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Bid Caps in Noisy Contests†

By Qiang Fu, Zenan Wu, and Yuxuan Zhu*

This paper studies optimal bid caps in a  multiplayer noisy contest 
in which a higher bid does not guarantee a sure win. The bid cap 
can be either rigid or flexible. The former imposes outright bidding 
restrictions on players’ bids, while the latter taxes bids. A designer 
structures the bid cap to maximize a weighted sum between aggre-
gate bid and tax revenue. Our analysis characterizes the optimum. A 
rigid bid is always outperformed by flexible ones, and a  laissez-faire 
policy—i.e., no cap—is optimal when the designer maximizes the 
aggregate bid. The results also generate novel practical implications.  
(JEL C72, D44, D82)

A broad spectrum of competitive activities resemble a contest, ranging from 
influence politics and legal disputes to sporting events. Players sink costly bids 

to strive for limited prizes—e.g., the patronage awarded by a politician or a trophy 
in a sports league—while their outlays are nonrefundable regardless of the outcome. 
Players’ bidding activities are often restricted by various forms of institutional con-
straints that literally limit excessive spending. For instance, federal contribution 
limits in the United States cap individuals’ or organizations’ “hard money” con-
tributions to a candidate’s campaign (Che and Gale 1998). Salary caps are widely 
employed by professional sports leagues—e.g., the National Football League (NFL) 
and National Hockey League (NHL)—to limit teams’ salary budgets. To combat 
the private tutoring craze, the Korean government imposed a 10 pm closing time for 
tuition centres, which limits the amount of tutoring a primary or secondary school 
student can receive. We follow the literature and call these regulations bid caps (e.g., 
Olszewski and Siegel 2019).
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Bid caps can take different forms. A rigid cap places an outright limit on the bid 
and a breach triggers severe sanctions, which are usually subject to the judgment 
of the ruling authority. For instance, after the discovery of Melbourne Storm’s vio-
lation of the salary cap enforced by Australia’s National Rugby League (NRL) in  
2011 , the league revoked all of the trophies awarded to the club during the previous 
five years. In contrast, a flexible cap imposes an additional cost on one’s bid at a 
prespecified rate, which resembles a taxation scheme and can be exemplified by the 
practices of the National Basketball Association (NBA) and Major League Baseball 
(MLB), among many others: a team pays a luxury tax for spending that exceeds a 
figure. Similarly, there has been extensive and vehement advocacy—by politicians, 
political pundits, and academics—for a progressive tax imposed on corporate spe-
cial interest lobbying. US Senator Elizabeth Warren, for instance, famously pro-
posed that corporations and trade organizations be taxed for spending in excess of 
$500,000. Three goals are often cited in support of a lobbying tax: curbing wasteful 
spending, leveling the playing field for public interest groups, and raising federal 
revenues.1

How does a bid cap, rigid or flexible, reshape contenders’ bidding incentives? 
Will the salary caps in professional sports leagues help level the playing field and 
maintain their competitiveness? Will the proposed regulations curb lobbying activ-
ities? More generally, how could an administrator strategically exploit a bid cap 
scheme as a design instrument to advance her interests? This paper conducts a for-
mal analysis of optimal bid caps in a  multiplayer noisy contest with heterogeneous 
players to address these questions.

The economics literature has yielded mixed answers. For instance, Che and Gale 
(1998) show, in their seminal study, that a rigid bid cap on campaign contributions 
may, paradoxically, benefit a  rent-seeking politician, which conflicts with the goal 
the policy is intended to achieve. Kaplan and Wettstein (2006) establish that an 
unenforceable cap—i.e., players can bear additional cost to bypass enforcement—
decreases the aggregate bid, while total bidding costs and the stochastic outcome 
of the contest—i.e., contenders’ winning odds—remain neutral, which implicitly 
refutes the argument for a lobbying tax to limit lobbying activities and level the 
playing field.2,3 Gavious, Moldovanu, and Sela (2002) show that with ex ante sym-
metric players, a rigid cap decreases the aggregate bid for (weakly) concave bidding 
costs and may increase it for convex costs, while Olszewski and Siegel (2019) con-
clude the same in this regard, allowing for ex ante heterogeneous players in large 
contests.

