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Abstract

Heterogeneous players are matched into interconnected pairwise contests
across multiple battlefields. Each organizer independently sets her contest
rules to maximize effort provision on her respective battlefield. The conven-
tional wisdom of leveling the playing field may fail in this environment. How-
ever, an even-odds equilibrium always exists, in which all contests are resolved
with equal winning probabilities. Further, we identify sufficient conditions—
concerning contest technologies and network structure—that mitigate network
externalities and restore the level-playing-field principle, such that each orga-
nizer prefers a fully balanced contest regardless of others’ choices. We provide
alternative sufficient conditions under which the even-odds equilibrium remains
unique, even when an organizer does not necessarily prefer a fully balanced con-
test.
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1 Introduction

Economic agents often compete across multiple fronts and are connected—directly
or indirectly—through networks. One’s action on a battlefield not only influences local
outcomes but also generates spillover remotely and globally. Consider, for example, a
tech firm participating in multiple R&D challenges. If the firm assigns its top research
team to a prioritized project, its competitor on a parallel project may face less pressure
and reallocate resources elsewhere; the firm’s choice may thus affect competition in
contests in which it is not directly involved and against rivals it does not confront
head-to-head. A similar dynamic would arise, for instance, when professional athletes
plan their seasons, with each conserving stamina for preferred tournaments. These
interactions—among multiple agents across multiple battlefields—form a network of
interconnected contests with complex externalities.

Significant scholarly efforts have been devoted to examining the strategic inter-
actions over networks and exploring how the nature of the underlying game—e.g.,
strategic substitutability or complementarity—determine the equilibrium and opti-
mal intervention (Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010; Galeotti,
Golub, and Goyal, 2020). Contests in networks deserve to be examined systemati-
cally, given the nonmonotone best responses often inherent in contest games (Dixit,
1987), which yield unique and important implications for strategic analysis of the
game and optimal design of contest rules.! This property, for instance, underpins
the conventional wisdom of leveling the playing field: A more balanced contest—one
that encourages the underdog to challenge the favorite—incentivizes greater efforts,
which sheds light on a plethora of practices that aim to promote closer competitions.
Consider, for instance, the handicap systems in golf tournaments and horse racing, as
well as the various measures to support small and medium-sized enterprises (SME)
set by the U.S. Small Business Administration (SBA) in federal procurement.?

The economics literature has formally established that, to incentivize effort, a

contest should prevent the emergence of dominant players in equilibrium—thus en-

L As Dixit (1987) demonstrates, players’ best responses are often nonmonotone in contest games:
In contrast to Cournot or Bertrand competitions, one’s effort choice is a strategic complement to
that of his opponent when he is in the lead, while it is a strategic substitute when he is behind.

2Many horse-racing tournaments—e.g., the Grand National or the Melbourne Cup—require that
horses with higher initial ratings carry heavier weight. A similar mechanism—aero handicap—is
implemented in Formula One (F1) championships, in which teams that performed better in previous
seasons are allocated reduced aerodynamic testing time.



suring that no contender can win with a probability exceeding 1/2, which implies
that a two-player contest must be resolved with equal winning odds.® However, this
level-playing-field principle is established in settings of standalone contests. Imag-
ine instead an organizer who sets the contest rules on her own turf to attract effort
and attention from contenders who face competing opportunities elsewhere—e.g., a
buyer running an R&D challenge to seek for an innovative technical solution when
other projects are available to a pool of overlapped bidders. She needs to account for
contenders’ strategic trade-offs across multiple contests, anticipate the choices of com-
peting organizers, and understand how her choice of local contest rules is transmitted
through the network. This complexity casts doubt on the conventional wisdom of
leveling the playing field.

Consider a simple case with each competing player subject to a resource constraint.
Suppose that an organizer handicaps the frontrunner. This generates a direct local
effect that intensifies competitions in her own contest. Meanwhile, a player’s increased
effort on her battlefield may come at the expense of reduced effort elsewhere. This
causes an indirect network effect, because the local shift in efforts alters contenders’
marginal benefits and costs of efforts across all other contests. * The global impact
requires that all contenders reset their effort choices everywhere. These spillovers may
feed back to the original battlefield through the network, and the overall outcome is
a priori unclear. Section 2.2 provides an intuitive example in which the indirect
network effect prevails: An organizer may prefer an imbalanced contest over an even
race, which violates the level-playing-field principle.

To our knowledge, this paper presents the first formal analysis of decentralized
contest design in a networked contest game to explore the boundaries of the level-

playing-field principle and shed further light on its nature in a broader context.

Snapshot of the Model Interactions are modeled as a two-stage game. In the first
stage, multiple organizers simultaneously set the contest rules for their respective bat-

tlefields. In the second stage, economic agents—whom we refer to as “players”—are

3See, e.g., Fu and Wu (2020), who show in a broad context that the optimal two-player contest
always yields equal winning probabilities in equilibrium; when the contest involves three or more
players, the optimum requires that each player’s equilibrium winning odds be strictly below 1/2.

4Kénig, Rohner, Thoenig, and Zilibotti (2017) and Amarasinghe, Raschky, Zenou, and Zhou
(2026), for example, provide empirical evidence of spillovers from changes in local conditions in
networked conflicts. Cortes-Corrales and Gorny (2025) examine the unintended knock-on effects of
varying one player’s strength throughout a network.



matched into pairwise contests, with each modeled as a two-player generalized Tullock
contest. Players simultaneously allocate efforts across the contests they participate
in. Each player either incurs a convex cost based on the aggregate effort exerted
across all contests he participates in (a “pure-cost” case) or is subject to a budget
constraint (a “pure-budget” case). As a result, increasing effort on one battlefield
limits the player’s ability to contribute to others.

Players differ in their contest technologies, cost functions, or resource endowments.
This creates room for each organizer to structure her contest in order to exploit play-
ers’ heterogeneity. The organizer imposes a multiplicative bias on each player’s impact
function. This function translates effort into output, and the choice of biases deter-
mines players’ relative competitiveness, which tilts the balance of the contest. Such
biases encapsulate diverse mechanisms observed in real-world competition. It can be
a weighted scoring rule, such as handicap systems in golf tournaments. It can also
reflect the various measures of actual productivity interventions, including technical
support (e.g., mentorship in Mozilla’s Open Innovation Challenge); resource subsidies
(e.g., the U.S. Department of Defense’s Small Business Innovation Research program
(Lichtenberg, 1990)); capacity-building for SMEs (e.g., counseling and training in fed-
eral procurement bids); and preferential industrial policies that target specific firms
(Franke, Kanzow, Leininger, and Schwartz, 2013).

We characterize the subgame perfect Nash equilibrium (SPNE) of the two-stage
game. Specifically, this paper addresses (i) whether and when an organizer prefers
to set biases to level her playing field in a networked environment and (ii) whether

balanced competitions emerge in equilibrium, as they do in standalone contests.

Technical Nature of the Analysis Analyzing the SPNE of this two-stage net-
worked contest game presents several technical challenges. Players compete in parallel
contests, and organizers are linked indirectly through the overlapped competitions.
Understanding these intertwined decisions requires a comprehensive account of the
network externalities and nuanced strategic interdependence at and across two dif-
ferent levels of strategic interactions—i.e., the networked contests and interactions
among competing organizers who set rules for subsequent contests.

First, given a profile of biases set in the first stage, there is no closed-form solu-
tion for the second-stage equilibrium of the networked contest. Organizers’ objective
functions are only implicitly characterized by equilibrium conditions and cannot be

directly used to construct explicit best-response mappings.



Second, to establish a given profile of contest rules as an SPNE, we have to
verify that each organizer’s choice constitutes a global best response to others’ chosen
biases. However, organizers’ payoff are generally non-explicit and non-concave due
to cross-battlefield externalities and strategic interdependencies. Standard first-order
conditions are thus insufficient for proving global first-stage optimality.

Third, even if equilibrium existence can be established by verifying that every
organizer has no profitable deviation from a candidate profile, proving uniqueness
presents substantially greater analytical challenges. Ruling out all potential alter-
native equilibria across every subgame is analytically infeasible, given the lack of

closed-form solutions and the complex interdependencies among battlefields.

Summary of Findings We develop novel methods to address these difficulties and
obtain lucid results. We first identify a unique profile of contest rules under which
all contests are resolved with equal winning probabilities; we show that this profile
constitutes an SPNE, which we term the even-odds equilibrium (Theorem 1). This
demonstrates that balanced competition remains an equilibrium outcome despite the
complexity introduced by the network structure. To verify the existence of such an
equilibrium, we resort to a global deviation argument: For any organizer, we consider
a non-local deviation in her choice of biases and compare the resulting second-stage
equilibria before and after the deviation. This approach allows us to verify global
optimality without relying on closed-form solutions or concavity in organizers’ payoff.

We then examine the uniqueness of the even-odds equilibrium. The analysis con-
sists of two layers. First, we ask whether the level-playing-field principle holds in a
network—i.e., whether an organizer would choose to level her battlefield regardless of
contest rules elsewhere. We provide sufficient conditions for this to be the case, which
automatically guarantee equilibrium uniqueness (Theorem 2). Specifically, this fol-
lows if either (i) each player’s impact function (i.e., the function that maps effort into
contest output) is sufficiently concave or (ii) the network is acyclic. These conditions
mitigate the intricate indirect effects of a rule change on a battlefield: The former lim-
its spillovers across battlefields, while the latter shuts down feedback loops. However,
even when these conditions are not satisfied, uniqueness may still hold. We provide
a set of weaker conditions under which equal winning odds arise on all battlefields,
even if an individual organizer does not unconditionally prefer a level playing field
(Theorem 3). The concavity of impact functions can be milder, and the network may

contain cycles. These results demonstrate the critical roles played by contest tech-

4



nologies and prevailing network structures in shaping equilibrium outcomes, which
we discuss in more detail after presenting the formal analysis (Section 3.3).

It is noteworthy that it is infeasible to examine all subgames to rule out non-even-
odds equilibria in this framework. We develop a targeted approach to overcome the
analytical challenge. Suppose that an alternative equilibrium exists with uneven win-
ning odds. For any given bias profile, we identify the least balanced battlefield—which
will be formally defined later—and assess whether the organizer of that battlefield
can profitably deviate. Though the second-stage equilibrium is implicit, we are able
to compare outcomes before and after any hypothetical deviation and show that a
profitable deviation always exists. This construction rules out all candidate equilibria
that do not induce even winning odds everywhere.

We also consider two extensions. First, we analyze a sequential-move version of
the game in which organizers set contest rules in a predetermined order. When-
ever the sufficient conditions for the level-playing-field principle hold in the baseline
model, the equilibrium outcome remains invariant to the timing of moves: A unique
SPNE exists, replicating the equilibrium rule profile of the simultaneous-move game
(Theorem 4). Second, we consider a centralized organizer who sets contest rules for
all battlefields to maximize an objective that strictly increases in each player’s total
effort. Again , a unique equilibrium emerges with equal winning rates across contests
(Theorem 5). This yields a useful policy insight: Decentralized rule-setting by self-
interested organizers can—under certain conditions—achieve the same outcome as
centralized planning, which suggests the potential efficiency of delegation in contest

design.

Link to Literature Our paper belongs to the extensive literature on strategic inter-
actions among economic agents within networks, such as Ballester, Calvo-Armengol,
and Zenou (2006); Bramoullé, Kranton, and D’amours (2014); Galeotti, Goyal, Jack-
son, Vega-Redondo, and Yariv (2010); and Galeotti, Golub, and Goyal (2020). A
growing body of literature focuses on contests and conflicts within networks (Dziu-
binski, Goyal, and Vigier, 2016). These studies vary significantly in their assumptions
regarding the mechanisms that link players and structure contests or conflicts.
Dziubinski, Goyal, and Minarsch (2021), for instance, examine a conflict network
in which a ruler attacks connected “nodes” successively to acquire and accumulate
resources. Dziubinski, Goyal, and Zhou (2025) assume that each player’s effort in

one battlefield generates spillovers and helps him win the battles on neighboring



battlefields. Goyal and Vigier (2014) study an attacker-defender game, in which
the attacker and defender allocate combative efforts across nodes. Konig, Rohner,
Thoenig, and Zilibotti (2017) assume that each player’s entry in his (single) contest
is determined by his own effort, positive spillovers from allies, and negative spillovers
from enemies. In contrast, Hiller (2017) allows players to form either positive links
(alliances that aid in conflict) or negative links (direct conflicts).

