effort, i.e., x̃e0

j0
> (xe0

j0
)∗∗ > 0. Moreover,

since x̃e0
s ≤ (xe0

s )∗∗, we have

g̃e0s ≡
f e0
s

(
x̃e0
s

)
(f e0

s )′
(
x̃e0
s

) ≤
f e0
s

(
(xe0

s )∗∗
)

(f e0
s )′
(
(xe0

s )∗∗
) ≡ (ge0s )∗∗.

Similarly, we can obtain g̃e0j0 > (ge0j0 )
∗∗. Together, these imply

λ̃s

λ∗∗
s

≥ λ̃sg̃
e0
s

λ∗∗
s (ge0i0 )

∗∗ =
λ̃j0 g̃

e0
j0

λ∗∗
j0
(ge0j0 )

∗∗ >
λ̃j0

λ∗∗
j0

,

where the equality follows from the first-order condition (2). This contradicts
the definition whereby player s has the lowest λ̃i/λ

∗∗
i among all players.

This argument demonstrates that any unilateral deviation from α∗∗ would not
render an organizer better off. Hence, the bias profile α∗∗ constitutes a first-stage
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equilibrium of the game G. We thus establish that leveling the playing field can
always be sustained as an SPNE, even in the networked environment. It remains
unknown whether this is the unique outcome of the game, and to what extent the
level-playing-field principle can be preserved in a network.

3.3 Equilibrium Uniqueness

This section addresses the uniqueness of the even-odds equilibrium established in
Theorem 1. Our discussion unfolds on two levels. First, we investigate the boundary
of the level-playing-field principle within the network—i.e., we identify the conditions
under which an organizer always sets her contest rule to induce perfectly balanced
competition, regardless of the rules adopted in competing contests. The even-odds
equilibrium must be unique as long as the level-playing-field principle holds. Second,
we explore whether, and under what conditions, this equilibrium remains unique
even when the principle fails—i.e., when perfectly balanced competition does not
automatically maximize an organizer’s payoff.

We present the following preliminaries to ease subsequent analysis and exposi-
tion. Fixing e ∈ E , define we := vepei (1 − pei ) = vepej(1 − pej), with i, j ∈ N e. The
parameter we is an intuitive measure of the competitive balance on battlefield e: A
larger we implies a more balanced playing field; it is maximized when competition on
battlefield e is a perfectly even race, with pei = pej = 1/2 and we = ve/4. Given the
correspondence between we0 and (pei , p

e
j), we obtain the following.

Lemma 4 (Reformulating Organizers’ Design Problem) The tuple
(
α∗,x∗(·)

)
constitutes an SPNE if and only if for each battlefield e0 ∈ E , with N e0 = {i0, j0},
(we0)∗ solves the following maximization problem:

max
{we0 ,(x1,...,xN )}

Λe0(xe0
i0
, xe0

j0
)

s.t. (1) holds for α∗ in all e ̸= e0,
(2) holds for all (i, e) ∈ Γ,
pe0i0 (1− pe0i0 ) = we0/ve0 . (4)

Lemma 4 establishes an equivalence between the decision problem of an organizer
on battlefield e0 who sets biases αe0 and that of the organizer who chooses we0 .12 It

12The reformulation was first introduced by Fu and Wu (2020) to characterize optimal contest
under a centralized organizer, and can naturally be adapted to our setting.
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is worth noting that when we0 < ve0/4, there exist two probabilities pe0i0 that satisfy
(4); so the mapping between αe0—which determine pe0i0 —and we0 is not one-to-one.
However, this nuance does not affect our analysis: The even-odds equilibrium requires
we0 = ve0/4, which can only be attained when pe0i0 = 1/2. In summary, to verify the
uniqueness of the equilibrium, it suffices to focus on the optimality of we0 = ve0/4 in
relevant contexts.

3.3.1 The Level-playing-field Principle in a Conflict Network

Example 1 demonstrates the complications introduced by the indirect network
effect in an organizer contest-rule decision. Specifically, changes to the contest rules
on a single battlefield may affect the equilibrium behavior on others, which in turn
reflexively influence the original one. This feedback loop casts doubt on the level-
playing-field principle well established in standalone contests.

In what follows, we examine the extent to which the conventional wisdom holds in
a network. We begin by introducing two assumptions. The first concerns the impact
function f e

i (·), and the second the network topology Γ.

Assumption 1 For each (i, e) ∈ Γ, f e
i is 2-concave—i.e., (f e

i )
2 is concave.

Assumption 2 The multigraph Γ reduces to a tree after we replace any set of multiple
edges in Γ with a single edge.

Assumption 1 requires sufficient concavity on the impact functions, which corre-
sponds to a sufficiently noisy contest on each battlefield. Intuitively, greater con-
cavity implies that a player’s winning odds become less responsive to effort differen-
tials. That is, outcomes depend more on random factors than on players’ actions, so
changes in efforts have limited influence on winning probabilities and therefore play-
ers’ marginal benefits of efforts. Assumption 2 requires that the network be acyclic.
This prevents recursive feedback loops and dampens indirect network effects: While
changes on one battlefield may spill over to others and vice versa, the absence of
cycles guarantees that these effects cannot feed back to their origin. We obtain the
following.

Theorem 2 (The Level-playing-field Principle in a Conflict Network) Sup-
pose that Assumption 1 or 2 holds. Fixing an arbitrary battlefield e ∈ E and a bias
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profile α−e, it is optimal for the battlefield organizer to set αe that induce we = ve/4—
i.e., a fully level playing field with players to win with equal probability—regardless
of the contest rules set for other contests. As a result,

(
α∗∗,x∗∗(α∗∗)

)
is the unique

equilibrium outcome of game G.

Theorem 2 identifies sufficient conditions under which the level-playing-field prin-
ciple can be sustained in a conflict network, such that an organizer always sets her
rules to induce even winning odds, irrespective of others’ choices.

We now present a sketch proof of the theorem to illustrate the logic underlying
our result. For this purpose, we first introduce the term dλi

dwe0

dxe
i

dwe0
, which plays a

critical role in our analysis. We call it the ripple effect for a player i on a battlefield
e. Recall that we0 measures the degree of competitive balance on battlefield e0. The
two components, dλi

dwe0
and dxe

i

dwe0
, respectively capture how a change in the competitive

balance on e0 affects player i’s total effort and his effort on an arbitrary battlefield
e. When dλi

dwe0

dxe
i

dwe0
< 0, player i’s total effort (as indicated by λi) and his effort on

battlefield e move in opposite directions in response to a change in we0 . Conversely,
when dλi

dwe0

dxe
i

dwe0
> 0, the two forces are aligned.

We then present two lemmata about the general properties of ripple effects, with
neither requiring Assumption 1 or 2.

Lemma 5 (Ripple Effects on Competing Battlefields) Fix a battlefield e0 ∈ E ,
with N e0 = {i0, j0}. The following holds when competition on battlefield e0 becomes
more balanced (as we0 increases):

(i) The ripple effect for each battlefield e ̸= e0 is non-positive, i.e.,

dλi

dwe0

dxe
i

dwe0
+

dλj

dwe0

dxe
j

dwe0
≤ 0, with N e = {i, j}. (5)

(ii) The ripple effect for each player i ∈ N is non-negative, i.e.,∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
≥ 0. (6)

Lemma 5(i) suggests that balancing the competition on battlefield e0—i.e., in-
creasing we0—induces a negative aggregate ripple effect for each other contest. In
contrast, by Lemma 5(ii), the aggregate ripple effect for each player is positive. The
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claim in Lemma 5(ii) follows directly from the definition. Recall that Ei denotes the
set of battles that involve player i. The aggregate ripple effect for player i can be
expressed as ∑

e∈Ei

dλi

dwe0

dxe
i

dwe0
=

dλi

dwe0

∑
e∈Ei

dxe
i

dwe0
=

dλi

dwe0

dXi

dwe0
,

where Xi denotes player i’s total effort across all contests. This expression must be
positive, because λi and Xi move in the same direction under convex cost functions.

We now develop a key thought experiment for our proof. Consider battlefield
e0 where players i0 and j0 compete under rules that initially yield equal winning
probabilities. Recall that our goal is to establish Assumption 1 or 2 as the sufficient
condition under which the level-playing-field principle holds in a network. For this
purpose, we examine a hypothetical scenario in which the organizer could get better
off by unilaterally tilting the competitive balance on battlefield e0. The next lemma
presents the properties of ripple effects under such a circumstance. Together with
Lemma 5, it leads to contradiction when either of the two assumptions is satisfied.

Lemma 6 (Ripple Effects in the Deviating Battlefield) Fix a battlefield e0 ∈
E , with N e0 = {i0, j0}, and a bias profile α that leads to we0 = ve/4. Suppose that
the organizer of battlefield e0 can benefit from resetting her current contest rule αe0,
given the bias profile α−e0 for others. There always exists a degree of competitive
balance w̃e0 < ve0/4, such that the following holds: Letting all derivatives be evaluated
at we0 = w̃e0 and assuming dx

e0
i0

dwe0
≥ dx

e0
j0

dwe0
without loss of generality,

(i) dx
e0
i0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0
;

(ii) w̃e0

λj0

dλj0

dwe0
≥ 1 ≥ we0

λi0

dλi0

dwe0
≥ 0;

(iii) dx
e0
i0

dwe0

dλi0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0

dλj0

dwe0
;

(iv) for e′ ̸= e0, if N e′ = N e0 = {i0, j0}, dxe′
j0

dwe0
≤ 0 and dxe′

j0

dwe0

dλj0

dwe0
≤ 0.

In summary, whenever the organizer of battlefield e0 can benefit from an imbal-
anced contest, we can identify some value w̃e0 for which the resulting ripple effects
satisfy the properties in Lemma 6. Crucially, w̃e0 does not have to be a profitable
deviation from we0 = ve0/4 for the given contest rules α−e0 on other battlefields.
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e0i0
dx

e0
i0

dwe0
≥ 0

j0
dx

e0
j0

dwe0
≤ 0

Γ−Γ+

Figure 4: Network Structure under Assumption 2

Lemma 6(iii), which follows directly from (i) and (ii), establishes that the ripple
effects at w̃e0 diverge in sign between players i0 and j0: positive for i0 but negative for
j0. Moreover, Lemma 6(iv) demonstrates that when i0 and j0 compete on additional
battlefields, j0’s ripple effects remain negative on those battlefields as well.

We are now ready to prove Theorem 2. Suppose that the hypothetical scenario
described above does exist. We derive a contradiction through Lemmata 5 and 6
under either Assumption 1 or Assumption 2.