This strand of the literature has conventionally modeled  contest-like competitions 
as  all-pay auctions, in which a slightly higher bid ensures one’s victory. In contrast, 

1 See https://evonomics.com/tax-shame-excessive-corporate-lobbying.
2 Pastine and Pastine (2013) allow firms to contribute “soft money”—e.g., buying advertisements for a can-

didate—to circumvent a cap for a hard money contribution, albeit at a higher cost. They show that the neutrality 
established by Kaplan and Wettstein (2006) would not hold when the politician has a bias for policy preference. 
Policy distortion and lobbying expenditure thus depend on the prevailing limit for “hard money” contributions.

3 It should be noted that the flexible cap in our paper differs conceptually from those in Kaplan and Wettstein 
(2006), Che and Gale (2006), and Pastine and Pastine (2013). They consider a scenario in which a rigid cap is 
imposed, but players can bear extra costs to bypass the cap. The cost incurred is exogenous and only dissipates 
the rent. The additional bidding costs resemble taxation, and the revenue can accrue to the benefit of the designer.

https://evonomics.com/tax-shame-excessive-corporate-lobbying
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we focus on the practically more plausible scenario of noisy contests in which a 
higher bid only improves one’s winning odds. One’s win or loss in  real-world com-
petitions often depends not only on players’ competitive bids but also on random 
factors. Kang (2016), for instance, quantifies the efficacy of firms’ lobbying efforts 
in influencing policy enactment and finds that the magnitude of its effect is small. 
Analogously, suspense and surprises are pervasive in sports.4

The roles played by bid caps, either rigid or flexible, in a  multiplayer noisy con-
test may substantially differ from those in  all-pay auctions. Conventional wisdom 
has held that a more level playing field creates more competition, and bid caps 
may play such a role. This catalyzes the counterintuitive finding of Che and Gale 
(1998), since a bid cap handicaps the favorite and encourages the underdog. A bid 
cap may nevertheless lose its appeal in noisy contests as an equalizing device. A 
natural  trade-off arises when a bid cap is imposed. On the one hand, there is a direct 
cost effect: a bid cap is counterproductive by nature, since the elevated cost discour-
ages bidding. On the other hand, there is an indirect competition effect: when the 
bid cap diminishes the favorite’s advantage, the handicap may revive the underdog’s 
incentive, which fuels more competition, as shown in  all-pay auction models (e.g., 
Che and Gale 1998, 2006). However, the randomness inherent in a noisy contest 
casts doubt on the procompetitive role of a bid cap. First, the noise can play a simi-
lar equalizing role: it undermines the efficacy of a higher bid in determining a win, 
thereby eroding the favorite’s advantage and leveling the playing field. The presence 
of noise could eliminate the need for additional costly intervention, such as a bid 
cap. Second, the noise weakens the competition effect: an equalizing device can less 
effectively encourage an underdog to step up his bid when winner selection depends 
more on luck. It is thus a priori unclear whether the conclusions drawn from  all-pay 
auctions extend to noisy contests.

We present an analysis of optimal bid cap in a noisy contest to fill this void. The 
gap in the literature is partly caused by the technical challenge posed by such anal-
ysis. It is well known that a noisy contest with multiple heterogeneous players typ-
ically does not yield a  closed-form solution, even without a bid cap; this precludes 
the usual approach for optimal contest design as a mathematical programming with 
equilibrium constraints (MPEC).5 We develop a technique in a vein similar to that 
of Fu and Wu (2020) that allows us to bypass this difficulty by characterizing the 
optimum without explicitly solving for the equilibrium.

Model, Findings, and Implications: Snapshot.—We model the noisy contest as a 
generalized lottery contest with a concave impact function, which implies a suffi-
ciently noisy  winner-selection mechanism. Players differ in their prize valuations. 
Our framework defines bid cap generally, which resembles a taxation scheme set 
by a designer: a marginal tax rate is imposed for every level of bid, which elevates 
players’ bidding costs. A rigid cap is a special case because a prohibitively high tax 

4 Ben-Naim, Vazquez, and Redner (2007) and Anderson and Sally (2013), among others, statistically measure 
the level of noise involved in various sports.

5 This approach requires that one solve for the equilibrium for every possible contest structure and search for the 
optimal contest structure that, in turn, induces the most preferred equilibrium.
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rate can effectively discourage bidding above a certain threshold. The same holds 
for a  laissez-faire scheme—i.e., without a cap—which simply boils down to a zero 
tax rate at relevant bid levels. The designer sets the tax schedule to maximize a 
weighted sum between players’ aggregate bid and tax revenues. Our setting can be 
exemplified by MLB: teams’ payrolls help recruit talent, which, as their competitive 
bids, determine their performance in the league; the luxury tax paid to the league 
is put into its Industry Growth Fund, which adds to its budget for promoting and 
developing baseball. Alternatively, as pointed out by Cotton (2009), the revenue 
collected through taxing political contributions may benefit both the politician and 
the constituent.