Our paper more closely relates to Franke and Oztiirk (2015); Xu, Zenou, and
Zhou (2022); and Li and Zhou (2025), in which multiple players are matched into
contests across a network and allocate efforts among battlefields. Franke and Oztiirk
(2015) assume bilateral contests on each battlefield, focusing on specific network
structures such as regular, complete bipartite, and star-shaped configurations. They
adopt convex cost functions, in which increased effort on one battlefield raises ef-
fort costs elsewhere. Based on a conflict network a la Franke and Oztiirk (2015),
Cortes-Corrales and Gorny (2025) demonstrate how a change in a player’s strength
triggers spillovers throughout the network. Xu et al. (2022) substantially generalize
the framework of Franke and Oztiirk (2015) by allowing multilateral contests, budget
constraints, and unrestricted network structures. They employ variational inequal-
ities to overcome technical challenges, establish equilibrium existence, and provide
conditions for equilibrium uniqueness. Under quadratic costs and bilateral contests
on each battlefield, Li and Zhou (2025) examine comparative statics within acyclic
networks, and analyze how shocks propagate throughout the network. Despite the
lack of closed-form solutions, they remarkably demonstrate that comparative statics
can be pinned down using sign functions.® ©

Our paper differs from this literature in two significant respects. First, our model
incorporates strategic interactions across two layers: Players compete within a net-
work, while organizers indirectly interact through players’ strategic effort choices in

response to independently set contest rules. Second, we specifically focus on orga-

®Matros and Rietzke (2024) and Sun, Xu, and Zhou (2023) also contribute to this strand of the
literature. Unlike Franke and Oztiirk (2015), Matros and Rietzke (2024) require that each player
commit to a single effort level that applies identically across all contests they participate in. Sun
et al. (2023) analyze both constrained (uniform effort) and unconstrained effort allocation regimes.
They show that, for Tullock contest success functions in semi-symmetric networks, the two regimes
produce the same total effort and equilibrium payoffs.

6Tn addition to the theoretical contributions, several notable studies empirically examine conflicts
in networks, including Jackson and Nei (2015), Berman and Couttenier (2015), Konig et al. (2017),
Harari and Ferrara (2018), Berman et al. (2021), and Amarasinghe et al. (2026).



nizers’ strategic choices of contest rules. Contest design is not considered by Franke
and Oztiirk (2015) or Xu et al. (2022). Li and Zhou’s (2025) comparative statics
offer useful insights for contest design. However, their analysis primarily concerns
externalities that arise from interventions on an individual battlefield. Our anal-
ysis accommodates both decentralized and centralized contest designs, and enable
simultaneous and sequential rule-setting across all battlefields. Dziubinski, Goyal,
and Zhou (2025) explore the design of network structure to maximize efforts or util-
ities. They focus on a centralized design problem, while we assume a given network
structure and let the contest rule on each battlefield be set by a respective organizer.

Our paper naturally connects to the literature on multi-battle contests (e.g.,
Kovenock and Roberson, 2012; Snyder, 1989; Klumpp and Polborn, 2006; Konrad and
Kovenock, 2009; Fu, Lu, and Pan, 2015). In particular, this study is closely related to
the research stream that examines players’ allocation of scarce resources across bat-
tlefields, a line of work that dates back to Borel (1921) and Borel and Ville (1938).
The discrete version of the game is known as the Colonel Blotto game, with notable
contributions including Friedman (1958), Roberson (2006), Kvasov (2007), Kovenock
and Roberson (2012), Roberson and Kvasov (2012), and Fu and Iyer (2019).7

Our paper distinguishes itself from these studies along three dimensions. First,
we allow for multiple players to be matched in contests across a network, whereas
the literature predominantly assumes that two players compete in every battlefield.
Second, our model accommodates both a pure-cost case with strictly convex cost func-
tions and a pure-budget case, as seen in most Colonel Blotto game studies. Third,
and most importantly, the networked contests in our model are subgames that fol-
low decentralized decisions by contest organizers; none of the aforementioned studies
consider contest rule setting.®

Finally, each organizer in our model competes for players’ effort investment on
her own battlefield. This renders our paper conceptually linked to the literature on

competing contests, with Azmat and Moller (2009, 2018) and Morgan, Sisak, and

"Friedman (1958) analyzes two firms that allocate fixed advertising budgets across multiple mar-
keting areas. Roberson (2006) fully characterizes the equilibrium of a Colonel Blotto game. Kovenock
and Roberson (2012) introduce asymmetric prize valuations. Kvasov (2007) and Roberson and
Kvasov (2012) relax the zero-sum assumption and allow for alternative uses of resources. Fu and
Iyer (2019) accommodate rent-augmenting investment other than rent-seeking efforts.

8Feng and Lu (2018) and Feng, Jiao, Kuang, and Lu (2024) also consider contest design. However,
they adopt team-based contest structures as in Fu, Lu, and Pan (2015). Their focus lies in the
decisions of a central planner who governs the entire contest architecture.



Vardy (2018) as leading contributions. Unlike our setting, these studies typically
assume that each player chooses which contest to enter, so organizers compete for
contestants’ discrete entry decisions. Korpeoglu, Korpeoglu, and Hafalir (2022) allow
solvers to participate in multiple contests, but their focus lies in comparing exclusivity

versus non-exclusivity in contest design.

2 Preliminaries

In this section, we first lay out the primitives of our model, then provide an

example to illustrate the nuances caused by the network.

2.1 Model Setup

A finite set of risk-neutral players N’ = {1,2,..., N} compete within a connected
network.” For the sake of tractability, we focus on bilateral contests. Each player i €
N competes head-to-head with another on at least one battlefield. Let £ = {a,b, ...}
denote the set of battlefields and e € £ an indicative battlefield. The network can
then be represented by I' C N x &, where (i,¢) € T if and only if player i is involved
in the contest on battlefield e. Further, let & = {e € £ : (i,e) € I'} denote the set
of battlefields with player i’s participation and N¢ = {i € N : (i,e) € '} the set of
players who compete on battlefield e, with |[N¢| =2 for all e € &.

The bilateral contest network I' described above can model a rich class of in-
terconnected contest games. Figure 1 depicts three examples. In each subfigure,
the network is represented as a multigraph, whereby the vertices represent players
and the edges between vertices represent battlefields. Figure 1a represents a stylized
single-battle contest, in which players 1 and 2 fight on a battlefield a; Figure 1b
depicts a triangular network structure in which three players are matched to three
pairwise battles; Figure 1c represents a two-player multi-battle contest, in which two
players compete against each other simultaneously on battlefields a and b.

Each battlefield e € £ is governed by an organizer and the game proceeds in two
stages. In the first stage, organizers each set the rules for the contests on their own
battlefields. In the second stage, having observed the rule set for each contest, players

simultaneously exert their efforts to vie for wins.

9For disconnected networks, we can always decompose them into several connected components
and our results remain intact.
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Figure 1: Examples of Network Structures

Second Stage: Contests and Payoffs The contest between players ¢ and j on
battlefield e is modeled as a generalized Tullock contest. Put formally, fixing the

profile of efforts ¢ = (z§, 2%) the players exert on battlefield e, player ¢ wins with a

Rl
probability
s f1(a9) a0
e/ e e e fe(ype efe(ge)’ 0 J ’
(af, 28) = (fézfz (27) + af f5 (z5) (1)
5, ZE,? +SL’§ = O,

and player j wins with the complementary probability, i.e., p$(xz§, 25) = 1 —pf (2§, 25).

Following the tradition of the contest literature, we call f£(-) player i’s impact
function on battlefield e, which indicates the player’s contest technology on this bat-
tlefield and satisfies f£(0) = 0, (ff)'(-) > 0, and (ff)”(-) < 0. Further, the parameters

e __

j
on battlefield e assigns to players ¢ and j, respectively, which determine their relative

af and af, with of, af > 0 and of +« 1, are the multiplicative biases the organizer

competitiveness in the contest.

Fixing player ¢’s effort profile &; = (xf)cce, across all battlefields that involve him,

let Xz = Zeegi
subject to either resource constraints or regular cost functions.' In the former (pure

x¢ denote his total effort. The player bears a cost of ¢;(X;). Players are

budget) case, each player i’s effort cost can technically take the form of ¢;(X;) = 0 for
all X; € [0, X,] and ¢;(X;) = +oo for all X; € [X;, +00), where X; € (0, +00) is the

10This assumption is imposed for expositional convenience. Our analysis can easily be extended
to the case in which some players are subject to a resource constraint while others have a regular
effort cost function.



maximum effort at his disposal. In the latter (pure cost) case, we set X; to +oo and
let ¢;(+) be twice differentiable and satisfy ¢;(0) = 0, ¢;(-) > 0, and ¢/(-) > 0.

A victory on battlefield e € & yields a prize value of v¢ > 0 to the winner. A
player ¢’s expected payoff in the game is thus

mi(@s, xg) = Y opf(af) — (X)),
e€e&;
where _; = (x1,...,®;_1,%;y1,- .., Ty) is the profile of effort strategies of all players

other than 1.

First Stage: Decentralized Contest Rule Setting in a Network In the begin-
ning of the game, the organizer of each battlefield sets the rules for her battle. More
formally, the organizer for each battlefield e € £ with N¢ = {4, j} imposes multiplica-
tive biases (af,a“j) on players’ impact functions, with of, af > 0 and of + af = 1;
they set the rules simultaneously, and all (af, a§) become commonly known prior to
the second stage of the game.

An organizer values the effort supplied by each player on her battlefield, so she
chooses (af,a$) to maximize an objective function A°(x®), which strictly increases
with z¢ for each i € N°.

Summary The two-stage game can be described by G = <F, (ff()) (ie)er (cl())
(Ae(~))e . 5>, where T' represents the network structure, (f7(-)) (i)
functions, (C'L())ze v the set of players’ effort cost functions, and (Ae(-))eE ¢ the set of

ieN?
r the set of impact

organizers’ objective functions. Organizers each set (af,a§) in the first stage of the
game, and players simultaneously sink their efforts afterward. We adopt subgame

perfect Nash equilibrium (SPNE) in pure strategies as the solution concept.

2.2 An Illustrative Example

The literature espouses the merit of leveling the playing field in standalone contests
(Dixit, 1987). Fu and Wu (2020) establish in a broad context that the optimal contest
induces equal equilibrium winning odds in bilateral contests. We now provide a simple
example to show that this level-playing-field principle may lose its bite when a contest

is embedded in a network.

Example 1 (Optimality of Imbalanced Competitions in a Network) Sup-
pose that N' = {1,2,3}, £ = {a,b,c}, and T is a bilateral contest network with tri-

10
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Figure 2: Equilibrium effort and organizer’s objective on battlefield a.

angular structure, as depicted in Figure 1b. Let ff(z§) = 0.02x{ for each e € &
and ff(xf) = xf for all i € {2,3} and e € &. Consider a pure budget case
with (X1, X9, X3) = (2420,62.4,20). The prizes for winning the battles are, re-
spectively, (v®, v v¢) = (16.344,17,3). Fiz the biases on battlefields b and c at
a’ = (af,al) = (0.1,0.9) and a¢ = (a§,a$) = (0.1,0.9), respectively.

A level playing field—i.e., with p{ = p§ = 1/2—requires setting o = af = 1/2.
Suppose that the organizer on battlefield a seeks to mazximize total effort in the battle,
i.e., N* = x{ 4+ x5. Figure 2c plots A* as a function of af. It shows that total effort is

minimized by setting of = af = 1/2, although the players win with equal probability.

In this context, leveling the playing field maximizes player 2’s effort (see Fig-
ure 2b), while minimizing player 1’s (see Figure 2a). Given player 1’s greater re-
source endowment, the total effort on this battlefield primarily relies on his input and
is minimized when p§ = pb = 1/2.

As af increases and approaches 1/2, two effects are triggered. First, a more level
playing field intensifies competition on battlefield a, prompting both players to in-
crease their efforts—what we term the direct local effect, consistent with conventional
wisdom. Second, this direct effect induces an indirect network effect: It propagates
throughout the network, reshaping effort incentives on other battlefields; these shifts
then feed back into battlefield a, further influencing ¢ and 9.

To illustrate these effects, consider the following thought experiment, focusing on
how variations in af affect player 1’s effort choice. Fix the biases on battlefields b
and c—(a}, ) = (a§,a$) = (0.1,0.9)—and consider an initial case with a < 1/2 <
af. Figure 3a shows players’ relative standing on each battlefield under this set of

biases. In this setting, player 2 is the frontrunner on battlefield a, since his winning

11



player 1 | player 2 | player 3
battlefield a weak strong - ¢ b
battlefield b - weak strong
battlefield ¢ | strong - weak x§ 1 xb |
Lag gl @ agt 2
o 4 e
(a) Relative strength between players (b) Equilibrium effort incentives

Figure 3: Illustration of the direct local effect and the indirect network effect.

probability exceeds 1/2. Now suppose that «f is increased toward 1/2. This change
favors the underdog, player 1. As predicted by the direct local effect, both players
intensify their efforts in response (see Figure 3b).

However, an increase in 23 would force player 2 to reduce his effort 2% on battlefield
b, due to his budget constraint. By Figure 3a, player 2 is initially the underdog on
battlefield b. A decrease in 25 gives the initial frontrunner on battlefield b—player
3—an easier win, which allows the player to scale back his effort 4 and redirect the
saved resources to battlefield ¢. In turn, player 1—the initial leader on battlefield
c—must respond to the more aggressive player 3 by raising his effort z{. Ultimately,
the increased demand on player 1’s resources devoted to battlefield ¢ forces him to
reduce his effort x{ on battlefield a, as shown in Figure 3b.