Case (a): Assumption 1 holds. The proof is similar to that of Theorem 1.
Let s denote the player with the highest value of

∣∣we0

λi

dλi

dwe0

∣∣, i.e.,
∣∣we0

λs

dλs

dwe0

∣∣ =
maxi∈N

∣∣we0

λi

dλi

dwe0

∣∣. By Lemma 6(ii), we0

λj0

dλj0

dwe0
≥ we0

λi0

dλi0

dwe0
≥ 0. Therefore, either

s /∈ {i0, j0} or we can set s = j0 without loss of generality.

Next, fix a battlefield e ∈ Es and consider the associated ripple effect. The case
with e = e0 and s = j0 is straightforward. Lemma 6(iii) leads to dλj0

dwe0

dx
e0
j0

dwe0
≤ 0.

This, together with Lemma 6(iv), indicates that
∑

e∈Es
dλs

dwe0

dxe
s

dwe0
≤ 0, which

contradicts Lemma 5(ii).13

If e ̸= e0, we prove in the Appendix that the ripple effect for player s on
battlefield e is negative, i.e., dλs

dwe0

dxe
s

dwe0
< 0. It is worth noting that Assumption 1

plays a critical role in verifying this inequality. This, again, enables us to
conclude

∑
e∈Es

dλs

dwe0

dxe
s

dwe0
≤ 0.

Case (b): Assumption 2 holds. Under Assumption 2, the multigraph Γ decom-
13It can be verified that

∑
e∈Es

dλs

dwe0

dxe
s

dwe0
= 0 is impossible.
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poses into two connected components upon removal of all edges between i0 and
j0. For notational convenience, denote by Γ+ and Γ− the two connected com-
ponents containing i0 and j0 (see Figure 4 for a graphical illustration). Further,
let N− and E− represent the player and battlefield sets in Γ−, respectively. The
sets N+ and E+ can be similarly defined.

Following Lemma 6(i), we can assume dx
e0
i0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0
without loss of generality.

Next, consider the aggregate ripple effect in Γ−, i.e.,

I− :=
∑
i∈N−

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
.

By Lemma 5(ii), the ripple effect for each player across all battlefields he par-
ticipates in must be non-negative. Consequently,

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
≥ 0 for all

i ∈ N−, which in turn implies that I− ≥ 0. Meanwhile, I− can alternatively be
expressed as

I− =
∑
e∈E−

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
+

∑
e∈Ei0∩Ej0

dλj0

dwe0

dxe
j0

dwe0
.

From Lemma 5(i),
∑

i∈N e
dλi

dwe0

dxe
i

dwe0
≤ 0 for each battlefield e ∈ E−. By Lemma 6(iii)

and (iv), dλj0

dwe0

dxe
j0

dwe0
≤ 0 for all e ∈ Ei0 ∩Ej0 . We can then conclude I− ≤ 0, which

is a contradiction.14

Theorem 2 establishes that when either Assumption 1 or Assumption 2 holds,
each organizer’s optimal strategy is to maintain equal winning probabilities on her
battlefield, independent of other battlefields’ contest rules. This revives the level-
playing-field principle in a networked contest setting. The result reveals the respec-
tive roles played by contest technologies and prevailing network structure in shaping
equilibrium outcome. Both serve to limit the indirect network effect caused by the
change in the competitive balance on one battlefield, so each organizer can focus on
the direct local effect when setting her contest rule.

First, Assumption 1 requires strongly concave impact functions f e
i (·). For sim-

plicity, our discussion focuses on the pure-cost case. The first-order conditions (2)
14It can be verified that I− = 0 is impossible.
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that determine the equilibrium can be written as

(f e
i )

′

f e
i

we = λi.

The left-hand side indicates the marginal benefit of a player i’s effort on battlefield
e, while the right-hand side gives the marginal cost. Suppose that the competitive
balance of a battlefield e0 varies. Its spillover alters players’ marginal benefits and
marginal costs of efforts on all other battlefields. This requires that players adjust
their efforts everywhere to rebalance their costs and benefits. A strongly concave
impact function, as previously noted, limits the impact of a change in effort on winning
probability and therefore the impact on the marginal benefit of effort.

In the proof for Case (a), we identify a player s with
∣∣we0

λs

dλs

dwe0

∣∣ = maxi∈N
∣∣we0

λi

dλi

dwe0

∣∣.
Note that the player, when being evaluated at we0 = w̃e0 , is most significantly affected
by the change on battlefield e0 in terms of marginal effort cost, since

∣∣we0

λi

dλi

dwe0

∣∣ is the
elasticity of λi with respect to we0 . Our analysis verifies that the rebalancing is impos-
sible for player s. The significant change in marginal effort cost cannot be matched
by the limited change in the marginal benefit of the player’s effort. Contradiction
with Lemma 5(ii) thus ensues, because the aggregate ripple effect is negative—i.e.,∑

e∈Es
dλs

dwe0

dxe
s

dwe0
≤ 0. This implies that such a w̃e0 does not exist, and hence the above

hypothetical scenario is unlikely. More intuitively, strongly concave impact functions
restrain the spillover caused by a change in the competitive balance on a battlefield.
This limits the indirect network effect that would feed back to the origin and prevents
it from reversing the direct local effect.

Second, Assumption 2 requires an acyclic network structure. As stated in the
sketch proof and illustrated in Figure 4, the multigraph Γ can be split into two
connected components if the edges between two vertices—i.e., players i0 and j0—
are removed. The decomposition enables us to separate the respective impact of a
change in the contest rule for battlefield e0 on players i0 and j0, which paves the way
for our analysis. Suppose that Assumption 2 is violated (see, e.g., Figure 1b). Their
effort choices would be entangled: They not only engage in the direct competition
on battlefield e0, but are also connected via various indirect paths traversing other
players and battlefields (see, e.g., Figure 3b). The direct local effect on xi0 and xj0

caused by a change in αe0 triggers indirect network effects that reflexively affect the
choices of xi0 and xj0 , which causes complications. An acyclic network severs the
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linkages and keeps xi0 and xj0 immune to the shock of the indirect network effects.

3.3.2 Equilibrium Uniqueness when the Level-playing-field Principle Fails

Next, we examine to what extent the even-odds equilibrium remains unique when
Assumptions 1 and 2 are not satisfied, in which case the level-playing-field principle
may not hold. We present the following two assumptions.

Assumption 1′ For each (i, e) ∈ Γ, f e
i is ρ-concave with ρ = 1+

√
2

2
≈ 1.2—i.e., (f e

i )
ρ

is concave.

Assumption 2′ The simple graph, obtained by replacing all parallel edges in Γ with
single edges, has the following structure: Each edge is contained in at most one cycle,
and all cycles in the simple graph have odd length.

Assumptions 1′ and 2′ impose weaker restrictions and can respectively be implied
by Assumptions 1 and 2. Specifically, Assumption 1′ demands a weaker notion of
concavity for impact functions, while Assumption 2′ allows for cycles in the network.

Theorem 3 (Equilibrium Uniqueness when the Level-playing-field Prin-
ciple Fails) Suppose that Assumption 1′ or 2′ holds. Then

(
α∗∗,x∗∗(α∗∗)

)
is the

unique equilibrium outcome of game G.

We outline the key logic of the proof. Assume, for contradiction, that an alterna-
tive equilibrium exists in which at least one battlefield e exhibits imbalance (pei ̸= pej).
Consider the battlefield with minimal we value and perturb the contest rule on this
battlefield. It can be verified in the proof that under either Assumption 1′ or 2′, the
direct local effect dominates the indirect network effects. This implies that the orga-
nizer on this battlefield can improve the performance of her contest by increasing the
value of we toward ve/4—i.e., leveling the playing field. The hypothetical equilibrium
thus dissolves.

Recall that we ≡ vepeip
e
j . A small we implies either a small prize value ve or a

lopsided competition. Both cases imply limited effort incentives. The former means a
small stake that discourages significant investment; the latter implies that one player
faces a slim chance of winning, while the other expects an easy win, which disin-
centivizes both. Consequently, a marginal change in contest rules would not trigger
substantial effort adjustments, thereby containing network spillovers and dampening
indirect effects.
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Assumption 1′ fulfills a role comparable to that of Assumption 1: Strong concavity
attenuates equilibrium effort levels and weakens cross-battlefield spillovers. Assump-
tion 2′ is similar to Assumption 2: The simplified network architecture constrains the
channels for the indirect effects to be transmitted and compounded, which allows the
local effect to prevail.

To further illustrate the result, we revisit Example 1. As previously noted,
the level-playing-field principle does not hold under this network structure: Given
(αb

2, α
b
3) = (0.1, 0.9) and (αc

3, α
c
1) = (0.1, 0.9), the organizer on battlefield a would not

fully level the playing field. However, the set of biases provided in Example 1—i.e.,
(αa

1, α
a
2) = (0.5, 0.5), (αb

2, α
b
3) = (0.1, 0.9), and (αc

3, α
c
1) = (0.1, 0.9)—cannot consti-

tute a first-stage equilibrium. The triangular network fails Assumption 2 but satisfies
Assumption 2′. By Theorem 3, the game possesses a unique SPNE, in which players
in every battlefield win with equal probabilities.

To close this section, it is useful to note that Assumption 1′ or 2′ is a sufficient but
not necessary condition. The equilibrium uniqueness result established in Theorems 2
and 3 holds more broadly than the context defined by Assumption 1′ or 2′. Although
an analytic result is difficult, our numerical exercises suggest that the even-odds
equilibrium can remain unique even with a less concave impact function or in a
network in which some edges are contained in multiple cycles of an arbitrary length.

4 Extensions
We now examine two extensions. Section 4.1 generalizes the model to incorporate

richer timing architectures for battlefield organizers. Section 4.2 considers the design
problem from a centralized organizer’s perspective.

4.1 Sequential Move

In the baseline model, organizers set contest rules simultaneously. We now con-
sider an alternative setting in which organizers act sequentially. Specifically, organiz-
ers are partitioned into T groups, and the first stage of the game unfolds over T ≥ 1

period(s) accordingly. In each period, one group of organizers choose their contest
rules simultaneously, with their choices observable to later movers. Fix t ∈ {1, . . . , T},
and let E t denote the set of battlefields whose organizers act in period t. Further, let
α<t := (αe)e∈Eτ ,1≤τ≤t−1 denote the bias profile chosen prior to period t. The following
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result ensues.

Theorem 4 (Equilibrium with Sequential Move) Suppose that Assumption 1
or 2 holds. Then there exists a unique SPNE, in which every organizer perfectly levels
the playing field. That is, for each t ∈ {1, . . . , T}, a biases profile α<t, and a battlefield
e ∈ E t, the organizer of battlefield e chooses αe(α<t) such that pei = pej = 1/2. As a
result, (α∗∗,x∗∗) is the unique equilibrium outcome.

By Theorem 4, the conditions that sustain the level-playing-field principle in a
simultaneous-move setting ensure that (α∗∗,x∗∗) remains the unique equilibrium out-
come under sequential moves.