We highlight several key properties of the optimum in noisy contests. First, we 
show that a rigid cap—which sets a prohibitively high tax rate to discourage players 
from placing bids above a certain threshold—is always suboptimal: any rigid cap 
can be strictly dominated by a flexible one, regardless of the designer’s preference 
(Theorem 1). As a result, the optimum requires either a flexible cap or a  laissez-faire 
scheme, i.e., no cap.

Second, although the model allows the designer to impose a general bidding cost 
structure, we demonstrate that it is without loss of generality to focus the search on 
the class of piecewise constant functions (Theorem 2). The candidate’s optimal cap 
can thus be parameterized as a finite set of tax rates applied to different bid brackets.

Third, when the designer cares only about players’ aggregate bid and not tax rev-
enue, she always imposes no cap in the optimum (Theorem 3). In other words, when 
the contest is sufficiently noisy in the sense that the impact function is concave, a 
bid cap always results in a lower aggregate bid and can be optimal only when the 
designer benefits nontrivially from the tax revenue collected.

However, a flexible cap can outperform a  laissez-faire scheme when the designer 
cares about tax revenue, and we demonstrate the environment in which this occurs 
(e.g., Figure 1). Our observations illuminate the nature of bid caps in noisy contests 
and allow us to develop an intuitive account of how the optimum depends on the 
various environmental factors, such as the noisiness of the  winner-selection mecha-
nism and player heterogeneity. More specifically, they testify to the  abovementioned 
rationales: the tension between cost and competition effects for bid cap and the 
erosive effect of noise on the efficacy of a bid cap as an equalizing device. A less 
even race may call for an equalizing bid cap; conversely, it loses its appeal when 
substantial noise is present in the contest.

Our results can be interpreted broadly to generate novel practical implications. 
For instance, our results shed light on the policy debate regarding an excessive 
lobbying tax. A progressive lobbying tax, as a flexible cap, can achieve all three 
of the aforementioned frequently cited goals: curbing wasteful lobbying, leveling 
the playing field for public interest groups, and raising federal revenue. Theorem 3 
demonstrates that no cap is optimal when maximizing the aggregate bid in a noisy 
contest. This implies that lobbying activities can effectively be reduced by impos-
ing a tax (flexible cap) or even an outright spending limit (rigid cap), regardless 
of its specific form. This stands in sharp contrast to the implications of Che and 
Gale (1998) and Kaplan and Wettstein (2006). Further, a progressive tax imposes a 
higher marginal tax rate on a stronger contender—which, in the context of influence 
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 politics,  effectively evens the race for “poorly coordinated and poorly financed” 
public interest lobbyists (Zingales 2020). This conflicts with the prediction of 
Kaplan and Wettstein (2006), who expound a neutrality of equilibrium outcome for 
flexible caps.6

To explore the linkage between our analysis and previous literature, we extend the 
model to allow for moderately convex impact functions and intermediate discrimi-
natory power (Propositions 2 and 3). The results further elucidate the role played by 
a bid cap and allow us to develop a rationale that reconciles the contrasting obser-
vations obtained from the two extreme settings, i.e., noisy contests with concave 
impact functions and  all-pay auctions.

Links to the Literature.—To the best of our knowledge, our paper is the first to 
study a generally defined bid cap in asymmetric  multiplayer noisy contests.

Che and Gale (1998, 2006) and Kaplan and Wettstein (2006) model lobbying 
competitions as  two-player  complete-information  all-pay auctions.7 Pastine and 
Pastine (2013) allow one player to have a head start in an  all-pay auction, which 
abstracts the politician’s biased policy preference and dissolves the neutrality result 
established by Kaplan and  Wettstein (2006). Szech (2015) revisits  two-player 
 complete-information  all-pay auctions with caps and introduces an alternative 
 tie-breaking rule. Sahuguet (2006) considers rigid bid caps in  two-player asymmet-
ric  all-pay auctions with incomplete information and shows that the result of Che 
and Gale (1998) extends to an  incomplete-information setting.