The indirect network effect counteracts the direct local effect in shaping player
1’s effort choice. As of increases and approaches 1/2; the indirect effect dominates,
leading to a lower equilibrium effort z{ on battlefield a (see Figure 2a). In contrast,
the direct and indirect effects reinforce each other for player 2, resulting in an increase

in his effort on battlefield a as of approaches 1/2 (see Figure 2b).

3 Analysis

Assuming a nondegenerate conflict network—i.e., with || > 2—we now solve the

game by backward induction.!* Section 3.1 characterizes and discusses the second-

UThe analysis for the case of |£| = 1 is straightforward.
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stage equilibrium; Section 3.2 establishes an SPNE of the game in which all organizers
level their own playing field such that players win each contest with equal probability.

Section 3.3 examines equilibrium uniqueness.

3.1 Second-stage Equilibrium

The second-stage game is a collection of bilateral contests interconnected through
a network. The equilibrium existence in this setting has been established by Xu,

Zenou, and Zhou (2022), and we restate their result in our context as follows.

Lemma 1 (Xu, Zenou, and Zhou, 2022) Fizing a profile of contest rules a =
{a}ece, there exists a Nash equilibrium in the second-stage game. Specifically, the
equilibrium effort profile x*(a) = {x°(x)}ece, together with a set of parameters

{Ai}iens, satisfies the following first-order conditions:

vps () [1 = pf ()] = Nigf (af) (2)
and
v° X M < \;, whenever x{ =0, (3)
ajfj (37])

where g¢ == f£/(ff). In the pure-cost case, N\; = ci(X;); in the pure-budget case,

X; = X, and \;s are the Lagrangian multipliers for budget constraints.

Lemma 1 provides the necessary conditions that characterize equilibrium efforts.
Specifically, (2) must be satisfied in the equilibrium whenever a player exerts a pos-
itive effort z§. When a player exerts zero effort in a contest, condition (2) holds
automatically, and the equilibrium further requires condition (3), which is obtained
by substituting x{ = 0 into the complementary slackness conditions.

By Xu et al. (2022), if the second-stage equilibrium is interior—i.e., when each
player exerts a positive effort in every contest he participates in—then the equilibrium
must be unique. As a result, a unique equilibrium always emerges in the pure-cost
case, since no player would completely forgo a contest. However, in the pure-budget
case, multiple equilibria may arise. We adapt Example 4 of Xu et al. (2022) to

illustrate this possibility in our context.

Example 2 (Multiple Equilibria in the Second-stage Game) Suppose that
N =1{1,2,3}, &€ = {a,b,c}, and T is a triangular network as shown in Figure 1.
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Further, set ff(x§) = xf for each (i,e) € I'. Each player has a fized budget, with
(X1,X5,X3) = (X1,1,1) and X, > 8. The prize values are (v*,v°,v°) = (1,1,1).
Fizing a set of neutral biases, with a® = o = a¢ = (1/2,1/2), there exists a
continuum of equilibria {(xcl‘, r$, 28, 2%, 2% 18) = (2, X1 -2,0,1,1,0)4 < 2 < X —4}

in the second-stage contest game.

In this case, player 1 is endowed with an excessively large budget. His opponents
simply forgo competing against him—i.e., player 2 on battlefield a and player 3 on
battlefield c—and instead concentrate their limited resources on the competition be-
tween themselves—i.e., the contest on battlefield b. Player 1’s effort allocation is
optimal if it is sufficient to deter players 2 and 3. This condition can be satisfied by a
range of effort levels, giving rise to multiple equilibria in the second-stage game. This
complicates the overall equilibrium analysis, as the organizers’ rule-setting decisions
in the first stage may depend on which second-stage equilibrium is selected. However,
our next result eliminates this concern.

For notational efficiency, let X'(a) denote the set of all second-stage equilibria

corresponding to a given .
Proposition 1 (Equilibrium Property) Let (a*, a:*()) be an SPNE of the game
G. The following statements hold:

(i) The second-stage equilibrium x*(a*) on the equilibrium path is unique—i.e.,
|X(a*) = 1. Moreover, (3) holds with equality at (o, z*(a)).

(7i) Fix any o # o* off the equilibrium path and an arbitrary effort profile (o) €
X(d). Then (o, {z*(a*),x(') }arzar) also constitutes an SPNE of the whole
game G.

This result is nontrivial. Despite the possibility of multiple equilibria for the
second-stage contest game, Proposition 1(i) shows that such multiplicity does not
arise on the equilibrium path of any SPNE. It is worth noting that multiple equilibria
are unique to pure-budget cases and, as illustrated in Example 2, some players exert
zero effort on certain battlefields in these equilibria. Multiple equilibria emerge when a
dominant player (e.g., player 1 in Example 2) has enough resources to deter opponents
across several battlefields, which affords him flexibility in how he allocates effort
among them. However, this flexibility is at odds with the organizers’ objective of

eliciting effort. In the first stage of the game, an organizer will strategically adjust the
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contest rules (i.e., by heavily handicapping the dominant player) to avoid completely
discouraging the weaker player and intensify the competition on her battlefield. This
ensures a unique second-stage outcome on the equilibrium path.

Proposition 1(ii) further shows that an equilibrium outcome (a*, z*(a*)) is robust
even to equilibrium selection off the path: A profile (a*, m*(a*)) can still be sustained
as the equilibrium outcome of an SPNE even if multiple equilibria arise off-path,
and for a profile of contest rules o’ # a*, an alternative second-stage equilibrium
x(a/) # x*(a) is selected. As a result, once we pin down an outcome (o, z*(a*)),
we can construct an SPNE (a*, zc*()) of the game by arbitrarily selecting a second-
stage equilibrium x € X (a) for a # a*.

The reasoning is as follows. Suppose, to the contrary, that an equilibrium outcome
(a*, x* (a*)) is sensitive to off-path equilibrium selection. Then there must exist some
battlefield ey whose organizer can profitably deviate unilaterally to an alternative
contest rule (a®)’; moreover, the bias profile &' = ((@®)’, (™*°)*) induces multiple
second-stage equilibria that differ in the effort profiles on battlefield ey. However,
this deviation is unlikely to be profitable for the organizer, since some player on the
deviator’s battlefield exerts zero effort. This contradiction implies that the choice of
off-path equilibrium is irrelevant whenever an outcome can be sustained by an SPNE.

Proposition 1 paves the way for our equilibrium result. We can describe an SPNE

simply by its equilibrium outcome (a*, :I:*(a*)) without loss of generality.

3.2 Even-odds Equilibrium as SPNE

In this part, we construct an SPNE of the game. We call an SPNE an even-odds
equilibrium if players win each contest with equal probability, i.e., (pf)* = 1/2 for all

(i,e) € I'. Our first main result ensues.

Theorem 1 (Existence of Even-odds Equilibrium) Fiz a game G. An even-
odds equilibrium always exists. There is a unique profile of contest rules a* that leads
to the equilibrium outcome of equal winning odds on every battlefield. As a result,

the even-odds equilibrium can be described by a unique associated equilibrium outcome

(a**7 w**<a**))

Theorem 1 establishes that there always exists an SPNE in which the players in
each contest win with equal probability. Further, the profile of contest rules that

induces the even-odds outcome in the second-stage game is unique. Three remarks
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are in order. First, the result differs subtly from the conventional wisdom of leveling
the playing field in the contest design literature. The literature typically considers a
centralized design problem in which an organizer manipulates the competitive balance
of a standalone contest (Lazear and Rosen, 1981; Dixit, 1987; Che and Gale, 1998).
In contrast, we consider a decentralized design problem in which organizers indepen-
dently manage their own battlefields within a network. An organizer’s choice of biases
factors in (i) the biases to be set by others and (ii) its implications for all players’
second-stage effort choices @(a) within the network—including those not involved
in her battle—as Example 1 illustrates. Second, in the even-odds equilibrium, no
single organizer is willing to unilaterally deviate from a**; however, it is noteworthy
that leveling the playing field is not necessarily optimal for an organizer if others do
not level their playing fields. Third, while Theorem 1 establishes that the even-odds
outcome can be sustained as a part of an SPNE, it does not verify its uniqueness. We
discuss equilibrium uniqueness in Section 3.3.

Next, we delve into the fundamentals of the equilibrium and its analysis. As ex-
plained above, solving for the equilibrium is technically challenging. First, unlike a
standalone contest, a closed-form solution to &(a)—the equilibrium efforts in the net-
worked contest game—is unavailable. Second, the dynamic and reflexive interactions
across the network causes irregularity to organizers’ payoff functions, as illustrated
in Figure 2c. As a result, fixing a potential candidate equilibrium—although the
first-order conditions of players’ equilibrium efforts with respect to the biases can
be obtained by Lemma 1—it is almost impossible to verify the (local) second-order
condition, let alone its global optimality.

We develop a novel approach that examines organizers’ nonlocal deviations to
verify the equilibrium instead of analyzing their best responses. We first establish
the existence of a unique profile of biases a™ that yields the even-odds outcome on
every battlefield in the second stage; it remains to verify that a** indeed constitutes
a first-stage equilibrium. In what follows, we provide a sketch of the proof. For
expositional efficiency, we focus on the pure-cost case. The proof for the pure-budget
case is similar, except that the expression of \; may differ. We will highlight these
distinctions when necessary.

Suppose, to the contrary, that a** is not a part of an equilibrium. Then there
exists a battlefield ¢y € £ whose organizer can set a® # (a®)** to induce greater

effort from at least one player on her battlefield. Let x, X, and p denote the second-
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stage equilibrium efforts, marginal effort costs, and winning probabilities under the
bias profile a = (&60, (a‘e‘))**), respectively. Similarly, we denote equilibrium vari-
ables under the bias profile o™ with double asterisks. The following lemma helps us
predict how each player’s equilibrium total effort changes in response to the organizer

kk

of battlefield ey’s deviation from ()

Lemma 2 (Individual Player’s Overall Effort Incentive) For each i € N,

N < A

Under o™, the competition on every battlefield is perfectly balanced. A deviation
on battlefield ey disrupts not only the competitive balance of eq itself but also that
of interconnected battlefields. Intuitively, this deviation generates negative overall
incentives for players across the network. Lemma 2 confirms and formalizes this
intuition: Every player’s equilibrium marginal effort cost \; weakly decreases following
the deviation. Given the strict convexity of the effort cost functions, their respective
equilibrium total efforts in the contest also weakly decrease accordingly.

The next lemma concerns the spillover of the deviation to players’ efforts on other
individual battlefields.

Lemma 3 (Individual Player’s Incentive on a Battlefield) Fix an arbitrary
battlefield e # ey with N© = {i,j}, and suppose A\ < Xj/)\;‘* Then T¢ > (x¢)**.

The deviation on battlefield e triggers complex spillovers to interconnected con-
tests, which alters players’ marginal benefits and the marginal costs of efforts on
other battlefields. While each player’s total effort unambiguously decreases, it re-
mains unclear how an individual adjusts effort on a specific battlefield other than eq.
Intuitively, the universal decline in marginal cost induced by the spillover tends to en-
courage players to increase effort on other battlefields. The ratio i /As* captures the
impact on player i’s marginal cost: A lower ratio indicates a sharper decline in cost
reduction and therefore a more significant increase in effort incentive from the cost
side. Lemma 3 confirms that the player who experiences the greater cost reduction
will indeed increase effort in response.

We are ready to prove Theorem 1. Let s denote the player with the lowest ra-
tio XZ JA* among all i € N. By Lemma 3, following the organizer’s deviation on
battlefield eg, the player exerts weakly greater effort on all other battlefields—i.e.,
¢ > (2¢)* for all e € & and e # e;. Two possible cases arise: Player s is either

S

involved in the contest on battlefield ey or not.
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Case (a): s ¢ N°°. Lemma 3 implies that player s’s effort weakly increases in all
contests he participates in (he is not involved in the contest on battlefield eg).
Therefore, his total effort weakly increases following the deviation on battlefield
eg. Meanwhile, Lemma 2 predicts that his total effort would weakly decrease.
We can then conclude that his total effort remains unchanged, with Ay = AP
By definition, player s has the lowest ratio Xs /A¥ = 1; together with Lemma 2,
we can establish that the marginal effort costs of all players remain unchanged,
ie, Ni/Ar =1forallie N,

Let iy and j, denote the players on battlefield ey. Recall that players win with
equality probability and thus exert positive effort in all their contests; therefore,
the first-order condition (2)—i.e., v°p§(x®) [1 — p¢(x°)] = A;gf(af)—holds for
all i € N and e € &£ under the bias profile a**. It follows that Z;° < (27°)** and
250 < (%)™, because pit (1—py)) < 1/4 = (pj))™(1—(pj0)*). This contradicts
the assumption that setting a® is a profitable deviation for the organizer on
battlefield eg.

Case (b): s € N°°. Assume, for contradiction, that setting &® is a profitable de-
viation for the organizer on battlefield ey. If 250 > (2°)**, then we must have
X, > X by Lemma 3. Consequently, A\, = c,(X,) > L(X*) = A**, which
contradicts Lemma 2.
Alternatively, suppose ¢ < (2¢°)**. Then the other player on battlefield ey,
denoted by jo, must exert strictly more effort, i.e., 5 > (z50)™ > 0. Moreover,

since ¢ < (z%)**, we have

oz 0 ge())
= e = G

Similarly, we can obtain g; > (g;7)™. Together, these imply

(9<°)™

Ao A NG
N APV P L

where the equality follows from the first-order condition (2). This contradicts

the definition whereby player s has the lowest XZ /A among all players.