The proof and logic are straightforward. Consider a simple example with two bat-
tlefields, as illustrated in Figure 1c. Let the organizer of battlefield a move first. The
first-stage game can be solved by backward induction. The organizer on battlefield
b—the second mover—will fully balance the playing field regardless of the contest
rule for battlefield a, as implied by Theorem 2.

Now consider the organizer of battlefield a, the first mover. She anticipates that
the late mover will fully level the playing field. In other words, the contest rule for
battlefield b is endogenously pegged to her choice for battlefield a to induce a fully
balanced competition on battlefield b. This dynamic strategic linkage neutralizes the
indirect network effect caused by her own choice, which allows her to focus on the
direct local effect. Thus, she would also set a contest rule to fully level the playing
field on her battlefield.

4.2 Centralized Contest Design

We now let a central organizer set contest rules α = {αe}e∈E for all battlefields in
the first stage of the game. Upon observing the contest rules, players simultaneously
exert their efforts in the second stage.

We assume that the organizer maximizes an objective function determined by
the profile of players’ individual total effort profile, i.e., Λ(x) := Λ(X1, X2, . . . , XN).
It is noteworthy that the central organizer is only concerned about each player’s
individual total effort Xi instead of his entire effort profile xi. This assumption ensures
the existence of an optimum.15 Clearly, varying contest rules has no effect on the

15Otherwise, an optimum may not exist. To see this, consider a setting with N = {1, 2}, E = {a, b},
and Γ = {(1, a), (1, b), (2, a), (2, b)}, as in Figure 1c. Set fe

i (x
e
i ) = xe

i for all (i, e) ∈ Γ, ci(Xi) = (Xi)
2,
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organizer’s payoff in the pure-budget case. We therefore focus on the pure-cost case.
Moreover, we assume that the objective function Λ(x) is strictly increasing in Xi for all
i ∈ N . That is, the organizer strictly benefits from each player’s effort contribution.
A simple example is the aggregate effort over the network— i.e., Λ(x) =

∑
i∈N Xi.

The following result ensues.

Theorem 5 (Centralized Contest Design within A Network) Suppose that
the central organizer’s objective function Λ(x) = Λ(X1, . . . , XN) is strictly increasing
in Xi for all i ∈ N . The optimal contest is unique, in which the organizer sets
α = α∗∗ and players win with equal probability on every battlefield.

Theorem 5 shows that a central organizer always benefits from leveling the playing
fields. Her choices of α internalize the externalities each battlefield’s contest rule
imposes on the others. Leveling the playing field maximizes every player’s effort
incentives. Recall that α∗∗ is the unique bias profile that would induce even winning
odds on all battlefields. This leads to the following result.

Corollary 1 (Centralization versus Decentralization) The optimal contest
rules for the central designer, α∗∗, also constitute a first-stage equilibrium of the
decentralized contest design game in which the organizer on each battlefield unilater-
ally maximizes total effort in her own battle.

Corollary 1 yields useful practical implications. Notably, the central organizer’s
interests are not aligned with the organizers in our original decentralized contest
design game. Nevertheless, Corollary 1 predicts that if the central organizer simply
delegates the task of setting contest rules to a set of self-interested agents—each
managing a single battlefield—the resulting equilibrium outcome may still replicate
the centrally determined optimum.

5 Conclusion
In this paper, we analyze a game of decentralized contest design in which multiple

players engage in pairwise contests within a network. Each battlefield is managed by
an organizer who sets contest rules to incentivize effort supply for her own contest.
and (va, vb) = (1, 1). Suppose that the organizer’s objective is to maximize total effort on battlefield
a, i.e., Λ = xa

1 + xa
2 . We can verify that no optimal biases exist. The organizer can generate total

effort arbitrarily close to the supremum—equal to 1/4—by setting αa = (1, 1) and αb = (ε, 1− ε),
where ε is an infinitesimal positive parameter.
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We investigate the subgame perfect Nash equilibrium of the game and examine the
extent to which the well-known level-playing-field principle continues to hold in this
networked setting, given the complex externalities that arise when contest rules are
set independently for individual battlefields. We show that an even-odds equilibrium
always exists, in which the contest on every battlefield is resolved with equal prob-
ability. We further identify sufficient conditions under which the level-playing-field
principle remains valid—i.e., conditions under which each organizer prefers a fully
balanced contest regardless. We also demonstrate that the even-odds equilibrium
may remain unique even when these conditions are not satisfied, and a fully balanced
contest is not necessarily an organizer’s unconditional best response.

Our paper is the first to analyze decentralized contest design in a networked
context. The analysis sheds new light on the game-theoretic structure of networked
contest games and contributes novel insights to our understanding of the conventional
wisdom in the contest literature of leveling the playing field.

Ample opportunities for future research remain. For instance, Section 3.3 identifies
sufficient conditions for the uniqueness of the even-odds equilibrium, even when the
level-playing-field principle fails to hold. These conditions, however, are not necessary:
In all cases examined, our numerical exercises reveal that the equilibrium remains
unique even when the conditions are violated. This observation naturally implies
that uniqueness can hold under more general conditions, e.g., as long as the impact
functions are strictly concave. Although this conjecture is analytically difficult to
establish, it warrants serious research attention going forward.

Our paper assumes bilateral contests on each battlefield. A natural extension
would be to allow multilateral competitions, which would introduce formidable tech-
nical challenges. First, in a battlefield e with ne players, the organizer’s choice of
contest rules becomes a vector of (ne − 1) dimenions, rather than a single variable
as in our current setup. This greatly increases the dimensionality of the decision
problem, with the complications further compounded in a networked environment.
Second, in a multilateral setting, defining and measuring competitive balance on a
battlefield can be considerably more elusive.

References
Amarasinghe, A., P. A. Raschky, Y. Zenou, and J. Zhou (2026): “How

natural disasters spread conflict,” European Economic Review, 181, 105194.

30



Azmat, G. and M. Möller (2009): “Competition among contests,” RAND Jour-
nal of Economics, 40, 743–768.

——— (2018): “The distribution of talent across contests,” Economic Journal, 128,
471–509.

Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006): “Who’s who in
networks. Wanted: The key player,” Econometrica, 74, 1403–1417.

Berman, N. and M. Couttenier (2015): “External shocks, internal shots: the
geography of civil conflicts,” Review of Economics and Statistics, 97, 758–776.

Berman, N., M. Couttenier, and R. Soubeyran (2021): “Fertile ground for
conflict,” Journal of the European Economic Association, 19, 82–127.

Borel, E. (1921): “La théorie du jeu et les équations intégralesa noyau symétrique,”
Comptes rendus de l’Académie des Sciences, 173, 58.

Borel, E. and J. Ville (1938): “Application de la théorie des probabilitiés aux
jeux de hasard, Gauthier-Villars; reprinted in Borel, E., & Chéron, A.(1991),”
Théorie mathematique du bridgea la portée de tous, Editions Jacques Gabay.

Bramoullé, Y., R. Kranton, and M. D’amours (2014): “Strategic interaction
and networks,” American Economic Review, 104, 898–930.

Che, Y.-K. and I. L. Gale (1998): “Caps on political lobbying,” American Eco-
nomic Review, 88, 643–651.

Cortes-Corrales, S. and P. M. Gorny (2025): “How strength asymmetries
shape multi-sided conflicts,” Economic Theory, 79, 235–274.

Dixit, A. (1987): “Strategic behavior in contests,” American Economic Review, 77,
891–898.

Dziubiński, M., S. Goyal, and D. E. Minarsch (2021): “The strategy of con-
quest,” Journal of Economic Theory, 191, 105161.

Dziubiński, M., S. Goyal, and A. Vigier (2016): “Conflict and networks,” in
The Oxford Handbook of the Economics of Networks, Oxford University Press.

Dziubiński, M., S. Goyal, and J. Zhou (2025): “Interconnected contests,” Work-
ing Paper.

Feng, X., Q. Jiao, Z. Kuang, and J. Lu (2024): “Optimal prize design in team
contests with pairwise battles,” Journal of Economic Theory, 215, 105765.

Feng, X. and J. Lu (2018): “How to split the pie: Optimal rewards in dynamic
multi-battle competitions,” Journal of Public Economics, 160, 82–95.

31



Franke, J., C. Kanzow, W. Leininger, and A. Schwartz (2013): “Effort
maximization in asymmetric contest games with heterogeneous contestants,” Eco-
nomic Theory, 52, 589–630.

Franke, J. and T. Öztürk (2015): “Conflict networks,” Journal of Public Eco-
nomics, 126, 104–113.

Friedman, L. (1958): “Game-theory models in the allocation of advertising expen-
ditures,” Operations Research, 6, 699–709.

Fu, Q. and G. Iyer (2019): “Multimarket value creation and competition,” Mar-
keting Science, 38, 129–149.

Fu, Q., J. Lu, and Y. Pan (2015): “Team contests with multiple pairwise battles,”
American Economic Review, 105, 2120–2140.

Fu, Q. and Z. Wu (2020): “On the optimal design of biased contests,” Theoretical
Economics, 15, 1435–1470.

Galeotti, A., B. Golub, and S. Goyal (2020): “Targeting interventions in
networks,” Econometrica, 88, 2445–2471.

Galeotti, A., S. Goyal, M. O. Jackson, F. Vega-Redondo, and L. Yariv
(2010): “Network games,” Review of Economic Studies, 77, 218–244.

Goyal, S. and A. Vigier (2014): “Attack, defence, and contagion in networks,”
Review of Economic Studies, 81, 1518–1542.

Harari, M. and E. L. Ferrara (2018): “Conflict, climate, and cells: a disaggre-
gated analysis,” Review of Economics and Statistics, 100, 594–608.

Hiller, T. (2017): “Friends and enemies: A model of signed network formation,”
Theoretical Economics, 12, 1057–1087.

Jackson, M. O. and S. Nei (2015): “Networks of military alliances, wars, and
international trade,” Proceedings of the National Academy of Sciences, 112, 15277–
15284.

Klumpp, T. and M. K. Polborn (2006): “Primaries and the New Hampshire
effect,” Journal of Public Economics, 90, 1073–1114.

König, M. D., D. Rohner, M. Thoenig, and F. Zilibotti (2017): “Networks
in conflict: Theory and evidence from the great war of Africa,” Econometrica, 85,
1093–1132.

Konrad, K. A. and D. Kovenock (2009): “Multi-battle contests,” Games and
Economic Behavior, 66, 256–274.

32



Körpeoğlu, E., C. G. Korpeoglu, and İ. E. Hafalır (2022): “Parallel inno-
vation contests,” Operations Research, 70, 1506–1530.

Kovenock, D. and B. Roberson (2012): “Conflicts with multiple battlefields,” in
The Oxford Handbook of the Economics of Peace and Conflict, Oxford University
Press.