Although these studies do not explicitly address contest design, a closer look 
at Che and  Gale (1998) and Kaplan and  Wettstein (2006) allows us to infer an 
unambiguous ranking of different bid cap schemes when a designer maximizes 
a weighted sum between the aggregate bid and tax revenue in a  two-player 
 complete-information  all-pay auction. Our result stands in sharp contrast to their 
implications. We elaborate on how our predictions depart from the implications 
obtained from  complete-information  all-pay auctions after our analysis unfolds 
(Section IIIB).

Gavious, Moldovanu, and Sela (2002) were the first to examine the effect 
of rigid bid caps beyond the setting of  two-player contests. They consider an 
 incomplete-information  all-pay auction in which players’ private valuations of the 
prize are privately known and independently and identically distributed. As stated 
above, they show that a bid cap reduces the aggregate bid for (weakly) concave 
biding costs—which differs from Che and Gale (1998)—and may increase it for 
convex costs. Olszewski and  Siegel (2019) consider caps in an  all-pay auction 
with a sufficiently large number of heterogeneous players, which is enabled by 
the approximation approach of Olszewski and Siegel (2016). They echo Gavious, 
Moldovanu, and Sela (2002) in terms of the effect of a rigid cap on the aggregate  

6 By neutrality, the total expenditure and players’ winning probabilities remain constant regardless of the bid-
ding cost functions (flexible cap of any form or no cap).

7 Relatedly, Lagziel (2019) considers bid caps in credit auctions in which the winning bidder may default after 
the price is determined.
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bid; moreover, a flexible cap has negligible effect on the aggregate cost but also 
reduces the aggregate bid.8

We further discuss our paper in relation to the literature on bid caps in Section 
IIIB. As stated above, our study explicitly treats the cap as a taxation scheme, and 
the extra costs levied on players (at least partly) accrue to the benefit of the designer. 
Our paper is thus naturally linked to the literature on taxation in  rent-seeking com-
petitions. Glazer and Konrad (1999) pioneered modeling taxation in contests based 
on either  rent-seeking activities or the profits that result from  rent-seeking activi-
ties. They consider a  two-player setting and examine the impact of a proportional 
tax. In particular, they show that in a Tullock lottery contest, a tax on  rent-seeking 
effort does not change firms’ outlays, the stochastic outcome of the competitions, 
or firms’ expected profits; they nevertheless demonstrate that a tax on profits may 
either increase or decrease firms’  rent-seeking efforts. Our paper complements that 
of Glazer and Konrad (1999) by allowing for multiple players, nonlinear impact 
functions, and nonlinear taxes.

Relatedly, Cotton (2009) focuses on a politician’s choice between selling pol-
icy favor and selling political access under different regulations for contributions. 
Policy favor allows the recipient to choose his preferred policy, and political access 
allows him to present information in favor of his preferred policy option. The com-
petition between two interest groups is modeled as an  all-pay auction. Cotton (2009) 
shows that a tax on contributions (i.e., a flexible cap) outperforms a binding contri-
bution limit (i.e., a rigid cap) or no regulation (i.e., no cap), because it compels the 
politician to sell access without distorting his information.

The rest of the paper is structured as follows. Section I sets up the model and 
design problem. Section II characterizes the properties of the optimal contests and 
elaborates on the key insights of our results. Section III considers an extension of 
contests with convex impact functions and discusses our results in relation to the 
literature. Section IV concludes.

I. Model

There are  n ≥ 2   risk-neutral players competing for a prize, e.g., a policy favor in 
a lobbying context or a trophy in a sporting event. The prize bears a value   v i   > 0  for 
each player  i ∈  ≡  {1, …, n}  , with   v 1   ≥ ⋯ ≥  v n   > 0 , which is common 
knowledge.

Players simultaneously commit to their bids   x i   ≥ 0 . For an effort profile  
 x ≔  ( x 1  , …,  x n  )  , a player  i  wins with probability

(1)   p i   (x)  ≔   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   
  

f  ( x i  ) 
 _________ 

 ∑ j∈  
 
     f  ( x j  ) 

  ,
  

if  ∑ j∈  
 
     f  ( x j  )  ≠ 0;

    

  1 _ n  ,

  

if  ∑ j∈  
 
     f  ( x j  )  = 0;

   

8 Analogous to Olszewski and Siegel (2019), we also show that bid caps reduce the aggregate bid. However, they 
conclude that a flexible cap’s impact on total bidding costs is negligible, which stands in contrast to our findings. 
The diverging implications can largely be attributed to the difference between  all-pay auctions and noisy contests.
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the impact function  f  ( · )   converts one’s bid into his effective output and satisfies  
 f  ( x i  )  ≥ 0  for all   x i   ≥ 0 . We impose the following condition on  f  ( · )  .