This argument demonstrates that any unilateral deviation from a** would not

render an organizer better off. Hence, the bias profile ™ constitutes a first-stage
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equilibrium of the game G. We thus establish that leveling the playing field can
always be sustained as an SPNE, even in the networked environment. It remains
unknown whether this is the unique outcome of the game, and to what extent the

level-playing-field principle can be preserved in a network.

3.3 Equilibrium Uniqueness

This section addresses the uniqueness of the even-odds equilibrium established in
Theorem 1. Our discussion unfolds on two levels. First, we investigate the boundary
of the level-playing-field principle within the network—i.e., we identify the conditions
under which an organizer always sets her contest rule to induce perfectly balanced
competition, regardless of the rules adopted in competing contests. The even-odds
equilibrium must be unique as long as the level-playing-field principle holds. Second,
we explore whether, and under what conditions, this equilibrium remains unique
even when the principle fails—i.e., when perfectly balanced competition does not
automatically maximize an organizer’s payoff.

We present the following preliminaries to ease subsequent analysis and exposi-
tion. Fixing e € &, define w® 1= vpf(1 — pf) = v°p§(1 — p§), with i,5 € N¢. The
parameter w® is an intuitive measure of the competitive balance on battlefield e: A
larger w® implies a more balanced playing field; it is maximized when competition on
battlefield e is a perfectly even race, with p§ = p = 1/2 and w® = v°/4. Given the

correspondence between w® and (p5, pj), we obtain the following.

Lemma 4 (Reformulating Organizers’ Design Problem) The tuple (o, z*(+))
constitutes an SPNE if and only if for each battlefield ey € &, with N° = {ig, jo},

(w)* solves the following maximization problem:

max A (z
{weo 7(:1317"'7:1:1\7)}

s.t. (1) holds for ™ in all e # ey,
(2) holds for all (i,e) € T,
Py (1 = pig) = w® /v (4)

€0 60)
207 7 Jo

Lemma 4 establishes an equivalence between the decision problem of an organizer

on battlefield ey who sets biases a® and that of the organizer who chooses w®.'? It

12The reformulation was first introduced by Fu and Wu (2020) to characterize optimal contest
under a centralized organizer, and can naturally be adapted to our setting.
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is worth noting that when w® < v /4, there exist two probabilities p;’ that satisfy
(4); so the mapping between a°—which determine p{®—and w® is not one-to-one.
However, this nuance does not affect our analysis: The even-odds equilibrium requires
w® = v* /4, which can only be attained when p{? = 1/2. In summary, to verify the
uniqueness of the equilibrium, it suffices to focus on the optimality of w® = v /4 in

relevant contexts.

3.3.1 The Level-playing-field Principle in a Conflict Network

Example 1 demonstrates the complications introduced by the indirect network
effect in an organizer contest-rule decision. Specifically, changes to the contest rules
on a single battlefield may affect the equilibrium behavior on others, which in turn
reflexively influence the original one. This feedback loop casts doubt on the level-
playing-field principle well established in standalone contests.

In what follows, we examine the extent to which the conventional wisdom holds in
a network. We begin by introducing two assumptions. The first concerns the impact

function f£(-), and the second the network topology I

Assumption 1 For each (i,e) € T, ff is 2-concave—i.e., (f£)? is concave.

Assumption 2 The multigraph T’ reduces to a tree after we replace any set of multiple

edges in I with a single edge.

Assumption 1 requires sufficient concavity on the impact functions, which corre-
sponds to a sufficiently noisy contest on each battlefield. Intuitively, greater con-
cavity implies that a player’s winning odds become less responsive to effort differen-
tials. That is, outcomes depend more on random factors than on players’ actions, so
changes in efforts have limited influence on winning probabilities and therefore play-
ers’ marginal benefits of efforts. Assumption 2 requires that the network be acyclic.
This prevents recursive feedback loops and dampens indirect network effects: While
changes on one battlefield may spill over to others and vice versa, the absence of
cycles guarantees that these effects cannot feed back to their origin. We obtain the

following.

Theorem 2 (The Level-playing-field Principle in a Conflict Network) Sup-
pose that Assumption 1 or 2 holds. Fizing an arbitrary battlefield e € £ and a bias
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¢, it is optimal for the battlefield organizer to set & that induce w® = v¢/4—

profile o™
i.e., a fully level playing field with players to win with equal probability—regardless
of the contest rules set for other contests. As a result, (a**, :c**(a**)) s the unique

equilibrium outcome of game G.

Theorem 2 identifies sufficient conditions under which the level-playing-field prin-
ciple can be sustained in a conflict network, such that an organizer always sets her
rules to induce even winning odds, irrespective of others’ choices.

We now present a sketch proof of the theorem to illustrate the logic underlying

d\; dxf
dw®0 dw®0 "’

critical role in our analysis. We call it the ripple effect for a player ¢ on a battlefield

our result. For this purpose, we first introduce the term which plays a

e. Recall that w® measures the degree of competitive balance on battlefield eg. The

two components, d‘jjgo and ddffo , respectively capture how a change in the competitive
balance on e affects player i’s total effort and his effort on an arbitrary battlefield
e. When d‘jjgo dwfo < 0, player i’s total effort (as indicated by A;) and his effort on
battlefield e move in opposite directions in response to a change in w®. Conversely,
when dffjgo d‘fjfo > 0, the two forces are aligned.

We then present two lemmata about the general properties of ripple effects, with

neither requiring Assumption 1 or 2.

Lemma 5 (Ripple Effects on Competing Battlefields) Fiz a battlefield ey € &,
with N = {ig, jo}. The following holds when competition on battlefield ey becomes

more balanced (as w® increases):

(i) The ripple effect for each battlefield e # ey is non-positive, i.e.,

A\ dre )y, da . .
(A < (4 — .
oo Jen T Zupes des = 0, with N°¢={i,j} (5)

(i) The ripple effect for each player i € N is non-negative, i.e.,
d\;, dxf
>

dweo dweo —
ect;

(6)

Lemma 5(i) suggests that balancing the competition on battlefield ey—i.e., in-
creasing w®—induces a negative aggregate ripple effect for each other contest. In

contrast, by Lemma 5(ii), the aggregate ripple effect for each player is positive. The
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claim in Lemma 5(ii) follows directly from the definition. Recall that & denotes the
set of battles that involve player i. The aggregate ripple effect for player ¢ can be

expressed as

d)\l d.Z'Ze d)\l d.ﬁlff d)\l Xm

dweo dweo  dweo dwe  dweo dweo’
ecé; ect;

where X; denotes player ¢’s total effort across all contests. This expression must be
positive, because A; and X; move in the same direction under convex cost functions.

We now develop a key thought experiment for our proof. Consider battlefield
eg where players 7o and jg compete under rules that initially yield equal winning
probabilities. Recall that our goal is to establish Assumption 1 or 2 as the sufficient
condition under which the level-playing-field principle holds in a network. For this
purpose, we examine a hypothetical scenario in which the organizer could get better
off by unilaterally tilting the competitive balance on battlefield ey. The next lemma
presents the properties of ripple effects under such a circumstance. Together with

Lemma 5, it leads to contradiction when either of the two assumptions is satisfied.

Lemma 6 (Ripple Effects in the Deviating Battlefield) Fix a battlefield ey €
E, with N = {ig, jo}, and a bias profile a that leads to w® = v¢/4. Suppose that
the organizer of battlefield ey can benefit from resetting her current contest rule o,
given the bias profile = for others. There always exists a degree of competitive

balance w® < v /4, such that the following holds: Letting all derivatives be evaluated

e ~0 i dxfg da:jg . .
at w® = w and assuming 5% > =% without loss of generality,
dazfo daz<0
y Q Jo_ .
(Z) dw®0 Z O Z dweo ’
.. weo d)\jo weo d\; .
(i) Ny dwo 2 1> N dwto = 0,
EU eo
(i) L Py ) > LR Dy
dw®0 dwe0 — — dw®0 dw*co’
(iv) for ¢ £ PN = Neo = '}%<O dda:%d)\jo<0
(2 or e €o, 1 — =1%0,Joys; dweo — an dweo dweo — Y-+

In summary, whenever the organizer of battlefield ey can benefit from an imbal-
anced contest, we can identify some value w® for which the resulting ripple effects
satisfy the properties in Lemma 6. Crucially, w® does not have to be a profitable

deviation from w® = v® /4 for the given contest rules aa=* on other battlefields.
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Figure 4: Network Structure under Assumption 2

Lemma 6(iii), which follows directly from (i) and (ii), establishes that the ripple
effects at w® diverge in sign between players iq and jo: positive for i but negative for
Jo- Moreover, Lemma 6(iv) demonstrates that when iq and j, compete on additional
battlefields, jo’s ripple effects remain negative on those battlefields as well.

We are now ready to prove Theorem 2. Suppose that the hypothetical scenario
described above does exist. We derive a contradiction through Lemmata 5 and 6

under either Assumption 1 or Assumption 2.

Case (a): Assumption 1 holds. The proof is similar to that of Theorem 1.

. . €0 d); 0 d)s
Let s denote the player with the highest value of “f\—l T . “/’\S oS

d; .. weo d)\jo weo d)‘io .
Tt |- By Lemma 6(ii), Mg dw0 > N duw0 > 0. Therefore, either

s ¢ {ig,jo} or we can set s = jo without loss of generality.

i.e

Y

w®0
maX;en |5

Next, fix a battlefield e € £, and consider the associated ripple effect. Tlrele case
dAjy 9250 <0
dw®o dw®o — 7

This, together with Lemma 6(iv), indicates that Y .. s ddjfo < 0, which
13

with e = ¢y and s = jj is straightforward. Lemma 6(iii) leads to

contradicts Lemma 5(ii).

If e # ey, we prove in the Appendix that the ripple effect for player s on

d\s dz§
? dw®0 dw®0

plays a critical role in verifying this inequality. This, again, enables us to

dX, _dxg
conclude ) o =& 2= < 0.

battlefield e is negative, i.e. < 0. It is worth noting that Assumption 1

Case (b): Assumption 2 holds. Under Assumption 2, the multigraph T' decom-

. da® - .
31t can be verified that Y, . e e = 0 is impossible.
s
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poses into two connected components upon removal of all edges between 75 and
Jo- For notational convenience, denote by I'y and I'_ the two connected com-
ponents containing ig and jo (see Figure 4 for a graphical illustration). Further,
let N_ and &_ represent the player and battlefield sets in I'_, respectively. The
sets N and &, can be similarly defined.

PO

da§
Following Lemma 6(i), we can assume 0 >0 > & without loss of generality.

Next, consider the aggregate ripple effect inl'_,ie.,

d\ dat
B Z Z dweo dweo’

iEN_ ec&;

By Lemma 5(ii), the ripple effect for each player across all battlefields he par-
ticipates in must be non-negative. Consequently, Zee&_ d‘%’o% > 0 for all
i € N_, which in turn implies that Z_ > 0. Meanwhile, Z_ can alternatively be

expressed as

Z Z d)\ d:l' d>\j0 d'I?O
ecE_ ieNe dw® dweo e€&iyNEjq dwee dwe

From Lemma 5( )s D i dfj‘go d(feo < 0 for each battlefield e € £_. By Lemma 6(iii)
and (iv), 2

jo Mo < 0forall e € &,NE;,. We can then conclude Z_ < 0, which

7 dwe0 dweo

is a contradiction.'*

Theorem 2 establishes that when either Assumption 1 or Assumption 2 holds,
each organizer’s optimal strategy is to maintain equal winning probabilities on her
battlefield, independent of other battlefields’ contest rules. This revives the level-
playing-field principle in a networked contest setting. The result reveals the respec-
tive roles played by contest technologies and prevailing network structure in shaping
equilibrium outcome. Both serve to limit the indirect network effect caused by the
change in the competitive balance on one battlefield, so each organizer can focus on
the direct local effect when setting her contest rule.

First, Assumption 1 requires strongly concave impact functions f£(-). For sim-

plicity, our discussion focuses on the pure-cost case. The first-order conditions (2)

141t can be verified that Z_ = 0 is impossible.
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that determine the equilibrium can be written as

(i)

f_fwe =\
The left-hand side indicates the marginal benefit of a player i’s effort on battlefield
e, while the right-hand side gives the marginal cost. Suppose that the competitive
balance of a battlefield ey varies. Its spillover alters players’ marginal benefits and
marginal costs of efforts on all other battlefields. This requires that players adjust
their efforts everywhere to rebalance their costs and benefits. A strongly concave
impact function, as previously noted, limits the impact of a change in effort on winning

probability and therefore the impact on the marginal benefit of effort.

w0 dg d\;
As dw®o dwe®o |°

Note that the player, when being evaluated at w® = w®, is most significantly affected

w0 d; |
S dwio | 18 the

elasticity of \; with respect to w®. Our analysis verifies that the rebalancing is impos-

In the proof for Case (a), we identify a player s with ‘ = max;ecn ’“3\—60

by the change on battlefield eq in terms of marginal effort cost, since |

sible for player s. The significant change in marginal effort cost cannot be matched
by the limited change in the marginal benefit of the player’s effort. Contradiction
with Lemma 5(ii) thus ensues, because the aggregate ripple effect is negative—i.e.,
Zeegs d%so% < 0. This implies that such a w® does not exist, and hence the above
hypothetical scenario is unlikely. More intuitively, strongly concave impact functions
restrain the spillover caused by a change in the competitive balance on a battlefield.
This limits the indirect network effect that would feed back to the origin and prevents
it from reversing the direct local effect.