Kvasov, D. (2007): “Contests with limited resources,” Journal of Economic Theory,
136, 738–748.

Lazear, E. P. and S. Rosen (1981): “Rank-order tournaments as optimum labor
contracts,” Journal of Political Economy, 89, 841–864.

Li, J. and J. Zhou (2025): “Sign comparative statics in networked competition,”
Working Paper.

Lichtenberg, F. R. (1990): “US government subsidies to private military R&D in-
vestment: The defense department’s independent R&D policy,” Defence and Peace
Economics, 1, 149–158.

Matros, A. and D. Rietzke (2024): “Contests on networks,” Economic Theory,
78, 815–841.

Morgan, J., D. Sisak, and F. Várdy (2018): “The ponds dilemma,” Economic
Journal, 128, 1634–1682.

Roberson, B. (2006): “The Colonel Blotto game,” Economic Theory, 29, 1–24.

Roberson, B. and D. Kvasov (2012): “The non-constant-sum Colonel Blotto
game,” Economic Theory, 51, 397–433.

Snyder, J. M. (1989): “Election goals and the allocation of campaign resources,”
Econometrica, 57, 637–660.

Sun, X., J. Xu, and J. Zhou (2023): “Effort discrimination and curvature of
contest technology in conflict networks,” Games and Economic Behavior, 142, 978–
991.

Xu, J., Y. Zenou, and J. Zhou (2022): “Equilibrium characterization and shock
propagation in conflict networks,” Journal of Economic Theory, 206, 105571.

33



Appendix: Proofs
Proof of Proposition 1. By Xu, Zenou, and Zhou (2022), the second-stage equi-
librium is unique for an arbitrary first-stage biases profile for the pure-cost case, and
it suffices to consider the pure-budget case. We state several intermediate results
(whose proof can be found in the Supplemental Appendix):

Lemma A1 Fix α and e ∈ E , with N e = {i, j}. If there exists x ∈ X (α) such that
xe
j > 0, then (xe

i )
′ = xe

i for all x′ ∈ X (α). As a corollary, fixing x ∈ X (α), if xe
i = 0

for some (i, e)—which implies xe
j > 0—then (xe

i )
′ = 0 for all x′ ∈ X (α).

Lemma A2 Fix α, x′ ∈ X (α), and battlefield e1, with N e1 = {i0, j1}. If (xe1
j1
)′ = 0,

then for any x′′ ∈ X (α), we have (xeu
ju
)′′ = 0 for all eu ∈ Ei0, with N eu = {i0, ju}.

Moreover, λi0(x
′′) = 0.

Lemma A3 Fixing α, λi(x
′) = λi(x

′′) =: λi for all x′,x′′ ∈ X (α) and all i ∈ N .

We first prove part (i) of the proposition. Let (α∗,x∗(·)) be an SPNE and let
x′ := x∗(α∗). Suppose, to the contrary, that there exists x′′ ̸= x′ such that x′′ ∈
X (α∗). Then there exists i0 ∈ N and e1 ∈ Ei0 such that (xe1

i0
)′ ̸= (xe1

i0
)′′. By

Lemma A1, (xe1
j1
)′ = 0 and (xe1

j1
)′′ = 0, where j1 ∈ N e1 and j1 ̸= i0; otherwise,

player i0 would choose the same effort in the battlefield across all equilibria, which
contradicts (xe1

i0
)′ ̸= (xe1

i0
)′′. Further, by Lemma A2, (xeu

ju
)′ = (xeu

ju
)′′ = 0 for all

eu ∈ Ei0 , with N eu = {i0, ju}, and λi0(x
′) = λi0(x

′′) = 0.
Consider an arbitrary battlefield eu ∈ Ei0 and player i0’s opponent, player ju.

By Lemma A3, λju is the same across all equilibria; together with the fact that
(xeu

ju
)′ = (xeu

ju
)′′ = 0, we can conclude that

λju ≥
(αeu

ju
)∗(f eu

ju
)′(0)

(αeu
i0
)∗f eu

i0
(xeu

i0
)
,

where xeu
i0

is player i0’s equilibrium effort on battlefield eu. By the monotonicity of
f eu
i0
(·), there exists a unique xeu

i0
such that the above inequality holds with equality,

and denote it by x̂eu
i0

. It follows immediately that x̂eu
i0

≤ (xeu
i0
)′ and x̂eu

i0
≤ (xeu

i0
)′′,

which in turn implies that∑
eu∈Ei0

x̂eu
i0

≤
∑

eu∈Ei0

(xeu
i0
)′ ≤ X i0 and

∑
eu∈Ei0

x̂eu
i0

≤
∑

eu∈Ei0

(xeu
i0
)′′ ≤ X i0 .
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If
∑

eu∈Ei0
x̂eu
i0

= X i0 , then all inequalities above hold with equality, which implies
that (xeu

i0
)′ = (xeu

i0
)′′ = x̂eu

i0
for all eu ∈ Ei0 . This contradicts the postulated (xe1

i0
)′ ̸=

(xe1
i0
)′′. If

∑
eu∈Ei0

x̂eu
i0

< X i0 , we consider the following alternative strategy for player
i0: xi0 =

(
xe1
i0
, (x̂eu

i0
)eu∈Ei0\{e1}

)
, where xe1

i0
= X i0 −

∑
eu∈Ei0\{e1}

x̂eu
i0

≥ 0. It follows
immediately that xe1

i0
≥ (xe1

i0
)′ and xe1

i0
≥ (xe1

i0
)′′. Recall the postulated (xe1

i0
)′ ̸= (xe1

i0
)′′.

We can thus assume xe1
i0
> (xe1

i0
)′ without loss.

Set αe1 = (αe1
i0
, αe1

j1
) such that λj1 =

α
e1
j1

(f
e1
j1

)′(0)

α
e1
i0

f
e1
i0

(x
e1
i0

)
. It is straightforward to verify

that (xi0 , (x−i0)
′) satisfies (2) and (3) in Lemma 1 under

(
αe1 , {(αe)∗}e∈E\{e1}

)
, and

thus constitutes a second-stage equilibrium. Following a similar argument as in the
previous analysis, we can conclude that for any second-stage equilibrium under this
biases profile, player i0’s equilibrium effort on battlefield e1 is xe1

i0
. Note that xe1

i0
>

(xe1
i0
)′. Therefore, fixing {(αe)∗}e∈E\{e1}, the organizer of battlefield e1 is better off by

deviating from (αe1)∗ to αe1 , which contradicts the postulate that α∗ constitutes a
first-stage equilibrium.

Next, we prove part (ii) of the proposition. Suppose, to the contrary, that there
exists x(·), with x(α) ∈ X (α), such that (α∗,x(·)) is not an SPNE. Therefore, fixing
x(·) and (α−e)∗, there exists a battlefield e such that setting (αe)∗ is suboptimal to
its organizer. Denote the most profitable deviation for the organizer by (αe)′ and
let α′ =

(
(αe)′, (α−e)∗

)
. By assumption, (α∗,x∗(·)) is an SPNE. Therefore, the

organizer of battlefield e is better off in x∗(α∗) than in x∗(α′). Thus, she is strictly
better off in x(α′) than in x∗(α′).

By Lemma A1, it is impossible that the two players on battlefield e are active.
Otherwise, the equilibrium efforts on battlefield e under x(α′) coincide with those
under x∗(α′). Meanwhile, it is evident that at least one player exerts positive effort
in each battlefield in the second stage. Therefore, it must be the case that one player
remains active and the other inactive on battlefield e, and the active player’s effort is
strictly higher in x(α′) than in x∗(α′). Following a similar argument as in the proof
of part (i), this is impossible given that (αe)′ is the most profitable deviation for the
organizer of battlefield e. This concludes the proof. □

Proof of Lemma 2. For the pure-cost case, similar to (8), we can obtain that

λ̃i = c′i

(∑
e∈Ei

(gei )
−1
(vep̃ei (1− p̃ei )

λ̃i

))
≤ c′i

(∑
e∈Ei

(gei )
−1
( ve

4λ̃i

))
,
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where the inequality follows from the monotonicity of c′i and (gei )
−1 and p̃ei (1− p̃ei ) ≤

1/4. The above inequality, together with (8), implies λ̃i ≤ λ∗∗
i . The proof for the

pure-budget case is similar and omitted for brevity. □

Proof of Lemma 3. For notational convenience, define (f e
i )

∗∗ := f e
i ((x

e
i )

∗∗), (gei )∗∗ :=
gei ((x

e
i )

∗∗), f̃ e
i := f e

i (x̃
e
i ), and g̃ei := gei (x̃

e
i ). Suppose, to the contrary, that x̃e

i < (xe
i )

∗∗.
By (2), we have

λ∗∗
i (gei )

∗∗ = λ∗∗
j (gej )

∗∗ =
ve

4
and λ̃ig̃

e
i = λ̃j g̃

e
j = vep̃ei (1− p̃ei ). (7)

Evidently, at least one player is active on battlefield e in the equilibrium. We
consider three cases:

(a) Suppose x̃e
i = 0 and x̃e

j > 0. The postulated λ̃i/λ
∗∗
i ≤ λ̃j/λ

∗∗
j implies that λ̃i = 0.

Meanwhile, it follows from (3) that λ̃i ≥ (αe
i )

∗∗(fe
i )

′(0)

(αe
j)

∗∗f̃e
j

> 0. A contraction.

(b) Suppose x̃e
j = 0 and x̃e

i > 0. From (3), we have λ̃j ≥ (αe
j)

∗∗(fe
j )

′(0)

(αe
i )

∗∗f̃e
i

. Further,

(xe
j)

∗∗ > 0 implies λ∗∗
j <

(αe
j)

∗∗(fe
j )

′(0)

(αe
i )

∗∗(fe
i )

∗∗ . Note that λ̃j ≤ λ∗∗
j by Lemma 2. Together,

these indicate that (f e
i )

∗∗ < f̃ e
i , which implies that (xe

i )
∗∗ < x̃e

i . A contradiction.

(c) Now suppose, x̃e
j > 0 and x̃e

i > 0. Let ai := f̃ e
i /(f

e
i )

∗∗ and aj := f̃ e
j /(f

e
j )

∗∗. Note
that gei (·) ≡ f e

i (·)/(f e
i (·))′ is strictly increasing; together with the postulated

x̃e
i < (xe

i )
∗∗, we have that g̃ei < (gei )

∗∗. Further, by (7), we have λ̃ig̃
e
i

λ∗∗
i (gei )

∗∗ =

λ̃j g̃
e
j

λ∗∗
j (gej )

∗∗ ; together with g̃ei < (gei )
∗∗ and the postulated λ̃i/λ

∗∗
i ≤ λ̃j/λ

∗∗
j , we can

obtain that g̃ej < (gej )
∗∗ and x̃e

j < (xe
j)

∗∗, which implies that 0 < ai, aj < 1.