ASSUMPTION 1:  f  ( · )   is twice differentiable, with  f ′ ( x i  )  > 0 ,  f ″ ( x i  )  ≤ 0 , and  
 f  (0)  = 0 .

A concave impact function in Assumption 1 implies that a larger bid adds 
less to one’s winning odds; this conventionally abstracts a sufficiently noisy 
 winner-selection mechanism under which randomness plays a nontrivial role in 
determining the outcome. For instance, consider the popularly adopted Tullock 
contest model and parameterize the impact function as  f  ( x i  )  =  x  i  

  r  , with  r > 0 . 
Assumption 1 requires  r ≤ 1 . A smaller  r  implies a less precise  winner-selection 
mechanism, since the win or loss depends less on the difference in bids; that is, a 
higher effort can less effectively be converted into larger winning odds, and one’s 
win depends more on luck. In the extreme case in which  r  approaches zero, the 
probability of a player’s winning the contest is independent of his bid and converges 
to  1/n . As  r  approaches infinity, the contest boils down to an  all-pay auction, as 
assumed by Che and Gale (1998), in which case a higher bid ensures a win.9

A. Bid Cap Scheme and Bidding Costs

We define a bid cap scheme as a nondecreasing tax schedule  t ( · ) :  ℝ   +  →  ℝ   +  , 
which specifies the marginal tax rate imposed on each player’s bid. Define the set of 
all eligible tax schedules to be

   ≔  {t ( · )   |   t ( · )  :  ℝ   +  →  ℝ   + , t (x)  ≥ 0, for all x ≥ 0,

 and is nondecreasing in x} . 

We implicitly assume a (weakly) progressive tax schedule, which is common in 
practice; e.g., the luxury tax schedule in MLB.

A player’s bidding cost consists of two parts: the direct cost incurred by the bid, 
with a unity marginal cost, and the tax imposed on his bid. This gives the following 
bidding cost function:

(2)  c ( x i  )  =     x i   
⏟

    
bid

   +     ∫ 
0
  
 x i  
   t (s) ds 


    

tax

   . 

It is straightforward to verify that the bidding cost function  c ( · )   is weakly convex.
Given the contest success function (1), the bidding cost function (2), and the pro-

file of players’ bids  x ≡  ( x 1  , …,  x n  )  , Player  i ’s expected payoff is given by

   π i   (x)  ≔  p i   (x)  v i   − c ( x i  ) , ∀ i ∈ . 

9 See also Kaplan and Wettstein (2006); Gavious, Moldovanu, and Sela (2002); Szech (2015); and Olszewski 
and Siegel (2019).
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B. Contest Objective and Design Problem

With an increasing and weakly concave impact function  f  ( · )   and an increas-
ing and weakly convex bidding cost function  c ( · )  , the contest, by Szidarovszky 
and Okuguchi (1997) and Fu and  Wu (2020), yields concave payoff functions, 
 well-behaved  best-response correspondence, and, therefore, a unique  pure-strategy 
equilibrium for an arbitrary cap scheme  t ∈  .10 Denote by   x   ∗  (t)  ≔  ( x  1  

∗  (t) , …,  
x  n  

∗  (t) )   the unique equilibrium strategy profile. The corresponding aggregate bid and 
total tax revenue are   ∑ i=1  

n     x  i  
∗  (t)   and   ∑ i=1  

n     ∫ 0  
 x  i  

∗  (t)    t (s) ds , respectively.
Anticipating players’ equilibrium bidding strategies, the designer sets  t ( · )  ∈   

to maximize her objective function. The contest design problem thus entails a typi-
cal mathematical programming with equilibrium constraints (MPEC). The designer 
values both the players’ performance—i.e., the equilibrium aggregate bid—and the 
tax revenue. More formally, we assume that the designer’s objective function is

(3)   (t)  ≔      ∑ 
i=1

  
n

     x  i  
∗  (t)  

⏟

   

aggregate bid

   + λ ×      ∑ 
i=1

  
n

     ∫ 
0
  
 x  i  

∗  (t) 
   t (s) ds  


    

tax revenue

   , with 0 ≤ λ ≤ 1. 