Second, Assumption 2 requires an acyclic network structure. As stated in the
sketch proof and illustrated in Figure 4, the multigraph I' can be split into two
connected components if the edges between two vertices—i.e., players iy and jo—
are removed. The decomposition enables us to separate the respective impact of a
change in the contest rule for battlefield ey on players iy and jg, which paves the way
for our analysis. Suppose that Assumption 2 is violated (see, e.g., Figure 1b). Their
effort choices would be entangled: They not only engage in the direct competition
on battlefield ey, but are also connected via various indirect paths traversing other
players and battlefields (see, e.g., Figure 3b). The direct local effect on z;, and z;,
caused by a change in a® triggers indirect network effects that reflexively affect the

choices of z;, and x;,, which causes complications. An acyclic network severs the
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linkages and keeps z;, and z;, immune to the shock of the indirect network effects.
3.3.2 Equilibrium Uniqueness when the Level-playing-field Principle Fails

Next, we examine to what extent the even-odds equilibrium remains unique when
Assumptions 1 and 2 are not satisfied, in which case the level-playing-field principle

may not hold. We present the following two assumptions.

Assumption 1’ For each (i,e) € I', ff is p-concave with p = 1+2\/§ ~1.2—ie., (ff)”

1S concave.

Assumption 2’ The simple graph, obtained by replacing all parallel edges in I' with
single edges, has the following structure: Fach edge is contained in at most one cycle,

and all cycles in the simple graph have odd length.

Assumptions 1" and 2’ impose weaker restrictions and can respectively be implied
by Assumptions 1 and 2. Specifically, Assumption 1’ demands a weaker notion of

concavity for impact functions, while Assumption 2" allows for cycles in the network.

Theorem 3 (Equilibrium Uniqueness when the Level-playing-field Prin-
ciple Fails) Suppose that Assumption 1" or 2 holds. Then (a**,az**(a**)) is the

unique equilibrium outcome of game G.

We outline the key logic of the proof. Assume, for contradiction, that an alterna-
tive equilibrium exists in which at least one battlefield e exhibits imbalance (p§ # p).
Consider the battlefield with minimal w® value and perturb the contest rule on this
battlefield. It can be verified in the proof that under either Assumption 1’ or 2/, the
direct local effect dominates the indirect network effects. This implies that the orga-
nizer on this battlefield can improve the performance of her contest by increasing the
value of w® toward v¢/4—i.e., leveling the playing field. The hypothetical equilibrium
thus dissolves.

Recall that w® = v°pfpi. A small w® implies either a small prize value v° or a
lopsided competition. Both cases imply limited effort incentives. The former means a
small stake that discourages significant investment; the latter implies that one player
faces a slim chance of winning, while the other expects an easy win, which disin-
centivizes both. Consequently, a marginal change in contest rules would not trigger
substantial effort adjustments, thereby containing network spillovers and dampening

indirect effects.
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Assumption 1’ fulfills a role comparable to that of Assumption 1: Strong concavity
attenuates equilibrium effort levels and weakens cross-battlefield spillovers. Assump-
tion 2’ is similar to Assumption 2: The simplified network architecture constrains the
channels for the indirect effects to be transmitted and compounded, which allows the
local effect to prevail.

To further illustrate the result, we revisit Example 1. As previously noted,
the level-playing-field principle does not hold under this network structure: Given
(b, ab) = (0.1,0.9) and (a5, a$) = (0.1,0.9), the organizer on battlefield a would not
fully level the playing field. However, the set of biases provided in Example 1—i.e.,
(a4, a3) = (0.5,0.5), (ab,ab) = (0.1,0.9), and (a,a$) = (0.1,0.9)—cannot consti-
tute a first-stage equilibrium. The triangular network fails Assumption 2 but satisfies
Assumption 2. By Theorem 3, the game possesses a unique SPNE, in which players
in every battlefield win with equal probabilities.

To close this section, it is useful to note that Assumption 1’ or 2’ is a sufficient but
not necessary condition. The equilibrium uniqueness result established in Theorems 2
and 3 holds more broadly than the context defined by Assumption 1’ or 2’. Although
an analytic result is difficult, our numerical exercises suggest that the even-odds
equilibrium can remain unique even with a less concave impact function or in a

network in which some edges are contained in multiple cycles of an arbitrary length.

4 Extensions

We now examine two extensions. Section 4.1 generalizes the model to incorporate
richer timing architectures for battlefield organizers. Section 4.2 considers the design

problem from a centralized organizer’s perspective.

4.1 Sequential Move

In the baseline model, organizers set contest rules simultaneously. We now con-
sider an alternative setting in which organizers act sequentially. Specifically, organiz-
ers are partitioned into 7" groups, and the first stage of the game unfolds over 7" > 1
period(s) accordingly. In each period, one group of organizers choose their contest
rules simultaneously, with their choices observable to later movers. Fixt € {1,...,T},
and let £¢ denote the set of battlefields whose organizers act in period ¢. Further, let

a~! := (a®)eecer 1<r<t—1 denote the bias profile chosen prior to period ¢. The following
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result ensues.

Theorem 4 (Equilibrium with Sequential Move) Suppose that Assumption 1
or 2 holds. Then there exists a unique SPNE, in which every organizer perfectly levels
the playing field. That is, for eacht € {1,...,T}, a biases profile =<', and a battlefield
e € £, the organizer of battlefield e chooses a(a=") such that p§ = p§ = 1/2. As a

result, (™, x**) is the unique equilibrium outcome.

By Theorem 4, the conditions that sustain the level-playing-field principle in a
simultaneous-move setting ensure that (o™, *™*) remains the unique equilibrium out-
come under sequential moves.

The proof and logic are straightforward. Consider a simple example with two bat-
tlefields, as illustrated in Figure 1c. Let the organizer of battlefield a move first. The
first-stage game can be solved by backward induction. The organizer on battlefield
b—the second mover—will fully balance the playing field regardless of the contest
rule for battlefield a, as implied by Theorem 2.

Now consider the organizer of battlefield a, the first mover. She anticipates that
the late mover will fully level the playing field. In other words, the contest rule for
battlefield b is endogenously pegged to her choice for battlefield a to induce a fully
balanced competition on battlefield b. This dynamic strategic linkage neutralizes the
indirect network effect caused by her own choice, which allows her to focus on the

direct local effect. Thus, she would also set a contest rule to fully level the playing
field on her battlefield.

4.2 Centralized Contest Design

We now let a central organizer set contest rules a = {a“}ece for all battlefields in
the first stage of the game. Upon observing the contest rules, players simultaneously
exert their efforts in the second stage.

We assume that the organizer maximizes an objective function determined by
the profile of players’ individual total effort profile, i.e., A(x) := A(X1, Xo,..., Xn).
It is noteworthy that the central organizer is only concerned about each player’s
individual total effort X; instead of his entire effort profile ;. This assumption ensures

the existence of an optimum.'® Clearly, varying contest rules has no effect on the

150therwise, an optimum may not exist. To see this, consider a setting with N' = {1, 2}, £ = {a, b},
and I' = {(1,a), (1,b), (2,a), (2,b)}, as in Figure lc. Set f¢(z¢) = z¢ for all (i,e) € T, ¢;(X;) = (X;)?,
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organizer’s payoff in the pure-budget case. We therefore focus on the pure-cost case.
Moreover, we assume that the objective function A(x) is strictly increasing in X; for all
1 € N. That is, the organizer strictly benefits from each player’s effort contribution.
A simple example is the aggregate effort over the network— i.e., A(x) = Y, .\ Xi.

The following result ensues.

Theorem 5 (Centralized Contest Design within A Network) Suppose that
the central organizer’s objective function A(x) = A(Xy, ..., Xy) is strictly increasing
in X; for all i € N. The optimal contest is unique, in which the organizer sets

a = o™ and players win with equal probability on every battlefield.

Theorem 5 shows that a central organizer always benefits from leveling the playing
fields. Her choices of o internalize the externalities each battlefield’s contest rule
imposes on the others. Leveling the playing field maximizes every player’s effort
incentives. Recall that o™ is the unique bias profile that would induce even winning
odds on all battlefields. This leads to the following result.

Corollary 1 (Centralization versus Decentralization) The optimal contest

*k

rules for the central designer, o, also constitute a first-stage equilibrium of the
decentralized contest design game in which the organizer on each battlefield unilater-

ally maximizes total effort in her own battle.

Corollary 1 yields useful practical implications. Notably, the central organizer’s
interests are not aligned with the organizers in our original decentralized contest
design game. Nevertheless, Corollary 1 predicts that if the central organizer simply
delegates the task of setting contest rules to a set of self-interested agents—each
managing a single battlefield—the resulting equilibrium outcome may still replicate

the centrally determined optimum.

5 Conclusion

In this paper, we analyze a game of decentralized contest design in which multiple
players engage in pairwise contests within a network. Each battlefield is managed by

an organizer who sets contest rules to incentivize effort supply for her own contest.

and (v, v%) = (1,1). Suppose that the organizer’s objective is to maximize total effort on battlefield
a, i.e., A = x§ + x§. We can verify that no optimal biases exist. The organizer can generate total
effort arbitrarily close to the supremum-—equal to 1/4—by setting a® = (1,1) and a® = (,1 — &),
where € is an infinitesimal positive parameter.
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We investigate the subgame perfect Nash equilibrium of the game and examine the
extent to which the well-known level-playing-field principle continues to hold in this
networked setting, given the complex externalities that arise when contest rules are
set independently for individual battlefields. We show that an even-odds equilibrium
always exists, in which the contest on every battlefield is resolved with equal prob-
ability. We further identify sufficient conditions under which the level-playing-field
principle remains valid—i.e., conditions under which each organizer prefers a fully
balanced contest regardless. We also demonstrate that the even-odds equilibrium
may remain unique even when these conditions are not satisfied, and a fully balanced
contest is not necessarily an organizer’s unconditional best response.

Our paper is the first to analyze decentralized contest design in a networked
context. The analysis sheds new light on the game-theoretic structure of networked
contest games and contributes novel insights to our understanding of the conventional
wisdom in the contest literature of leveling the playing field.

Ample opportunities for future research remain. For instance, Section 3.3 identifies
sufficient conditions for the uniqueness of the even-odds equilibrium, even when the
level-playing-field principle fails to hold. These conditions, however, are not necessary:
In all cases examined, our numerical exercises reveal that the equilibrium remains
unique even when the conditions are violated. This observation naturally implies
that uniqueness can hold under more general conditions, e.g., as long as the impact
functions are strictly concave. Although this conjecture is analytically difficult to
establish, it warrants serious research attention going forward.

Our paper assumes bilateral contests on each battlefield. A natural extension
would be to allow multilateral competitions, which would introduce formidable tech-
nical challenges. First, in a battlefield e with n® players, the organizer’s choice of
contest rules becomes a vector of (n® — 1) dimenions, rather than a single variable
as in our current setup. This greatly increases the dimensionality of the decision
problem, with the complications further compounded in a networked environment.
Second, in a multilateral setting, defining and measuring competitive balance on a

battlefield can be considerably more elusive.
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Appendix: Proofs

Proof of Proposition 1. By Xu, Zenou, and Zhou (2022), the second-stage equi-
librium is unique for an arbitrary first-stage biases profile for the pure-cost case, and
it suffices to consider the pure-budget case. We state several intermediate results

(whose proof can be found in the Supplemental Appendix):

Lemma Al Fiz o and e € &, with N¢ = {i, j}. If there exists x € X () such that
2§ >0, then (x7) = xf for all ' € X (). As a corollary, fizing x € X(av), if 2§ =0
for some (i, e)—which implies x5 > 0—then (x§)" = 0 for all ' € X(cv).

Lemma A2 Fiz o, ' € X (), and battlefield ey, with N = {ig, ji }. If (25)" =0,
then for any " € X(a), we have (z5*)" = 0 for all e, € &, with N = {ig, ju}.

J
Moreover, A\;,(x") = 0.
Lemma A3 Firing o, \i(x') = \j(x") =: \; for all ', 2" € X(a) and alli € N.