By (1), we have that 1 =
(pei )

∗∗

(pej)
∗∗ =

(αe
i )

∗∗(fe
i )

∗∗

(αe
j)

∗∗(fe
j )

∗∗ , which implies p̃ei
p̃ej

=
(αe

i )
∗∗f̃e

i

(αe
j)

∗∗f̃e
j

=

f̃e
i /(f

e
i )

∗∗

f̃e
j /(f

e
j )

∗∗ = ai
aj

and thus (p̃ei , p̃
e
j) = ( ai

ai+aj
,

aj
ai+aj

); together with (7), we have that
g̃ei

(gei )
∗∗ = 4p̃ei (1− p̃ei )×

λ∗∗
i

λ̃i
≥ 4aiaj

(ai+aj)2
, where the inequality follows from Lemma 2.

Further, from the concavity of f e
i (·) and the postulated x̃e

i < (xe
i )

∗∗, we have

ai =
f̃ e
i

(f e
i )

∗∗ =
g̃ei

(gei )
∗∗ × (f e

i )
′(x̃e

i )

(f e
i )

′((xe
i )

∗∗)
≥ g̃ei

(gei )
∗∗ ≥ 4aiaj

(ai + aj)2
,

which implies 4aj
(ai+aj)2

≤ 1. Similarly, we can obtain that 4ai
(ai+aj)2

≤ 1. Summing
the two inequalities yields ai + aj ≥ 2, which contradicts ai, aj < 1.

36



This completes the proof. □

Proof of Theorem 1. It suffices to show that there is a unique profile of contest
rules α∗∗ that leads to the equilibrium outcome of equal winning odds on every
battlefield. For the pure-cost case, we first solve for the second-stage equilibrium
profile x∗∗ that leads to equal winning odds in all battlefields. Plugging (pei )

∗∗ = 1/2

into (2) yields ve

4
= λ∗∗

i gei
(
(xe

i )
∗∗); together with the monotonicity of gei ≡ f e

i /(f
e
i )

′,
we have (xe

i )
∗∗ = (gei )

−1
(

ve

4λ∗∗
i

)
and

λ∗∗
i = c′i(X

∗∗
i ) = c′i

(∑
e∈Ei

(gei )
−1
( ve

4λ∗∗
i

))
, (8)

from which we can solve for λ∗∗
i and pin down x∗∗. The first-stage biases profile α∗∗

is uniquely determined by (1).
The proof of the pure-budget case closely follows that of the pure-cost case after

we replace (8) with X i =
∑

e∈Ei(g
e
i )

−1
(

ve

4λ∗∗
i

)
. This concludes the proof. □

Proof of Lemma 4. It suffices to show that for any αe0 , the organizer of battlefield
e0 can choose we0 to induce the same equilibrium effort profile x and vice versa.

First, fix an arbitrary αe0 and a second-stage equilibrium x∗, which yields (we0)∗.
Evidently, the organizer can set we0 = (we0)∗ to induce x∗. Second, fixing an arbitrary
we0 ≤ ve0/4—which induces x∗—the winning probability on battlefield e0 can be
solved from (4). The corresponding biases αe0 can then be derived from (1). □

Proof of Lemma 5. We first state an intermediate result (whose proof can be
found in the Supplemental Appendix).

Lemma A4 Fix a battlefield e0 ∈ E , with N e0 = {i0, j0}. The following statements
hold in the second-stage equilibrium:

(i) Fix e ̸= e0, with N e = {i, j}. If xe
i , x

e
j > 0, then

dxe
i

dwe0
= −weme

i

λi

×

[
1− (2pei − 1)me

j

]
1
λi

dλi

dwe0
+ (2pei − 1)me

j
1
λj

dλj

dwe0

1 + (me
i −me

j)(p
e
i − pej)

, (9)

where gei := gei (x
e
i ) and me

i :=
(fe

i )
′(xe

i )
2

(fe
i )

′(xe
i )

2−fe
i (x

e
i )(f

e
i )

′′(xe
i )
∈ [0, 1].
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(ii) For battlefield e0, we have that

dxe0
i0

dwe0
= ge0i0 m

e0
i0

[
1

we0
− 1

λi0

dλi0

dwe0

]
and

dxe0
j0

dwe0
= ge0j0m

e0
j0

[
1

we0
− 1

λj0

dλj0

dwe0

]
. (10)

(iii) For each i ∈ N , we have that

δi
dλi

dwe0
=
∑
e∈Ei

dxe
i

dwe0
, (11)

where δi = 0 in the pure-budget case and δi =
1

c′′i (Xi)
in the pure-cost case.

We are ready to prove the lemma. For part (i), first consider the case of xe
i , x

e
j > 0.

By (9), we have that

dλi

dwe0

dxe
i

dwe0
+

dλj

dwe0

dxe
j

dwe0

=− we
me

i

[
1− (2pei − 1)me

j

](
1
λi

dλi

dwe0

)2
+me

j

[
1 + (2pei − 1)me

i

](
1
λj

dλj

dwe0

)2
1 + (me

i −me
j)(p

e
i − pej)

.

Note that me
i ∈ [0, 1]. Moreover, xe

i , x
e
j > 0 implies that pei ∈ (0, 1). Therefore,

1 − (2pei − 1)me
j > 0, 1 + (2pei − 1)me

i > 0, and 1 + (me
i − me

j)(p
e
i − pej) > 0, which

implies (5).
Next, suppose xe

i = 0 and xe
j > 0. If xe

i = 0 in a neighborhood of we0 , then by
Lemma A2, λj = 0 in this neighborhood. Therefore, dxe

i

dwe0
=

dλj

dwe0
= 0, which also

implies (5). Otherwise, if xe
i > 0 in a neighborhood of we0 , then (5) holds in the

neighborhood and is satisfied at we0 by continuity.
Next, we prove part (ii) of the lemma. By (11), we have that

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
=

δi
(

dλi

dwe0

)2 ≥ 0. This concludes the proof. □

Proof of Lemma 6. For part (i) of the lemma, we first show that there exists
w̃e0 < ve0/4 such that dx

e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. By assumption, there exists ŵe0 < ve0/4

such that Λe0(xe0
i0
, xe0

j0
)
∣∣∣
we0=ŵe0

≥ Λe0(xe0
i0
, xe0

j0
)
∣∣∣
we0=ve0/4

. Recall that Λe0 is strictly

increasing in xe0
i0

and xe0
j0

. There exists w̃e0 ∈ (ŵe0 , ve0/4) to satisfy dx
e0
i0

dwe0

∣∣∣
we0=w̃e0

≤ 0

or dx
e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. Further, dx
e0
i0

dwe0

∣∣∣
we0=w̃e0

≥ dx
e0
j0

dwe0

∣∣∣
we0=w̃e0

by assumption. Therefore,
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dx
e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. In the rest of the proof, all derivatives are evaluated at we0 = w̃e0 .

Next, we show that dx
e0
i0

dwe0
≥ 0. Suppose, to the contrary, that dx

e0
i0

dwe0
< 0. By (10),

we have that dλi0

dwe0
> 0 and dλj0

dwe0
> 0. Therefore,

dλi0

dwe0

dxe0
i0

dwe0
+

dλj0

dwe0

dxe0
j0

dwe0
< 0. (12)

Note that
I =

∑
i∈N

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
≥ 0, (13)

where the inequality follows from Lemma 5(ii). However, (5) and (12) imply that

I =
∑
e ̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
+

dλi0

dwe0

dxe0
i0

dwe0
+

dλj0

dwe0

dxe0
j0

dwe0
< 0,

which is a contradiction.
Next, we prove part (ii) of the lemma. The first two inequalities in part (ii) follow

immediately from part (i) and (10), and it remains to prove dλi0

dwe0
> 0. Suppose, to the

contrary, that dλi0

dwe0
< 0; together with dx

e0
i0

dwe0
> 0 as shown in part (i), we can obtain

(12). From (12) and Lemma 5(ii), we have that I < 0, which contradicts (13).
Part (iii) of the lemma follows immediately from parts (i) and (ii), and it remains

to prove part (iv). It suffices to show dxe′
j0

dwe0
≤ 0; dxe′

j0

dwe0

dλj0

dwe0
≤ 0 can be implied by

dxe′
j0

dwe0
≤ 0 and (ii).

Fix e′ ̸= e0, with N e′ = {i0, j0}. By (9), we have that

dxe′
j0

dwe0
= −

we′me′
j0

λj0

×

[
1− (2pe

′
j0
− 1)me′

i0

]
1

λj0

dλj0

dwe0
+ (2pe

′
j0
− 1)me′

i0
1

λi0

dλi0

dwe0

1 + (me′
i0
−me′

j0
)(pe

′
i0
− pe

′
j0
)

.

Recall that we have shown 1+(me′
i0
−me′

j0
)(pe

′
i0
−pe

′
j0
) > 0 in Lemma 5. Further, simple

algebra would verify that[
1− (2pe

′

j0
− 1)me′

i0

] 1

λj0

dλj0

dwe0
+ (2pe

′

j0
− 1)me′

i0

1

λi0

dλi0

dwe0

=
1

λj0

dλj0

dwe0
− (2pe

′

j0
− 1)me′

i0

[
1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0

]
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≥ 1

λj0

dλj0

dwe0
−

[
1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0

]
≥ 0,

where the first inequality follows from pe
′
j0
∈ [0, 1], me′

i0
∈ [0, 1], and 1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0
≥

0; and the second inequality follows from part (ii) of the lemma. Therefore, dxe′
j0

dwe0
≤ 0,

which concludes the proof. □

Proof of Theorem 2. It remains to show that under Assumption 1, dλs

dwe0

dxe
s

dwe0
< 0

for each e ∈ Es, with e ̸= e0. We first show that dλs

dwe0
̸= 0. Suppose, to the contrary,

that dλs

dwe0
= 0. By the definition of s, dλi

dwe0
= 0 for each i ∈ N ; together with (10), we

have that dx
e0
i0

dwe0
< 0 and dx

e0
j0

dwe0
< 0, which contradicts Lemma 6(i).

Next, suppose dλs

dwe0
> 0 (the analysis for the case with dλs

dwe0
< 0 follows analo-

gously). Fix e ∈ Es, with e ̸= e0 and N e = {s, j}. By (9), we have that

dxe
s

dwe0
= −weme

s

λs

×

[
1− (2pes − 1)me

j

]
1
λs

dλs

dwe0
+ (2pes − 1)me

j
1
λj

dλj

dwe0

1 + (me
s −me

j)(p
e
s − pej)

.