We assume that  λ ≤ 1 , i.e., the designer values players’ performance in the contest 
(weakly) more than her tax revenue. Consider, for instance, the case of MLB, in 
which teams’ performance contributes the most to the league’s core interests. The 
design problem degenerates to the conventional aggregate bid (effort) maximization 
problem for  λ = 0 .

C. Rigid Cap and Flexible Cap

Let   x   †  ≔  ( x  1  
† , …,  x  n  

† )   be the equilibrium bid profile in the original unconstrained 
contest. We introduce the following terminologies.

DEFINITION 1 (Rigid Cap and Flexible Cap): A bid cap scheme  t ∈   is called 
a rigid cap if   𝐱   ∗  (t)  ≠  𝐱   †   and   ∑ i=1  

n     ∫ 0  
 x  i  

∗  (t)    t (s) ds = 0 . Similarly, a scheme  t ∈   is 
called a flexible cap if   𝐱   ∗  (t)  ≠  𝐱   †   and   ∑ i=1  

n     ∫ 0  
 x  i  

∗  (t)    t (s) ds > 0 .

In words, a rigid cap varies players’ bidding strategies and does not generate 
tax revenue, which is equivalent to the outright bid limit assumed in Che and Gale 
(1998) and Olszewski and Siegel (2019), whereas a flexible-cap scheme effectively 
taxes players and thus affects their equilibrium bidding behavior.

In what follows, we say that a bid cap is binding if it is either rigid or flexible, as 
defined above. In contrast, we say that a scheme  t ∈   is nonbinding, or can inter-
changeably be called no cap, if   x   ∗  (t)  =  x   †   and   ∑ i=1  

n     ∫ 0  
 x  i  

∗  (t)    t (s) ds = 0 : it neither 
elicits tax revenue nor influences players’ bidding behavior.11 For example, a tax 

10 It is worth noting that Szidarovszky and Okuguchi (1997) and Fu and Wu (2020) require a  twice-differentiable 
bidding cost function to establish equilibrium uniqueness, which may not be satisfied in our setting given that that 
the bidding cost function can be manipulated by the designer. Still, we can adapt their proofs to our setting.

11 It can be verified that   x   ∗  (t)  =  x   †   and   ∑ i=1  
n     ∫ 0  

 x  i  
∗  (t)    t (s) ds > 0  cannot occur.
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schedule with  t (x)  > 0  only for  x > max { x  1  
† , …,  x  n  

† }   does not impose effective 
constraints on the contest and is a nonbinding cap: it leads to the equilibrium bid 
profile   x   †  ≡  ( x  1  

† , …,  x  n  
† )   and generates zero tax revenue.

II. Analysis

We now present the results that delineate the general properties of the optimal 
contest.

A. Suboptimality of Rigid Caps

We first demonstrate that flexible caps can more effectively advance the design-
er’s interests than rigid ones.

THEOREM 1 (Suboptimality of a Rigid Cap): Suppose that Assumption 1 is sat-
isfied. For every rigid cap, there exists a flexible cap  t ( · )  ∈   that generates a 
strictly higher aggregate bid in the equilibrium than the rigid cap.

Theorem 1 states that in noisy contests with concave contest success functions, 
a flexible cap outperforms a rigid cap regardless of the designer’s preference. For 
every given rigid cap, a properly set flexible cap always exists that not only gener-
ates a positive tax revenue but also elicits a larger aggregate bid than the rigid cap. 
A rigid cap explicitly constrains a stronger player’s ability to outperform his weaker 
opponents. This outright bidding restriction evens the race but entirely precludes the 
stronger players’ contributions above the imposed maximum. In contrast, a flexi-
ble cap manipulates the competition in a more nuanced manner. Note that bidders’ 
prize valuations are ordered in descending order with   v 1   ≥ ⋯ ≥  v n   , as are their 
equilibrium bids under a uniform taxation schedule. Higher bids trigger heightened 
marginal tax rates, which penalize stronger players but in a gentler way relative to 
a rigid cap. By Theorem 1, flexible caps preserve incentives and promote competi-
tions more effectively than rigid caps.