We first prove part (i) of the proposition. Let (a*,x*(-)) be an SPNE and let
' = x*(a*). Suppose, to the contrary, that there exists ” # @’ such that x” €
X(a*). Then there exists ig € N and e; € &, such that (z5') # (z§')”. By

i0 0
Lemma Al, (25)" = 0 and (z§})” = 0, where j; € N and j; # io; otherwise,
player ¢y would choose the same effort in the battlefield across all equilibria, which

contradicts (z7})" # (zf})". Further, by Lemma A2, (z5*)" = (25*)" = 0 for all
€y € 51‘0, with Cu = {io,ju}, and )\Z'O(QC/> = )\io(m”) = 0.

Consider an arbitrary battlefield e, € &;, and player ¢y’s opponent, player j,.
By Lemma A3, )\, is the same across all equilibria; together with the fact that

(z§") = («5")" = 0, we can conclude that

(o) (f5)'(0)

A e e [ Y
(%;)*fzu(fzw

u =

where 3" is player i¢’s equilibrium effort on battlefield e,. By the monotonicity of

fix(+), there exists a unique zj" such that the above inequality holds with equality,
and denote it by #7*. It follows immediately that z{* < (z§*)" and 27" < (z3")",

which in turn implies that

doEr< Y (@) <Xjand Y < > (a5) < X,

(273 eglo Eu 6510 €y 6510 €u Egto



If Zeu et 23 = Xy, then all inequalities above hold with equality, which implies
that (z§*) = (2§*)" = 27" for all e, € &,. This contradicts the postulated (z!)" #
(zg)" IE -, ¢ £ T < X,, we consider the following alternative strategy for player

io o = Denee\fer) B > 0. Tt follows

immediately that o3 > (23)) and 27 > (27})". Recall the postulated (z5})" # (z7,)".

10

io: T = (x (:%fg)euegio\{el}), where xfol = X

We can thus assume z§! > (zf!)" without loss.

a;t (f;1)'(0)
Set at = (aj},aj)) such that \; = W

that (@, (£_;,)’) satisfies (2) and (3) in Lemma 1 under (@, {(a®)*}eee\(e;}), and

thus constitutes a second-stage equilibrium. Following a similar argument as in the

. It is straightforward to verify

previous analysis, we can conclude that for any second-stage equilibrium under this
biases profile, player 4¢’s equilibrium effort on battlefield e; is zj}. Note that x; >
(z5))". Therefore, fixing {(a)*}cee\ (e}, the organizer of battlefield e; is better off by
deviating from (a®)* to a®, which contradicts the postulate that a* constitutes a
first-stage equilibrium.

Next, we prove part (ii) of the proposition. Suppose, to the contrary, that there
exists x(+), with z(a) € X(a), such that (a*, x(-)) is not an SPNE. Therefore, fixing
x(-) and (™ ¢)*, there exists a battlefield e such that setting (a®)* is suboptimal to
its organizer. Denote the most profitable deviation for the organizer by (af)’ and
let o = ((a),(a%)*). By assumption, (o, @*(-)) is an SPNE. Therefore, the
organizer of battlefield e is better off in #*(a*) than in *(a’). Thus, she is strictly
better off in x(a’) than in *(a').

By Lemma Al, it is impossible that the two players on battlefield e are active.
Otherwise, the equilibrium efforts on battlefield e under x(a’) coincide with those
under *(a’). Meanwhile, it is evident that at least one player exerts positive effort
in each battlefield in the second stage. Therefore, it must be the case that one player
remains active and the other inactive on battlefield e, and the active player’s effort is
strictly higher in (@) than in *(a’). Following a similar argument as in the proof
of part (i), this is impossible given that («¢)’ is the most profitable deviation for the

organizer of battlefield e. This concludes the proof. [

Proof of Lemma 2. For the pure-cost case, similar to (8), we can obtain that

%= S (P ) < (S (35))

ect; ecé;
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where the inequality follows from the monotonicity of ¢, and (g¢)~! and p§(1 — p§) <
1/4. The above inequality, together with (8), implies N < A7*. The proof for the

pure-budget case is similar and omitted for brevity. [J

Proof of Lemma 3. For notational convenience, define (f£)** := f£((z$)™), (¢5)* :=
ge((z)™), fe = fe(79), and ¢ := ¢%(7°). Suppose, to the contrary, that ¢ < (¢)**.
By (2), we have

e

kk € k% kk € kxk v Y -~e Y -~e e~e -~e
A (1) :)‘j (gj> :Zand Aig; :)‘jgjzvpi<1_pi)' (7)

Evidently, at least one player is active on battlefield e in the equilibrium. We

consider three cases:

(a) Suppose 7§ = 0 and 7§ > 0. The postulated XZ/)\;"* < Xj/)\;’f* implies that X = 0.

Meanwhile, it follows from (3) that X; > %—:}?}0) > (0. A contraction.
FANEE

(b) Suppose 7§ = 0 and 7§ > 0. From (3), we have X > —(aiz;(f};(o)-

(z$)™ > 0 implies \J* < w Note that )\ < Aj* by Lemma 2. Together,

these indicate that (f¢)* < f¢, which implies that (z¢)** < #¢. A contradiction.

Further,

(c) Now suppose, 7§ > 0 and 7§ > 0. Let a; := fe/(fe) and aj = f;?/(fj?)**. Note
that gf(-) = f£(-)/(ff())" is strictly increasing; together with the postulated

T8 < (x§)™, we have that gf < (¢f)**. Further, by (7), we have % =
>\*’:\(T)**’ together with g¢f < (¢f)** and the postulated i A< A i/ ;Y we can
obtain that 3 g5 < (g5) and 7§ < (z§)**, which implies that 0 < a;,a; < 1.

_ (D

_ @) _ (@) PRI .
By (1), we have that 1 = W (aje_)**(fg)**, which implies = = =

(
J?e/(fe) _ ﬁ ne e\ — a;
fe/( o = and thus (pl-,pj) = (aﬁaJ o +a ); together with (7), we have that
4a;a;

(g = = 4p5 (1 %) X AT Tta e where the inequality follows from Lemma, 2.

SR

Further, from the concawty of ff(-) and the postulated ¢ < (z§)**, we have

g U@
o~ o " UG

3( > gf > 4CLZ' CLj

a; = - e\*xx — )
) g T (@it a)?

9

4a;

which implies (Jr—)z < 1. Similarly, we can obtain that Gt < 1. Summing
aiTa;

the two inequalities yields a; + a; > 2, which contradicts a;,a; < 1.
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This completes the proof. [J

Proof of Theorem 1. It suffices to show that there is a unique profile of contest
rules a** that leads to the equilibrium outcome of equal winning odds on every
battlefield. For the pure-cost case, we first solve for the second-stage equilibrium
profile ** that leads to equal winning odds in all battlefields. Plugging (p§)** = 1/2
= \r*g¢ ((2£)™); together with the monotonicity of g¢ = f¢/(ff),
(66) (=) and

=) = ( L0 (55) ) )

ec&;

into (2) yields

e
4

we have (xf)**

from which we can solve for A\'* and pin down a**. The first-stage biases profile a**
is uniquely determined by (1).

The proof of the pure-budget case closely follows that of the pure-cost case after
we replace (8) with X; = > . (gf)_l(@\**) This concludes the proof. [J

Proof of Lemma 4. It suffices to show that for any a®, the organizer of battlefield
eg can choose w to induce the same equilibrium effort profile & and vice versa.
First, fix an arbitrary a® and a second-stage equilibrium «*, which yields (w®)*.
Evidently, the organizer can set w® = (w®)* to induce &*. Second, fixing an arbitrary
w® < v%/4—which induces x*—the winning probability on battlefield ey can be

solved from (4). The corresponding biases a® can then be derived from (1). O

Proof of Lemma 5. We first state an intermediate result (whose proof can be

found in the Supplemental Appendix).

Lemma A4 Fiz a battlefield eq € &, with N = {ig, jo}. The following statements

hold in the second-stage equilibrium:

(i) Fize # e, with N¢ = {i,j}. If x5, 25 > 0, then

7 ]

(< i e e dXj
dr;  w'mg [1—(2pf — Dm ]AL /\eo + (2p — ]')mj)%jdw_gO

]

dweo N 8 1+ (m§ —mS)(ps — ps) ,(9)

7

(fe) (WE)Q [07 1]

where g; = g; (x}) and mj := Gy g ©
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(ii) For battlefield ey, we have that

dxs? 1 1 dX, sy 1 1 d)
0 __ e € Jo __ e €
dueo ~ Jia Mo [weo Nip du® } dweo — "o [weo Ny dw0] - (10)
(iii) For each i € N, we have that
d; dz;
; (A 7 7 11
dweo dweo (11)
eet;

where 0; = 0 in the pure-budget case and 0; = Wle) in the pure-cost case.

We are ready to prove the lemma. For part (i), first consider the case of zf, 7§ > 0.
By (9), we have that

dX\; dxf  d\; dxf

dweo dweo — dweo dweo

ms |1 — (2pf — Dms] (1 DN L oms [+ (298 — 1)mg] (A%-(ngo)Q
L+ (mf —m5)(pf —pj) ‘

Note that m¢ € [0,1]. Moreover, x7,z > 0 implies that p; € (0,1). Therefore,
L—(2pf —1)m§ > 0, 1+ (2pf — 1)m§ > 0, and 1 + (m7 —m$)(pf — p5) > 0, which
implies (5).

Next, suppose z{ = 0 and z§ > 0. If zf = 0 in a neighborhood of w®, then by
Lemma A2, A\; = 0 in this neighborhood. Therefore, xeo = ;Z‘EO

implies (5). Otherwise, if ¢ > 0 in a neighborhood of w®, then (5) holds in the

= 0, which also

neighborhood and is satisfied at w® by continuity.

Next, we prove part (ii) of the lemma. By (11), we have that > doi

) e€é&; dwfo dweo
5Z~( d‘fu/\jo) > 0. This concludes the proof. [J

Proof of Lemma 6. For part (i) of the lemma, we first show that there exists

we < w < 0. By assumption, there exists w® < v /4
wWE0 =0
such that A®(xf° ") > Aoz, x) Recall that A is strictly
07907 e0 —peo 0 Lio we0 =u°0 /4
60
increasing in zj) and z§. There exists w® € (w*,v®/4) to satlsfy T <0
W0 =0
dz 0 dz;0 dz:0 )
or —0 < 0. Further, -—2 > o by assumption. Therefore,
dweO | eo—geo dweo | e —geo dweO | oo —geo
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dz0

Jes < 0. In the rest of the proof, all derivatives are evaluated at w® = w
wWEO =We0
(10),
we have that dwl% >0 and dwi% > 0. Therefore,
d>\7«0 dxf(? d)\JO dx](()) < O (12>

dweo dweo  dweo dweo

Note that

d)\; d
T=Y S s, (13)

ieEN ee&;

where the inequality follows from Lemma 5(ii). However, (5) and (12) imply that

d);, dzf d)\- dz®  d)j, df)
I 20 20 J0 Jo < O
; EZN dweo dweo dweo dweo * dweo dweo
e#eq 1

which is a contradiction.
Next, we prove part (ii) of the lemma. The first two inequalities in part (ii) follow

immediately from part (i) and (10), and it remains to prove

e0

> 0. Suppose, to the

dweO

contrary, that d & < 0; together With > 0 as shown in part (i), we can obtain
(12). From (12) and Lemma 5(ii), we have that Z < 0, which contradicts (13).

Part (iii) of the lemma follows immediately from parts (i (i) and (ii), and it remains

dae e’
to prove part (iv). It suffices to show diﬁ% < 0; diﬁ% jii% < 0 can be implied by
dwﬁ% < 0 and (ii).

Fix e # ey, with N = {ig, jo}. By (9), we have that

/ o . e e 1 dAjg e e 1 dhig
df, — womj " il (215, 1>mio] N dweo + (205, — L)mg, Nig dwo

eo . e/ e/ e/ e/ :
dweo Ajo 1+ (m§) — mjg)(pio - pjo)

Recall that we have shown 14 (m, — mj(l))(pf(; — pj(l)) > 0 in Lemma 5. Further, simple
algebra would verify that

p o1 1 d) p o1 dN
|1 = (205 — Vi | e o (2w — Vi

1 d, ,_1)6[1d)\ 1d)\]

=%, dwo PP N dwe Ay dwe
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>1d)\30_[id)\jo_1d)\]>

)\, dweo Ajo dwee Ny dweo
where the first inequality follows from p € [0,1], m¢ € [0,1], and - dweo /\1 %(% >

dae
0; and the second inequality follows from part (ii) of the lemma. Therefore, w—’;g) <0,

which concludes the proof. [J

d\s dzg
? dw®o dweO <0

for each e € &, with e # ¢y. We first show that d’\s # (0. Suppose, to the contrary,
that 2= = 0. By the definition of s, £2& =0 for each i € N; together with (10), w

w0

Proof of Theorem 2. It remains to show that under Assumption 1

a0 a0
have that —¢ < 0 and --2% < 0, which contradicts Lemma 6( )
Next, suppose d‘fu)‘eo > 0 (the analysis for the case with d eo < 0 follows analo-

gously). Fix e € &, with e # eq and N¢ = {s,j}. By (9), we have that

d\
dz§  w'm; y [1—(2pi = 1)m ]Al duts T (2p5 = Dm JAlj Tw's
dweo As 1+ (mg —ms)(ps — pf) '

Assumption 1 implies that (f5)(0) = (f¢)'(0) = +oc and thus p§ € (0,1). Further,

the assumption implies m§ € [0,1/2]. Carrying out the algebra, we can obtain that

. 1 d), L1 od)
1= (25 = | N = i
1 d)\, 1 d\, 1 d)\

_A d (2ps_1) [/\ dweo /\_jdwe()]

o dweo N, dweo

1 d\g 1 1 dX, 1 dX
- - >0,
/\ dweo -

where the first inequality follows from m$ € [0,1/2] and p; € (0,1); and the last

. . 1 d)s 1 d>\
inequality follows from -7 > ; dw

. This concludes the proof. [J

Proof of Theorem 3 Consider the following two cases depending on whether As-

sumption 1’ or 2’ is satisfied.