Assumption 1 implies that (f e
j )

′(0) = (f e
s )

′(0) = +∞ and thus pes ∈ (0, 1). Further,
the assumption implies me

j ∈ [0, 1/2]. Carrying out the algebra, we can obtain that

[
1− (2pes − 1)me

j

] 1

λs

dλs

dwe0
+ (2pes − 1)me

j

1

λj

dλj

dwe0

=
1

λs

dλs

dwe0
− (2pes − 1)me

j

[
1

λs

dλs

dwe0
− 1

λj

dλj

dwe0

]

>
1

λs

dλs

dwe0
− 1

2
×

[
1

λs

dλs

dwe0
− 1

λj

dλj

dwe0

]
≥ 0,

where the first inequality follows from me
j ∈ [0, 1/2] and pes ∈ (0, 1); and the last

inequality follows from 1
λs

dλs

dwe0
≥
∣∣∣ 1
λj

dλj

dwe0

∣∣∣. This concludes the proof. □

Proof of Theorem 3 Consider the following two cases depending on whether As-
sumption 1′ or 2′ is satisfied.

Case (a): Assumption 1′ holds. Note that Assumption 1′ implies that (f e
i )

′(0) =

∞ and thus xe
i > 0 for all (i, e) ∈ Γ. Suppose, to the contrary, that there exists an
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alternative equilibrium
(
α†,x†(·)

)
̸=
(
α∗∗,x∗∗(·)

)
. Then there exists (i, e) such that

(pei )
† ̸= 1/2, which implies that (we)† < ve/4. Let e0 be the battlefield with mini-

mal we among all battlefields that satisfy (we)† < ve/4—i.e., (we0)† = min
{
(we)† :

(we)† < ve/4
}

—and N e0 = {i0, j0}. By (13), we have that

I ≡
∑

(i,e)∈Γ

dλi

dwe0

dxe
i

dwe0
≥ 0. (14)

Note that I can be divided into three parts:

I =
dλi0

dwe0

dxe0
i0

dwe0︸ ︷︷ ︸
I1

+
dλj0

dwe0

dxe0
j0

dwe0︸ ︷︷ ︸
I2

+
∑
e ̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0︸ ︷︷ ︸
I3

. (15)

Let s ∈ N such that
∣∣∣ 1

λ†
s

dλs

dwe0

∣∣∣ = maxi∈N

∣∣∣ 1

λ†
i

dλi

dwe0

∣∣∣. By Lemma 6, s ̸= i0. Suppose
1

λ†
s

dλs

dwe0
> 0 (the analysis for the case with 1

λ†
s

dλs

dwe0
< 0 follows analogously). By (6),

there exists e† ∈ Es such that dxe†
s

dwe0
≥ 0. Denote player s’s opponent on battlefield

e† by j†. Evidently, e† ̸= e0. Otherwise, if e† = e0, then s = j0, which contradicts
Lemma 6(iii).

The following intermediate result ensues (whose proof can be found in the Sup-
plemental Appendix).

Lemma A5 The following statements hold:

I1 ≤
(we0)†

4ρ
×

(
1

λ†
j0

dλj0

dwe0

)2

, (16)

I2 ≤ 0, (17)

I3 ≤ −(we0)†
1−

(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

(
1

λ†
j0

dλj0

dwe0

)2

. (18)

Plugging (16), (17), and (18) into (15), we can obtain that

I ≤ (we0)† ×
(

1

λ†
j0

dλj0

dwe0

)2

×

 1

4ρ
−

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

 < 0,
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where the last inequality follows from 2(pe
†
s )

† − 1 ∈ (0, 1), (me†

j†)
† ∈ [0, 1/ρ], and

ρ = 1+
√
2

2
. This contradicts (14).

Case (b): Assumption 2′ holds. Recall e0 as defined in Case (a). The proof is
the same as that of Theorem 2 if e0 is not in a cycle, and it suffices to consider the
case in which e0 is contained in a unique cycle with odd length. Denote the set of
players on the cycle by {i0, . . . , i2ℓ}—where 2ℓ+ 1 gives the length of the cycle—and
let N e0 = {i0, i1}.

By Assumption 2′, if we remove all edges on this cycle—i.e., all battlefields e

with N e = {ik, ik+1} for some k ∈ {0, . . . , 2ℓ}—the network is divided into 2ℓ + 1

connected components, and each contains exactly one player on the cycle. Denote the
connected component that contains player ik by Γ(k). Further, denote the players
and battlefields in Γ(k) by N (k) and E(k), respectively. For each k ∈ {0, . . . , 2ℓ},
define

I+
k :=

∑
e∈E:N e={ik,ik+1}

dxe
ik

dwe0

dλik

dwe0
and I−

k :=
∑

e∈E:N e={ik,ik−1}

dxe
ik

dwe0

dλik

dwe0
.

The following intermediate result ensues (whose proof can be found in the Supple-
mental Appendix).

Lemma A6 The following holds:

(i) For each k ∈ {0, . . . , 2ℓ}, I+
k + I−

k ≥ 0.

(ii) For each k ∈ {1, . . . , 2ℓ}, I+
k + I−

k+1 < 0.

(iii) The signs of I+
0 and I−

1 are different.

(iv) The signs of I+
k are the same among all k ∈ {0, . . . , 2ℓ} and those of I−

k are
the same among all k ∈ {0, . . . , 2ℓ}.

By Lemma A6, there are two cases: (i) I+
k > 0 and I−

k < 0 for all k ∈ {0, . . . , 2ℓ};
and (ii) I+

k < 0 and I−
k > 0 for all k ∈ {0, . . . , 2ℓ}. In what follows, we focus on the

former (the analysis for the latter case is similar).
For notational convenience, define µk :=

∣∣∣ 1
λik

dλik

dwe0

∣∣∣ and the following:

M+
k,k :=

∑
e∈E:N e={ik,ik+1}

−weme
ik

1− (2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
, (19)
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M−
k+1,k+1 :=

∑
e∈E:N e={ik,ik+1}

−weme
ik+1

1− (2peik+1
− 1)me

ik

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
, (20)

Mk,k+1 :=
∑

e∈E:N e={ik,ik+1}

−weme
ik

(2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
. (21)

We state several intermediate results (whose proof can be found in the Supple-
mental Appendix).

Lemma A7 The signs of Mk,k+1 are the same among all k ∈ {0, . . . , 2ℓ}.

Lemma A8 Suppose that I+
k > 0 for all k ∈ {0, . . . , 2ℓ}. Fixing k ∈ {1, . . . , 2ℓ}, the

following holds:

(i) If Mk,k+1 > 0, then 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have the same sign. Moreover,

µk+1 > 2µk. (22)

(ii) If Mk,k+1 < 0, then 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have different signs. Moreover,

I+
k ≤ (−I−

k+1)×
µk

µk + 2µk+1

, (23)

and
−I−

k+1 ≥
2µk+1

µk

I+
k + we0µkµk+1. (24)

Now we can prove the equilibrium uniqueness. By Lemma A7, for all k ∈
{0, . . . , 2ℓ}, either Mk,k+1 > 0 or Mk,k+1 < 0. In the former case, from (22) in
Lemma A8(i), we have that µ0 = µ2ℓ+1 > 2µ2ℓ > · · · > 22ℓµ1. Meanwhile, by
Lemma 6(ii), we have that 1

λi1

dλi1

dwe0
≥ 1

λi0

dλi0

dwe0
≥ 0, which implies that µ1 ≥ µ0. A

contradiction.
In the latter case, it follows from (23) and Lemma A6(i) that

I+
k ≤ (−I−

k+1)×
µk

µk + 2µk+1

≤ I+
k+1 ×

µk

µk + 2µk+1

, ∀ k ∈ {1, . . . , 2ℓ},

which implies that

I+
2 ≤ I+

0 ×
2ℓ∏
k=2

µk

µk + 2µk+1

. (25)
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Next, combining Lemma A6(ii) and (24) in Lemma A8(ii) yields that

I+
2 ≥ 2µ2

µ1

I+
1 +max

{
I+
1 , w

e0µ1µ2

}
. (26)

Moreover, we have that

I+
0 − I+

1 ≤ I+
0 + I−

1 =
dxe0

i0

dwe0

dλi0

dwe0
+

dxe0
i1

dwe0

dλi1

dwe0
+

∑
e:N e={i0,i1},e ̸=e0

∑
i∈N e

dxe
i

dwe0

dλi

dwe0

≤
dxe0

i0

dwe0

dλi0

dwe0
= we0me0

i0
µ0

(
1

we0
− µ0

)
≤ we0µ0(µ1 − µ0), (27)

where the first inequality follows from Lemma A6(i); the second inequality follows
from (5) and Lemma 6(iii); the second equality follows from (10); and the last in-
equality follows from Lemma 6(ii) and me0

i0
≤ 1.

Combining (25), (26) and (27) yields that

H(I+
1 ) :=

2µ2

µ1

I+
1 +max

{
I+
1 , w

e0µ1µ2

}
−
[
I+
1 + we0µ0(µ1 − µ0)

]
×

2ℓ∏
k=2

µk

µk + 2µk+1

≤ 0.

Note that H(·) is linear in I+
1 on

[
0, we0µ1µ2

]
and

[
we0µ1µ2,+∞

)
. Simple algebra

would verify that H(0) > 0, H(we0µ1µ2) > 0, and H(∞) > 0. Therefore, H(I+
1 ) > 0,

and we arrive at the contradiction. This completes the proof. □

Proof of Theorem 4. We prove Theorem 4 by induction on t.

Base case: Consider the last period t = T . Fixing e ∈ ET , the organizer chooses αe

to maximize Λe(xe), holding fixed α−e. By Theorem 2, the organizer chooses
αe to induce pei = pej = 1/2, with N e = {i, j}, in the equilibrium.

Inductive step: For each t ∈ {1, . . . , T−1}, suppose that the statement holds for each
τ > t. We show that for each battlefield e0 ∈ E t and each α<t, the battlefield
organizer chooses αe to induce pe0i0 = pe0j0 = 1/2, with N e0 = {i0, j0}.

First, following a similar argument as in the proof of Lemma A4, we can show
that (9) holds for each e ∈ ∪τ≤tEτ and e ̸= e0. Second, by the induction
hypothesis, for each e ∈ ∪τ>tEτ and each i ∈ N e, we have that pei ≡ 1/2 and
thus dpei

dwe0
= 0. This implies that dxe

i

dwe0
= −geim

e
i

λi

dλi

dwe0
and thus dxe

i

dwe0

dλi

dwe0
≤ 0.
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Fixing the biases profile up to period t − 1—i.e., fixing α<t—the battlefield
organizers in period t choose their biases, anticipating the biases set by their
followers. Note that the condition dxe

i

dwe0

dλi

dwe0
≤ 0 we prove above ensures that

Lemmata 5 and 6 continue to hold. Following a similar argument as in the
proof of Theorem 2, we can show that all battlefield organizers in period t will
again choose biases to induce equal winning probabilities in their battlefields.
This completes the inductive step.