It is useful to point out that Theorem 1 does not require a specific form of the 
impact function  f  ( · )  , as long as it is weakly concave; this reflects the noisiness of 
the contest.12 We use a simple  two-player setting with   v 1   >  v 2    and a strictly con-
cave  f  ( · )   to elaborate on the role of the concavity of the impact function in the proof 
for Theorem 1. Recall that the equilibrium bid profile in the unconstrained contest 
is denoted by   x   †  ≔  ( x  1  

† ,  x  2  
† )  . Consider a rigid cap on players’ bid that specifies the 

maximal admissible bid of  ℓ , with   x  2  
†  < ℓ <  x  1  

†  .13 It can be verified that Player  
1’s equilibrium bid is   x  1  

∗  = ℓ  upon imposition of the rigid cap, and the following 
inequality holds:

(4)     
∂  π 1   _ ∂  x 1  

    |    x 1  =  x  1  
∗ 

   =   
f ′ ( x  1  

∗ )  p 1   ( x   ∗ )  [1 −  p 1   ( x   ∗ ) ] 
  _____________________  

f  ( x  1  
∗ ) 

    v 1   − 1 > 0. 

12 As we will show later in Propositions 2 and 3, a rigid cap can arise in the optimal contest as the impact func-
tion turns convex in the case of  λ = 0 .

13 The bid cap scheme is nonbinding if  ℓ ≥  x  1  
†   and the equilibrium bid profile is   (ℓ, ℓ)   if  ℓ ≤  x  2  

†  .
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Further, Player 2’s equilibrium bid   x  2  
∗   is governed by the following  first-order 

condition:

(5)     
∂  π 2   _ ∂  x 2  

    |    x 2  =  x  2  
∗ 

   =   
f ′ ( x  2  

∗ )  p 2   ( x   ∗ )  [1 −  p 2   ( x   ∗ ) ] 
  _____________________  

f  ( x  2  
∗ ) 

    v 2   − 1 = 0. 

Consider a bid pair    x ˇ     ∗  ≡  (  x ˇ    1  ∗ ,   x ˇ    2  ∗ )  =  ( x  1  
∗  +  ϵ 1  ,  x  2  

∗  −  ϵ 2  )  , with   ϵ 1  ,  ϵ 2   > 0 , that 
satisfies

(6)  f  ( x  1  
∗ )  + f  ( x  2  

∗ )  = f  (  x ˇ    1  ∗ )  + f  (  x ˇ    2  ∗ ) . 

Compared with   x   ∗  ≡  ( x  1  
∗ ,  x  2  

∗ )  , the favorite’s bid increases and the underdog’s bid 
decreases, resulting in a more dispersed bid profile. The above conditions, together 
with the strict concavity of  f  ( · )  , imply immediately that   x  1  

∗  +  x  2  
∗  <   x ˇ    1  ∗  +   x ˇ    2  ∗  . Next, 

consider the following tax schedule:

   t ̌   (x)  ≔   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

  
f ′ (  x ˇ    2  ∗ )  p 2   (  x ˇ     ∗ )  [1 −  p 2   (  x ˇ     ∗ ) ] 

  _____________________  
f  (  x ˇ    2  ∗ ) 

    v 2   − 1,

  

if x ≤   x ˇ    2  ∗ ;
     

  
f ′ (  x ˇ    1  ∗ )  p 1   (  x ˇ     ∗ )  [1 −  p 1   (  x ˇ     ∗ ) ] 

  _____________________  
f  (  x ˇ    1  ∗ ) 

    v 1   − 1,

  

if x >   x ˇ    2  ∗ .

   

By (4), (5), (6), and, again, the strict concavity of  f  ( · )  , the above tax scheme  
  t ̌   (x)   is progressive and well defined for sufficiently small   ϵ 1    and   ϵ 2   . Moreover, it 
is straightforward to verify that    x ˇ     ∗  ≡  (  x ˇ    1  ∗ ,   x ˇ    2  ∗ )   constitutes an equilibrium under 
the constructed bid cap   t ̌   ( · )   and generates positive tax revenue. In summary, 
the constructed tax schedule   t ̌   ( · )   strictly outperforms the rigid cap  ℓ  regardless 
of the designer’s preference.