Case (a): Assumption 1’ holds. Note that Assumption 1’ implies that (ff)'(0) =
oo and thus z§ > 0 for all (i,e) € . Suppose, to the contrary, that there exists an
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alternative equilibrium (af, z?(-)) # (a**,2™(-)). Then there exists (i,e) such that
(pf)T # 1/2, which implies that (w®)! < v®/4. Let ey be the battlefield with mini-
mal w® among all battlefields that satisfy (w®)! < v°/4—i.e., (w®)! = min {(w

(w®)" < v®/4}—and N = {iy, jo}. By (13), we have that

d\;, dx¢
I= L > 14
: dweo dweo — (14)
(i,e)el
Note that Z can be divided into three parts:
dN;, dzs® d)\ dz§® d\; dxt
= o d DI (15)
dwe®o dwe0 weO dwe®o dweo dweo
~ ~ s eeg i€EN®
1 IQ -
I3
Let s € N such that %d‘fj‘;o = max;cn ‘%% . By Lemma 6, s # ig. Suppose
/\ﬂ 4% > 0 (the analysis for the case with /\1+ 425 < 0 follows analogously). By (6),

el by ji. Evidently, ef # e5. Otherwise, if el = ey, then s = j,, which contradicts
Lemma 6(iii).
The following intermediate result ensues (whose proof can be found in the Sup-

plemental Appendix).

Lemma A5 The following statements hold:

2
(weo)T 1 d)j,
7, < —_— 16
1 —_— X )\;0 dweO M ( )

Igg—(w%)fl_(z(pi )F—1)(ms)! (1 X, ) | 18)

(20"t = 1) (meht \ A, dwe

Plugging (16), (17), and (18) into (15), we can obtain that

1 dAj0>2X 1 1= 20 = D ms)

T < (w™)t x <— .
A, dwee p (2 - 1) (me))
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where the last inequality follows from 2(p¢)f —1 € (0,1), (mﬂ)T € [0,1/p], and
p= HT‘E This contradicts (14).

Case (b): Assumption 2’ holds. Recall ¢y as defined in Case (a). The proof is
the same as that of Theorem 2 if ¢ is not in a cycle, and it suffices to consider the
case in which ej is contained in a unique cycle with odd length. Denote the set of
players on the cycle by {ig, ..., i }—where 2¢ + 1 gives the length of the cycle—and
let N = {ig,i1}.

By Assumption 2/, if we remove all edges on this cycle—i.e., all battlefields e
with N¢ = {ix,ix1} for some k € {0,...,20}—the network is divided into 2¢ + 1
connected components, and each contains exactly one player on the cycle. Denote the
connected component that contains player i, by I'(k). Further, denote the players
and battlefields in T'(k) by N (k) and E(k), respectively. For each k € {0,...,2¢},
define

dzf d)\; dz$ d)\;
+ . 23 23 — . 1k 23
L= 2 qeedes MBS e
ecENe={ig,irt1} ecENe={ig,ix_1}

The following intermediate result ensues (whose proof can be found in the Supple-

mental Appendix).
Lemma A6 The following holds:
(i) For each k € {0,...,2(}, T,/ + T,” > 0.
(i) For each k € {1,...,20}, T, + I,_,, <.
(iii) The signs of I and I, are different.

(iv) The signs of ;" are the same among all k € {0,...,2¢} and those of I, are
the same among all k € {0,...,2(}.

By Lemma A6, there are two cases: (i) Z,” > 0 and Z,, < 0 for all k € {0,...,2(};
and (ii) Z,” < 0 and Z,; > 0 for all k € {0,...,2¢}. In what follows, we focus on the

former (the analysis for the latter case is similar).
1 dN,

)‘ik dw®0

For notational convenience, define py, 1= and the following:

1—(2p5 —1)mg
D e T

i
eeg:NE:{ikaik+1} g 1 + (mlek - mlk+1)(plek - pfk+1)
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1= (@pi,, —Umj
M= Y —wmi s s (20)
eGS:Ne:{ik,z‘kJrl} 1 + <m — m )(plk - pik+1)
(2pf, — D)mj

g Tkt
My i1 = E —wtms il . (21)

ik e _ e e _ pe
ecENe={ig,ipt1} 1+ (m’k mlk-&-l)(plk plk+1)

We state several intermediate results (whose proof can be found in the Supple-

mental Appendix).
Lemma A7 The signs of My 1 are the same among all k € {0,...,2(}.

Lemma A8 Suppose that Z,” > 0 for all k € {0,...,20}. Fizing k € {1,...,2(}, the
following holds:

(1) If My x+1 >0, then /\_1 d(;\;kjol and /\ijie’; have the same sign. Moreover,
k41 ik
M1 > 24 (22)
.. 1 iy 1 dAig . .
(i) If My <O, then s———=k d -2 have different signs. Moreover,
g1 ik
- Mk
I < (-T X ——— 23
k —( k+l) Mk+2ﬂk+]_ ( )
and 5
_ M e
L 2 ukHIlj + W g g1 (24)

Now we can prove the equilibrium uniqueness. By Lemma A7, for all k£ €
{0,...,20}, either My 1 > 0 or My < 0. In the former case, from (22) in
Lemma AS8(i), we have that pg = popy1 > 2uge > --- > 2%, Meanwhile, by

Lemma 6(ii), we have that /\id’)‘—l > 1 D > () which implies that 1 > pg. A
i1

dweo — )‘io dw*®0

contradiction.
In the latter case, it follows from (23) and Lemma A6(i) that

_ M 223
Tr<(-To)x— M gt MR ypeq1 oy
¢ < (") e+ 201~ T e+ 20000 { }

which implies that
2

Tr<THx JT—H 25
2o iy Mk 24 (25)
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Next, combining Lemma A6(ii) and (24) in Lemma AS8(ii) yields that
4o 2H2 oy + e
Iy > I + max {Z;", w®puip } . (26)
1

Moreover, we have that

dxy) dN, — dzy) d dxt
I I+ < I+ Iy = 4 “
+ dweo dweo * dweo dweo + Z Z dweo dweo
eNe={ig,i1 },eeq iEN®

dl’?o dN; e 1 e
<o — gy (s = ) < W ali - ). (20

€
= WMy o

where the first inequality follows from Lemma AG6(i); the second inequality follows
from (5) and Lemma 6(iii); the second equality follows from (10); and the last in-
equality follows from Lemma 6(ii) and m;? < 1.

Combining (25), (26) and (27) yields that

20

2
HIE) i= =T e (T w1+ wpoln = po)] < [T =55

— <0.
i Mt 2tk

Note that #(-) is linear in Zi" on [0, w*puips] and [wpps, +00). Simple algebra
would verify that H(0) > 0, H(w®py ) > 0, and H(occ) > 0. Therefore, H(Z;") > 0,

and we arrive at the contradiction. This completes the proof. [J

Proof of Theorem 4. We prove Theorem 4 by induction on ¢.

Base case: Consider the last period t = T. Fixing e € £7, the organizer chooses a®
to maximize A¢(x¢), holding fixed a=¢. By Theorem 2, the organizer chooses

a® to induce p§ = p§ = 1/2, with N = {4, j}, in the equilibrium.

Inductive step: For each t € {1,...,T—1}, suppose that the statement holds for each
7 > t. We show that for each battlefield ¢y € £' and each a~!, the battlefield

organizer chooses a‘ to induce pj? = pj? = 1/2, with N = {ig, jo }.

First, following a similar argument as in the proof of Lemma A4, we can show
that (9) holds for each e € U,«,€™ and e # ep. Second, by the induction
hypothesis for each e € U;-,E7 and each i € N¢ we have that pf = 1/2 and
thus = (. This implies that = O AN g thus L A < (),

dweO i dw®o dw®0 dwe0 —

dweO
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Fixing the biases profile up to period t — 1—i.e., fixing a~'—the battlefield

organizers in period t choose their biases, anticipating the biases set by their

dzi  d),
dw®0 dw*o

Lemmata 5 and 6 continue to hold. Following a similar argument as in the

followers. Note that the condition < 0 we prove above ensures that

proof of Theorem 2, we can show that all battlefield organizers in period ¢ will
again choose biases to induce equal winning probabilities in their battlefields.

This completes the inductive step.

Conclusion: By the principle of induction, for each ¢t € {1,...,T}, a biases profile
a~', and a battlefield e € &, the organizer chooses a®(a~') such that p¢ =
p§ = 1/2. This completes the proof. [J

Proof of Theorem 5. Fix an arbitrary biases profile a and € X' (). It follows
from (2) that

X=Xt = 3 (Lol < > (o)

Further, by the definition of a™*, we have that (pf)*™* = 1/2 for all (i,e) € I'. Similar
to (28), we have that

X7 =3 ()7 (ve(pf)*z(i); Oﬁ)w)) = ()" <ﬁ) . (29)

ec&; ec&;

A closer look at (28) and (29) reveals that X; < X*, where the inequality holds with
equality if and only if pf = 1/2 for all (i,e) € I. Further, by Theorem 1, we must

have a = a**. This completes the proof. [
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Supplemental Appendix: Omitted Proofs
Proof of Lemma A1l

Proof. Suppose, to the contrary, that there exists eq € £, with N = {4y, jo}, and
two second-stage equilibria &', " € X(av), with (i) # (zi))" and (z§2)" > 0.

Note that equilibrium requires that 87”(:” < \i(x'), where the inequality holds
with equality if ()" > 0. Similarly, 87“ < Ai(2”), where the inequality holds with
equality if (z¢)” > 0. Together, these mdlcate that

871'1(58’)
g I ? 2 >
> (@) = @) x =5 = =0,
(i,e)el
and 5 ,
”) X M S 0.
0xf
ze)EF

Combining the above two inequalities yields that

> (Gt = tap)) x | T - D ™

(i,e)el i
Define x(z) := za’ + (1 — z)&”, with z € [0, 1], and
om;
L or (w(z))
(i,e)el

Evidently, (A1) is equivalent to w(1) > w(0). Meanwhile, w(z) can be rewritten as

e(x(z ope(z(2)) ]
w(z) = Z v x| ((x5) = (x5)") x W + ((25) = (25)") x %
ecE, Ne={ij} L ¢ J

= Y (G ) < POy ey HEEED)

e€&, Ne={i j} | i i

which yields that

SO = X (- TR (g e P

Al



Recall that % =p5(1 —p5) ( fe) , which in turn implies that

F N U= Y
(axf) (1 2p )pz(l pz) |: fe :| +pz(1 pz) (fle)Q
pf<]-_pf) e e\/ [ re\! e\ re e\ [ re\/
- (L= 280 (LY () + () e = (Y ()|

= f!ﬁai o5 % (Y@ f + asf) = 20502 (7] < 0

where the equality holds if and only if ff = 0, or equivalently, z§ = 0. Similarly,

we have that (6 7z < 0. Together, these indicate that w'(z) < 0. Moreover, from
(z)" # (x57)" and the postulated (z§)" > 0, we have that

20

s 0? s
(20 — (@2)")” % 0

Therefore, w'(z) < 0 for all z € (0, 1), which implies that w(1) < w(0). This contra-
dicts (Al). m

Proof of Lemma A2

Proof. Suppose (z§)' = 0. By Lemma A1, (z§})” = 0 for all " € X (). Evidently,
each battlefield has at least one active player in the second-stage equilibrium, which
implies that (z7)" > 0.

Suppose, to the contrary, that (z§*)"” > 0 for some e, € &, with N = {io, j. }-
Then player iy has a profitable deviation. Specifically, suppose that he slightly re-
duces (z7))" and increases (zj")” by the same amount. This does not change his
winning odds on battlefield e; but strictly increases his winning odds on battlefield
eu- Therefore, for all 2" € X(av), (25*)" = 0 for all e, € &,.

It remains to show Ay (x”) = 0. Thus far, we have shown that ()" = 0 and

(z52)" > 0; together with (1) and (2), we can conclude Ay (") =0. =
Proof of Lemma A3

Proof. Evidently, each battlefield has at least one active player in the second-stage

equilibrium. There are two cases:
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(a) player i has an inactive opponent in some battlefield in one equilibrium. In this

case, by Lemma A2, we have that \; = 0 across all equilibria.