Conclusion: By the principle of induction, for each t ∈ {1, . . . , T}, a biases profile
α<t, and a battlefield e ∈ E t, the organizer chooses αe(α<t) such that pei =

pej = 1/2. This completes the proof. □

Proof of Theorem 5. Fix an arbitrary biases profile α and x ∈ X (α). It follows
from (2) that

Xi =
∑
e∈Ei

xe
i =

∑
e∈Ei

(gei )
−1

(
vepei (1− pei )

λi

)
≤
∑
e∈Ei

(gei )
−1

(
ve

4c′i(Xi)

)
. (28)

Further, by the definition of α∗∗, we have that (pei )
∗∗ = 1/2 for all (i, e) ∈ Γ. Similar

to (28), we have that

X∗∗
i =

∑
e∈Ei

(gei )
−1

(
ve(pei )

∗∗(1− (pei )
∗∗)

(λi)∗∗

)
=
∑
e∈Ei

(gei )
−1

(
ve

4c′i(X
∗∗
i )

)
. (29)

A closer look at (28) and (29) reveals that Xi ≤ X∗∗
i , where the inequality holds with

equality if and only if pei = 1/2 for all (i, e) ∈ Γ. Further, by Theorem 1, we must
have α = α∗∗. This completes the proof. □
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Supplemental Appendix: Omitted Proofs
Proof of Lemma A1

Proof. Suppose, to the contrary, that there exists e0 ∈ E , with N e0 = {i0, j0}, and
two second-stage equilibria x′,x′′ ∈ X (α), with (xe0

i0
)′ ̸= (xe0

i0
)′′ and (xe0

j0
)′ > 0.

Note that equilibrium requires that ∂πi(x
′)

∂xe
i

≤ λi(x
′), where the inequality holds

with equality if (xe
i )

′ > 0. Similarly, ∂πi(x
′′)

∂xe
i

≤ λi(x
′′), where the inequality holds with

equality if (xe
i )

′′ > 0. Together, these indicate that

∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi(x

′)

∂xe
i

≥ 0,

and ∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi(x

′′)

∂xe
i

≤ 0.

Combining the above two inequalities yields that

∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× [∂πi(x

′)

∂xe
i

− ∂πi(x
′′)

∂xe
i

]
≥ 0. (A1)

Define x(z) := zx′ + (1− z)x′′, with z ∈ [0, 1], and

ω(z) :=
∑

(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi

(
x(z)

)
∂xe

i

.

Evidently, (A1) is equivalent to ω(1) ≥ ω(0). Meanwhile, ω(z) can be rewritten as

ω(z) =
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)× ∂pei

(
x(z)

)
∂xe

i

+
(
(xe

j)
′ − (xe

j)
′′)× ∂pej

(
x(z)

)
∂xe

j

]

=
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)× ∂pei

(
x(z)

)
∂xe

i

−
(
(xe

j)
′ − (xe

j)
′′)× ∂pei

(
x(z)

)
∂xe

j

]
,

which yields that

ω′(z) =
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)2 × ∂2pei

(
x(z)

)
(∂xe

i )
2

+
(
(xe

j)
′ − (xe

j)
′′)2 × ∂2pej

(
x(z)

)
(∂xe

j)
2

]
.
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Recall that ∂pei
∂xe

i
= pei (1− pei )

(fe
i )

′

fe
i

, which in turn implies that

∂2pei
(∂xe

i )
2
= (1− 2pei )p

e
i (1− pei )

[
(f e

i )
′

f e
i

]2
+ pei (1− pei )

(f e
i )

′′f e
i − (f e

i )
′(f e

i )
′

(f e
i )

2

=
pei (1− pei )

(f e
i )

2
×
[
(1− 2pei )(f

e
i )

′(f e
i )

′ + (f e
i )

′′f e
i − (f e

i )
′(f e

i )
′
]

=
αe
iα

e
jf

e
j

(αe
if

e
i + αe

jf
e
j )

3
×
[
(f e

i )
′′(αe

if
e
i + αe

jf
e
j )− 2αe

i (f
e
i )

′(f e
i )

′
]
≤ 0,

where the equality holds if and only if f e
j = 0, or equivalently, xe

j = 0. Similarly,
we have that ∂2pej

(∂xe
j)

2 ≤ 0. Together, these indicate that ω′(z) ≤ 0. Moreover, from
(xe0

i0
)′ ̸= (xe0

i0
)′′ and the postulated (xe0

j0
)′ > 0, we have that

(
(xe0

i0
)′ − (xe0

i0
)′′
)2 × ∂2pe0i0

(
x(z)

)
(∂xe0

i0
)2

< 0.

Therefore, ω′(z) < 0 for all z ∈ (0, 1), which implies that ω(1) < ω(0). This contra-
dicts (A1).

Proof of Lemma A2

Proof. Suppose (xe1
j1
)′ = 0. By Lemma A1, (xe1

j1
)′′ = 0 for all x′′ ∈ X (α). Evidently,

each battlefield has at least one active player in the second-stage equilibrium, which
implies that (xe1

i0
)′′ > 0.

Suppose, to the contrary, that (xeu
ju
)′′ > 0 for some eu ∈ Ei0 , with N eu = {i0, ju}.

Then player i0 has a profitable deviation. Specifically, suppose that he slightly re-
duces (xe1

i0
)′′ and increases (xeu

i0
)′′ by the same amount. This does not change his

winning odds on battlefield e1 but strictly increases his winning odds on battlefield
eu. Therefore, for all x′′ ∈ X (α), (xeu

ju
)′′ = 0 for all eu ∈ Ei0 .

It remains to show λi0(x
′′) = 0. Thus far, we have shown that (xe1

j1
)′′ = 0 and

(xe1
i0
)′′ > 0; together with (1) and (2), we can conclude λi0(x

′′) = 0.

Proof of Lemma A3

Proof. Evidently, each battlefield has at least one active player in the second-stage
equilibrium. There are two cases:
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(a) player i has an inactive opponent in some battlefield in one equilibrium. In this
case, by Lemma A2, we have that λi = 0 across all equilibria.

(b) player i has an active opponent in all his battlefields in all equilibria. Note that,
for the pure-budget case, it is impossible that player i remains inactive in all
his battlefields in any equilibrium. This implies that in any equilibrium, player
i must be active in at lease one battlefield. Fix an equilibrium and consider one
such battlefield, say battlefield e, with N e = {i, j}. It follows immediately that
xe
i , x

e
j > 0. By Lemma A1, both players i and j exert the same effort—i.e., xe

i

and xe
j—in all equilibria. Note that λi is uniquely determined by (2) once we

know xe
i and xe

j . This implies that λi must be the same across all equilibria.

This concludes proof of the lemma.

Proof of Lemma A4

Proof. We first prove part (i) of the lemma. Fixing e ̸= e0, with N e = {i, j}, (1)
can be rewritten as

pei =
αe
if

e
i

αe
if

e
i + αe

jf
e
j

and pej = 1− pei =
αe
jf

e
j

αe
if

e
i + αe

jf
e
j

,

from which we can conclude that

pei
1− pei

=
αe
if

e
i

αe
jf

e
j

.

Taking the logarithm of both sides of the above equation and differentiating it with
respect to we0 gives

1

pei (1− pei )

dpei
dwe0

=
1

gei

dxe
i

dwe0
− 1

gej

dxe
j

dwe0
. (A2)

Suppose xe
i , x

e
j > 0 at we0 . Then, by continuity, xe

i , x
e
j > 0 in a neighborhood of

we0 . Therefore, the first-order condition (2) holds in the neighborhood, which gives

vepei (1− pei ) = λig
e
i = λjg

e
j .

Again, taking the logarithm of both sides of the above equation and differentiating it
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with respect to we0 gives

1− 2pei
pei (1− pei )

dpei
dwe0

=
1

λi

dλi

dwe0
+

1

geim
e
i

dxe
i

dwe0
=

1

λj

dλj

dwe0
+

1

gejm
e
j

dxe
j

dwe0
. (A3)

Combining (A2) and (A3), we have that

1

λi

dλi

dwe0
=

1− 2pei
pei (1− pei )

dpei
dwe0

− 1

geim
e
i

dxe
i

dwe0

=−
[
1− (1− 2pei )m

e
i

] 1

geim
e
i

dxe
i

dwe0
− (1− 2pei )m

e
j

1

gejm
e
j

dxe
j

dwe0
. (A4)

Similarly, we have that

1

λj

dλj

dwe0
= −

[
1 + (1− 2pei )m

e
j

] 1

gejm
e
j

dxe
j

dwe0
+ (1− 2pei )m

e
i

1

geim
e
i

dxe
i

dwe0
. (A5)

Combining (A4) and (A5) yields that

dxe
i

dwe0
= −geim

e
i

[
1− (2pei − 1)me

j

]
1
λi

dλi

dwe0
+ (2pei − 1)me

j
1
λj

dλj

dwe0

1 + (me
i −me

j)(p
e
i − pej)

.

Substituting (2) into the above equation gives (9).

Next, we prove part (ii) of the lemma. The first-order condition (2) on battlefield
e0 becomes

we0 = λi0g
e0
i0

= λj0g
e0
j0
.

Note that this condition holds in a neighborhood of we0 . Taking the logarithm of
both sides of the above condition and differentiating it with respect to we0 gives (10).

Last, we prove part (iii) of the lemma. For the pure-budget case, it is evident
that the left-hand side of (11) is zero because δi = 0. Further,

∑
e∈Ni

xe
i = X

i implies
that the right-hand side—i.e.,

∑
e∈Ei

dxe
i

dwe0
—is also zero, and thus (11) holds. For the

pure-cost case, we have that λi = c′i(Xi) = c′i
(∑

e∈Ni
xe
i

)
. Differentiating both sides

with respect to we0 gives (11). This completes the proof.

Proof of Lemma A5

Proof. First, consider I1. It is straightforward to verify that all inequalities in
Lemma 6(i)-(iii) are strict under Assumption 1′; together with (10), I1 can bounded
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from above by

I1 =
dλi0

dwe0

dxe0
i0

dwe0
= λ†

i0
(ge0i0 )

†(me0
i0
)†

[
1

(we0)†
− 1

λ†
i0

dλi0

dwe0

]
× 1

λ†
i0

dλi0

dwe0

≤
λ†
i0
(ge0i0 )

†(me0
i0
)†

4
×
(

1

(we0)†

)2

=
(we0)†(me0

i0
)†

4
×
(

1

(we0)†

)2

≤
(we0)†(me0

i0
)†

4
×

(
1

λ†
j0

dλj0

dwe0

)2

≤ (we0)†

4ρ
×

(
1

λ†
j0

dλj0

dwe0

)2

,

where the first inequality follows from the AM-GM inequality; the third equality fol-
lows from (2); the second inequality follows from Lemma 6(ii); and the last inequality
follows from Assumption 1′. This gives (16).

Next, consider I2. By Lemma 6(iii), we have that I2 ≤ 0. This gives (17).
Last, consider I3. By (5), I3 can be bounded from above by

I3 =
∑
e ̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
≤
∑
i∈N e†

dλi

dwe0

dxe†
i

dwe0
=

dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0
;

together with (9), we can obtain that

I3 ≤
dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0

= −
(we†)†(me†

s )
†
[
1−

(
2(pe

†
s )

† − 1
)
(me†

j†)
†
] (

1

λ†
s

dλs

dwe0

)2
1 +

[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
]

−
(we†)†(me†

j†)
†
[
1−

(
2(pe

†

j†)
† − 1

)
(me†

s )
†
] (

1

λ†
j†

dλ
j†

dwe0

)2
1 +

[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
] . (A6)

Next, we provide an estimate of the term ( 1

λ†
j†

dλ
j†

dwe0
)2. Recall that dxe†

s

dwe0
≥ 0; together
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with (9), we can obtain that

0 ≤ dxe†
s

dwe0
= −(we†)†(me†

s )
†

λ†
s

×

[
1− (2(pe

†
s )

† − 1)(me†

j†)
†
]

1

λ†
s

dλs

dwe0
+ (2(pe

†
s )

† − 1)(me†

j†)
† 1

λ†
j†

dλ
j†

dwe0

1 +
[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
] .

Recall from the definition of s that 1

λ†
s

dλs

dwe0
≥
∣∣∣ 1

λ†
j†

dλ
j†

dwe0

∣∣∣. Simple algebra would verify

that 1

λ†
j†

dλ
j†

dwe0
< 0, 2(pe†s )† − 1 > 0, and

1

λ†
j†

dλj†

dwe0
≤ −

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)
(me†

j†
)†

× 1

λ†
s

dλs

dwe0
. (A7)

Substituting (A7) into (A6) yields that

I3 ≤
dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0
≤ −(we†)†

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

(
1

λ†
s

dλs

dwe0

)2

.

To proceed, first note that 2(pe
†
s )

† − 1 > 0 implies that (we†)† < ve
†
/4. Further,

recall from the definition of e0 that (we0)† ≤ (we)† for each battlefield e that satisfies
(we)† < ve/4. This implies that (we0)† ≤ (we†)†. Second, recall, from the definition
of s, we have that

∣∣∣ 1

λ†
j0

dλj0

dwe0

∣∣∣ ≤ 1

λ†
s

dλs

dwe0
.

Combining (we0)† ≤ (we)†,
∣∣∣ 1

λ†
j0

dλj0

dwe0

∣∣∣ ≤ 1

λ†
s

dλs

dwe0
, and the above inequality gives

(18). This completes the proof.

Proof of Lemma A6

Proof. We first prove part (i) of the lemma. Carrying out the algebra, we can obtain
that ∑

i∈N (k)

∑
e∈Ei

dxe
i

dwe0

dλi

dwe0︸ ︷︷ ︸
≥0

=
∑

e∈E(k)

∑
i∈N e

dxe
i

dwe0

dλi

dwe0︸ ︷︷ ︸
≤0

+I+
k + I−

k ,

where the first inequality follows from (6), and the second inequality follows from (5).
Therefore, we can conclude that I+

k + I−
k ≥ 0.

Part (ii) of the lemma follows immediately from (5). For part (iii), by parts (i)
and (ii) of the lemma, we have that I+

0 + I−
1 > 0. Therefore, at least one of I+

0
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and I−
1 is positive. Meanwhile, by Lemma 6, at least one of I+

0 and I−
1 is negative.

Therefore, I+
0 and I−

1 have different signs.
Last, we prove part (iv). We consider the case of I+

0 > 0 > I−
1 (the analysis for

the case of I−
1 > 0 > I+

0 is similar). Suppose that I−
k < 0 for some k ∈ {1, . . . , 2ℓ}.

By part (i) of the lemma, we have that I+
k > 0. Further, by part (ii) of the lemma,

we have that I−
k+1 < 0. By the principle of mathematical induction, we can conclude

that I+
k > 0 and I−

k < 0 for each k ∈ {0, . . . , 2ℓ}. This completes the proof.

Proof of Lemma A7

Proof. Recall M+
k,k, M−

k+1,k+1, and Mk,k+1 as defined in (19), (20), and (21). By
(9), for each k ∈ {1, . . . , 2ℓ}, we have that

I+
k = M+

k,k

[
1

λik

dλik

dwe0

]2
+Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
, (A8)

and

I−
k+1 = M−

k+1,k+1

[
1

λik+1

dλik+1

dwe0

]2
−Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
. (A9)

For notational convenience, define M :=
∏2ℓ

k=0 Mk,k+1. We first show that M0,1

and M have the same sign. By Lemma A6(iii) and (iv), either we have that I+
k > 0

and I−
k < 0 for all k ∈ {0, . . . , 2ℓ} or we have that I+

k < 0 and I−
k > 0 for all

k ∈ {0, . . . , 2ℓ}. In what follows, we focus on the former case (the analysis for the
latter case is similar). Evidently, we have M+

k,k < 0 from (19); together with (A8),
we have that

Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
> 0, ∀ k ∈ {1, . . . , 2ℓ}, (A10)

which in turn implies that

2ℓ∏
k=1

Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

] > 0.

The above inequality implies that MM0,1

[
1

λi0

dλi0

dwe0

] [
1

λi1

dλi1

dwe0

]
> 0. Further, by
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Lemma 6, we have that 1
λi0

dλi0

dwe0
> 0 and 1

λi1

dλi1

dwe0
> 0. Together, these indicate

that MM0,1 > 0.
Next, we show that Mk,k+1 and M have the same sign for all k ∈ {1, . . . , 2ℓ}.

By (A10), we have that Mk,k+1 ̸= 0. Therefore, there exists a battlefield e such
that N e = {ik, ik+1} and peik ̸= 1/2. Following a similar argument as in the previous
analysis for battlefield e0, we can show that MMk,k+1 > 0. This implies that Mk,k+1

and M0,1 have the same sign, which concludes the proof.

Proof of Lemma A8

Proof. We first prove part (i) of the lemma. By (A10), 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have

the same sign. Further, it follows from (A8) and the postulated I+
k > 0 that

µk+1 >
−M+

k,k

Mk,k+1

× µk. (A11)

By (19) and (21), we have that

−M+
k,k − 2Mk,k+1 =

∑
e∈E:N e={ik,ik+1}

weme
ik

1 + (2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
≥ 0,

which implies that −M+
k,k

Mk,k+1
≥ 2. Substituting the inequality into (A11) gives (22).

Next, we prove part (ii) of the lemma. By (A10), 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have

different signs. Further, by (20) and (21), we have that

M−
k+1,k+1 − 2Mk,k+1 =

∑
e∈E:N e={ik,ik+1}

−weme
ik+1

1− (2peik − 1)me
ik

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
≤ 0.

Note that M+
k,k ≤ 0 from (19). Together, these indicate that

M+
k,kµk (µk + 2µk+1) +

(
M−

k+1,k+1 − 2Mk,k+1

)
µ2
k+1 ≤ 0.

Combining the above inequality and (A8) and (A9) gives (23).
It remains to prove (24). For each e with N e = {ik, ik+1}, define

I+
k (e) :=

dxik

dwe0

dλik

dwe0
and I−

k+1(e) :=
dxik+1

dwe0

dλik+1

dwe0
.

A8



Further, define

Ek,k+1 :=
{
e : N e = {ik, ik+1}

}
,

E1
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) > 0, I−
k+1(e) < 0

}
,

E2
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) < 0, I−
k+1(e) > 0

}
,

E3
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) ≤ 0, I−
k+1(e) ≤ 0

}
.

By (5), we have that I+
k (e) + I−

k+1(e) ≤ 0, which implies that it is impossible to have
both I+

k (e) > 0 and I−
k+1(e) > 0. Therefore, Ek,k+1 = E1

k,k+1∪E2
k,k+1∪E3

k,k+1. Further,∑
e∈Ek,k+1

I+
k (e) = I+

k > 0 implies that E1
k,k+1 is non-empty.

Next, we claim that

−I−
k+1(e) ≥

2µk+1

µk

I+
k (e) + weµkµk+1, e ∈ E1

k,k+1. (A12)

Carrying out the algebra, (A12) is equivalent to

µk+1 ≥ µk ×
1− 2me

ik
+ (2peik − 1)(me

ik
−me

ik+1
+me

ik
me

ik+1
)

me
ik+1

(1 + (2peik − 1)me
ik
)

.

For each e ∈ E1
k,k+1, we have that I+

k (e) > 0, which implies that peik > 1/2 and

µk+1 ≥ µk ×
1− (2peik − 1)me

ik+1

(2peik − 1)me
ik+1

.

Therefore, (A12) holds if

1− (2peik − 1)me
ik+1

(2peik − 1)me
ik+1

≥
1− 2me

ik
+ (2peik − 1)(me

ik
−me

ik+1
+me

ik
me

ik+1
)

me
ik+1

(1 + (2peik − 1)me
ik
)

,

which is equivalent to

2(1− peik)
[
1 + (2peik − 1)(me

ik
−me

ik+1
)
]
≥ 0.

The above inequality obviously holds, since me
ik
,me

ik+1
∈ (0, 1] and peik ∈ [0, 1].
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Moreover, we claim that

−I−
k+1(e) ≥

2µk+1

µk

I+
k (e), e ∈ E2

k,k+1 ∪ E3
k,k+1. (A13)

If e ∈ E3
k,k+1, then (A13) obviously holds. If otherwise e ∈ E2

k,k+1, following a similar
argument as in the proof of (23), we can obtain that I−

k+1(e) ≤ −I+
k (e)×

µk+1

µk+1+2µk
≤

−I+
k (e)×

2µk+1

µk
, which also yields (A13).

In summary, we have (A12) and (A13). This in turn implies that

−I−
k+1 =

∑
e∈E1

k,k+1

−I−
k+1(e) +

∑
e∈E2

k,k+1∪E
3
k,k+1

−I−
k+1(e)

≥
∑

e∈E1
k,k+1

[
2µk+1

µk

I+
k (e) + weµkµk+1

]
+

∑
e∈E2

k,k+1∪E
3
k,k+1

2µk+1

µk

I+
k (e)

=
2µk+1

µk

I+
k +

∑
e∈E1

k,k+1

weµkµk+1

≥ 2µk+1

µk

I+
k + we0µkµk+1,

where the last inequality follows from the fact that E1
k,k+1 is non-empty and we ≥ we0

for each e ∈ E1
k,k+1 (by the definition of e0). This completes the proof.
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