(b) player ¢ has an active opponent in all his battlefields in all equilibria. Note that,
for the pure-budget case, it is impossible that player ¢ remains inactive in all
his battlefields in any equilibrium. This implies that in any equilibrium, player
7 must be active in at lease one battlefield. Fix an equilibrium and consider one
such battlefield, say battlefield e, with N'® = {i, j}. It follows immediately that
zi, x5 > 0. By Lemma Al, both players i and j exert the same effort—i.e., x{
and r$—in all equilibria. Note that A; is uniquely determined by (2) once we

know zf and zf%. This implies that A; must be the same across all equilibria.
This concludes proof of the lemma. m
Proof of Lemma A4

Proof. We first prove part (i) of the lemma. Fixing e # eq, with N¢ = {i,j}, (1)
can be rewritten as
e affie

R e p;

o f;

atff + ol
from which we can conclude that

p; :afff
L—pi  ajff

Taking the logarithm of both sides of the above equation and differentiating it with

respect to w® gives

1 dpt 1 dat 1 daf
pe(1 —p¢) dweo — g¢ dweo g5 dweo '

(A2)

Suppose z7,x§ > 0 at w®. Then, by continuity, =,z > 0 in a neighborhood of

w®. Therefore, the first-order condition (2) holds in the neighborhood, which gives
VP (L= p) = Aigi = Asg5-
Again, taking the logarithm of both sides of the above equation and differentiating it
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with respect to w gives

1—2p; dp; 1 d\ 1 daf 1 d) 1 dat

= = : A3
(1 —pf)dwe  Ajdwe  gimgdwe  Ajdw®  gim§ dwe (A3)
Combining (A2) and (A3), we have that
L d\N,  1-—2p7 dp; 1 dxf
Nidweo  ps(1 —p¢)dweo  gém§ dweo
1 dxf 1 dr§
=—|1—=(1—=2p¢ ?] (1 —29%)m° J A4
- | - w2 (A
Similarly, we have that
1 d) 1 das 1 dat
N 41— o ﬂ Iy (1 - 2p%)me i A5
Aj dweo [ * pom; gyms dwee * pom; gimg dwe (45)
Combining (A4) and (A5) yields that
e el 1 _d; e e 1 d\
dzs e e [1 — (2pf — 1)mj} ; dweo (2p§ — 1)mj,\_jdw80
= —g;my e e\(mne e ’
dwe®o L+ (m§ — mj)(pi - pj)

Substituting (2) into the above equation gives (9).

Next, we prove part (ii) of the lemma. The first-order condition (2) on battlefield
ep becomes

€0 _ ). €0 _ \ €0
w —)\Zogio —)\Jogjo.

Note that this condition holds in a neighborhood of w. Taking the logarithm of

both sides of the above condition and differentiating it with respect to w® gives (10).

Last, we prove part (iii) of the lemma. For the pure-budget case, it is evident
that the left-hand side of (11) is zero because ¢; = 0. Further, > __\. 7§ = X' implies
that the right-hand side—i.e., > __is also zero, and thus (11) holds. For the
pure-cost case, we have that A = ¢/(X;) = ¢j(2,cp, 2§). Differentiating both sides

ec&; dweo

with respect to w® gives (11). This completes the proof. m
Proof of Lemma A5

Proof. First, consider Z;. It is straightforward to verify that all inequalities in

Lemma 6(i)-(iii) are strict under Assumption 1’; together with (10), Z; can bounded
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from above by

d\;, dz3° 1 1 d)\ 1 d)\
T, — 10 i __ )\T eo\t eo\t o 20 - 20
YT dweo dweo 0 (90)" (i) (weo)t AL dweo - Al dweo

A30<g§:>*<mf§>fx< ! >

(weo)t

4
)i m)t (! )T)Z

(e

2 2
< <w60>T(m§(?)T x L d)‘jo < (weo)T « L d)‘jo
- 4 )\;O dweo | = 4p )\;0 dweo |

where the first inequality follows from the AM-GM inequality; the third equality fol-

lows from (2); the second inequality follows from Lemma 6(ii); and the last inequality
follows from Assumption 1’. This gives (16).

Next, consider Z,. By Lemma 6(iii), we have that Z, < 0. This gives (17).

Last, consider Z3. By (5), Z3 can be bounded from above by

B A\ dat <y A\, dos'd), dad! LY das;
dweo dweo — dweo dweo  dwe dweo  dwe dweo’
e#eqp i€ENE icNel

together with (9), we can obtain that

A\, e ) dat]

= dweo dwe ' dweo dweo
(we )T (meht [1 — (20t - 1)<m§I)T] (ﬁdfﬁ%)z
L+ [(me — (me) ] s — )]
) [ = 2010 = 1) (-2

i i i (A6)
L [me) = (msh)t] [t = ]
Next, we provide an estimate of the term (}\T jieo) Recall that dm > 0; together
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with (9), we can obtain that

dX.

dxeT (weT)T<meT)T [1 - (2(p§T)T - 1)(m51>{| )\i]s‘ddljesO + (2< )T - ]')( ]T)Tﬁ dw]ez)

O < S - _ S X J
— e 1 e e €

e A L [mg) = (st |t = ]

Recall from the definition of s that 1 dA;O > /\1 ;l/\eo Simple algebra would verify
St

that ,\deweo <0,2(p¢) —1>0, and

1Ay 1= e =) 1,
A dweo = (2 = 1) (me)t T Aldwe

(A7)

Substituting (A7) into (A6) yields that

I e
5= duweo dweo | dwe dweo (w?) (2(pe")t — 1) (m Al dweo

dh, dog’ Ay das 1= (200 D) mS)! 1 ax,
eT)T
To proceed, first note that 2(p¢')f — 1 > 0 implies that (w')f < v¢' /4. Further,
(we)T for each battlefield e that satisfies

")t. Second, recall, from the definition

recall from the definition of ey that (w®)" <
(w®)T < v¢/4. This implies that (w®)" < (w

dXj,
of s, we have that 1 o | < L dAs
j d’LU 0 AT dwe0
.. e e 1 d/\j0 1 d\ . . .
Combining (w®)t < (we)T, | S5 Joe, and the above inequality gives

A
(18). This completes the proof. m
Proof of Lemma A6

Proof. We first prove part (i) of the lemma. Carrying out the algebra, we can obtain

that e e
X; X;
+ —
Z Z dweo dweo Z Z w@o dweo +I +Ik ’
1eEN (k) e€&; ec&(k) ieNe
————

>0 <0

where the first inequality follows from (6), and the second inequality follows from (5).
Therefore, we can conclude that I,j +Z, >0.

Part (ii) of the lemma follows immediately from (5). For part (iii), by parts (i)
and (ii) of the lemma, we have that Zj + Z; > 0. Therefore, at least one of Z;
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and Z; is positive. Meanwhile, by Lemma 6, at least one of Z; and Z; is negative.
Therefore, Z; and Z; have different signs.

Last, we prove part (iv). We consider the case of Zj > 0 > Z; (the analysis for
the case of Z; > 0 > Z is similar). Suppose that Z, < 0 for some k € {1,...,2(}.
By part (i) of the lemma, we have that Z,” > 0. Further, by part (ii) of the lemma,
we have that Z,_,, < 0. By the principle of mathematical induction, we can conclude
that Z;} > 0 and Z;; < 0 for each k € {0,...,2¢}. This completes the proof. =

Proof of Lemma A7

Proof. Recall M, M.y, and My i1 as defined in (19), (20), and (21). By
(9), for each k € {1,...,2¢}, we have that

1dn, | 1ax, [ [ 1 ax
. ik - ik Tht1 A8
N, dws + M g1 [ ] [)\ ] ) (A8)

. € . e
i, dweo inpy AW

and

2
L d\ 1 d\; 1 d\
I .,=M_ — - Mg |2 el B (A9)
k+1 k+1,k+1 [ \ ] + Niy, dweo | |

) e ] e
Tht1 dw*o r1 dweo

For notational convenience, define M := Hiio M. 1. We first show that M,
and M have the same sign. By Lemma A6(iii) and (iv), either we have that Z,) > 0
and Z, < 0 for all k € {0,...,2¢} or we have that Z,” < 0 and Z,, > 0 for all
k € {0,...,2¢}. In what follows, we focus on the former case (the analysis for the
latter case is similar). Evidently, we have Mzk < 0 from (19); together with (AS),

we have that

1 d\ 1 dh,,,
M g1 [— ’“] [A - ] >0, Vke{1,...,2(}, (A10)

. € . €
i, dweo inp AW

which in turn implies that

20

1 d\, 1 dh,,

— 0.
H My 41 [)\ik dw60] [)\ T >

k=1 Ukt

The above inequality implies that MM, [ 1 d/\io] [ L d/\”] > 0. Further, by

m dwe©0 E dw*®0

AT



dX;
1 0 > ( and

dX; oo
N dwo L 220 > (. Together, these indicate
i

x dw®0

Lemma 6, we have that
that MMy, > 0.

Next, we show that My ;i1 and M have the same sign for all k € {1,...,2/¢}.
By (A10), we have that My ;11 # 0. Therefore, there exists a battlefield e such
that N'¢ = {iy,ir41} and p§ # 1/2. Following a similar argument as in the previous
analysis for battlefield ey, we can show that MM}, ;11 > 0. This implies that My, ;41

and M have the same sign, which concludes the proof. m

Proof of Lemma A8

Proof. We first prove part (i) of the lemma. By (A10), dgi’““ and - 2% have
Tk+1

we0 )‘ik dw*®0

the same sign. Further, it follows from (A8) and the postulated Z,” > 0 that

M
kt+1 >
Hit1 Mkkﬂ

By (19) and (21), we have that

14 (2p5 — 1)m;g
_M;k o 2Mk,k+1 _ Z wemfk : ( Di,, ) k+1 >0,
ecENe={ig,ipt1} + ( mzk+1)(pzk - plk-«-l)

which implies that M - > 2. Substituting the mequahty into (A11) gives (22).

Next, we prove part (11) of the lemma. By (A10), dj,j;;l and /\Li:;’g have
it
different signs. Further, by (20) and (21), we have that

= e e - (2pze - 1) ?
Mk+1,k+1 - 2Mk,k+1 = Z —wm: k <0.

e€&:Ne={igik41} LA (m mlk+1)(p2k o plkﬂ) B

Note that M;’k < 0 from (19). Together, these indicate that

Mot (e + 2pt141) + (MEH,kH - 2Mkak+l> firyy <O0.

Combining the above inequality and (A8) and (A9) gives (23).
It remains to prove (24). For each e with N = {i,ix.1}, define

dz;, ., d;

Te+1
dwe  dweo

_ dx, dX, and T

~ dweo dweo K+1\C

A8



Further, define

Erprr ={e N = {ig,ip1}},

Eonpm =1 N = {ig i1}, L (e) > 0,Z,,(e) <0},
513,k+1 = {6 PN =ik, ina b, I (e) < 0,Z;,,(e) > 0} )
51?,k+1 = {6 tN¢ = {ik7ik+1}7zlj_(e> < O’Ik_+1(e) < 0} .

By (5), we have that Z,/ (e) + Z, ;(e) < 0, which implies that it is impossible to have
both Z, (e) > 0 and Z,_, | (¢) > 0. Therefore, Ep1 = & g UER k1 UER 11 Further,
Dectirns L (€) = I > 0 implies that &, is non-empty.

Next, we claim that

_ 2 .
~Z,,,(e) > /Jk+1I,j(e) + W pgs1, € € 51%,k+1~ (A12)

M

Carrying out the algebra, (A12) is equivalent to

- mg, (L4 (2pf, — 1)my,)

For each e € &}, ,, we have that Z,7 (e) > 0, which implies that pf, > 1/2 and

1-— (prk — l)mfk+1
(prk — 1)ym¢

Tkt

Hi+1 2 e X

Therefore, (A12) holds if

1-— (2pfk — 1)m§ 1—2m; + (prk — 1)(mfk —m¢ _ +mEmé )

Tgt1 Tht1 ik Vg1

(2p§, — 1)ym - mé¢ (1 + (2p5 — 1)ms) ’

Tk+1 Tg+1

which is equivalent to

2(1—p§k) 14—(2pfk—1)(m§3 —ms$ )| >0.

k Thk41 =

The above inequality obviously holds, since mg, ,mg,

€ (0,1] and p§_ € [0,1].
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Moreover, we claim that

2
(6) 2 Hi+1
Mk

g

k1 I (e), e€ & pq U 5/?,k+1- (A13)

If e € £ 1,1, then (A13) obviously holds. If otherwise e € &7, following a similar
argument as in the proof of (23), we can obtain that Z,_ ,(e) < —Z,"(e) x Mkff—i;% <
—Z(e) x %, which also yields (A13).

In summary, we have (A12) and (A13). This in turn implies that

L = Z T (e) + Z Ty (e)

eegé,k+1 eeglg,k+lugl§,k+1
241 2ptp41
> [Bno e+ Y g
665}1,1#1 Hi eegl%,k+1uglg,k+l Hi
241
S
k eeg,i,kﬂ
2
2> %Lﬁr + W kg1,
k

where the last inequality follows from the fact that &, ,, is non-empty and w® > w*

for each e € &, (by the definition of e;). This completes the proof. m
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