B. Optimality of Piecewise Constant Tax Schedules

By Theorem 1, it suffices to compare the performance under no cap and that 
under an optimally set flexible cap in search of the optimum. Next, we provide more 
details about the optimal tax schedules. Define

    
–
     ≔  {t ∈       |    t (x)  = 1 {x >   x –  1  }  τ 1   +   ∑ 

i=1
  

n−1

   1 {  x –  i+1   < x ≤   x –  i  }  τ i  

 + 1 {0 ≤ x ≤   x –  n  }  τ n  ,

 with   x –  1   ≥ ⋯ ≥   x –  n   ≥ 0 and  τ 1   ≥ ⋯ ≥  τ n   ≥ 0, ∀ i ∈ } . 

In words, the set    
–
     collects all eligible progressive piecewise constant tax 

schedules. Such a tax schedule is fully characterized by a profile of mar-
ginal tax rate  τ ≔  ( τ 1  , …,  τ n  )   and a profile of cutoffs   x –   ≔  (  x –  1  , …,   x –  n  )  .  



436 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS AUGUST 2023

Clearly,    
–
    ⊂  . The following result further narrows the search for the optimal tax 

schedule.

THEOREM 2 (Optimality of Piecewise Constant Tax Schedules): Suppose that 
Assumption 1 is satisfied. For every cap scheme  t ∈  , there exists   t ̃   ∈   

–
      such that  

 ( t ̃  )  ≥  (t)  .

Theorem 2 allows us to focus on piecewise constant tax schedule  t ( · )   without 
loss of generality, i.e., within the set    

–
     . A candidate-optimal flexible cap can take 

the form of

      t (x)  =   

⎧
 

⎪

 ⎨ 
⎪
 

⎩
   

 τ n  ,

  

if 0 ≤ x ≤   x –  n  ;

    τ i  ,  if   x –  i+1   < x ≤   x –  i  , i ∈  {1, …, n − 1} ;     

 τ 1  ,

  

if x >   x –  1  .
    

A constant tax rate   τ i    is imposed on each bracket, with the bracket capped by    x –  i   ;  
the tax rate   τ i    decreases with  i  for  i ∈  {1, …, n}   and takes no more than  n  non-neg-
ative values.

Recall that the profile of equilibrium bidding strategies under  t ( · )  ∈   is 
denoted by   x   ∗  (t)  =  ( x  1  

∗  (t) , …,  x  n  
∗  (t) )  . To elaborate on the logic underlying the 

proof of Theorem 2, we again consider a  two-player case with   v 1   >  v 2    and begin 
with a continuous and strictly increasing tax schedule  t ( · )  ∈  . It is straightfor-
ward to verify that both players would remain active in equilibrium, and their equi-
librium bids are governed by the following  first-order conditions:

(7)     
∂  π i   _ ∂  x i  

    |    x i  = x  i  
∗  (t) 

   =   
f ′ ( x  i  

∗  (t) )  p i   ( x   ∗  (t) )  [1 −  p i   ( x   ∗  (t) ) ] 
   ____________________________  

f  ( x  i  
∗  (t) ) 

    v i   −  [1 + t ( x  i  
∗  (t) ) ] 

 = 0, i ∈  {1, 2} . 

Now consider the following piecewise constant tax schedule   t ̃   ( · )  :

(8)   t ̃   (x)  =   
{

   
t ( x  2  

∗  (t) ) ,
  

if x ≤  x  2  
∗  (t) ;

   
t ( x  1  

∗  (t) ) ,
  

if x >  x  2  
∗  (t) .

   

Note that equation (7) holds for   x   ∗  (t)   and   t ̃   ( · )  , which indicates that   x   ∗  (t)   also 
constitutes an equilibrium under the constructed piecewise constant tax schedule  
  t ̃   ( · )  ∈   

–
    , i.e.,   x   ∗  ( t ̃  )  =  x   ∗  (t)  . As a result, the aggregate bid remains unchanged 

when the prevailing bid cap scheme is switched from  t ( · )   to   t ̃   ( · )  . Further,  
  t ̃   (x)  ≥ t (x)   for all  x ∈  [0,  x  1  

∗  (t) ]   by our construction, which in turn implies that   
∑ i=1  

2     ∫ 0   x  i  
∗  ( t ̃  )     t ̃   (s) ds ≥  ∑ i=1  

2     ∫ 0  
 x  i  

∗  (t)    t (s) ds —i.e., a higher tax revenue under   t ̃   (x)  —and 
consequently,   ( t ̃  )  ≥  (t)  .

The constructed piecewise tax schedule (8) sets the caps    x –  2    for the minimum 
bracket precisely at Player 2’s equilibrium bid   x  2  

∗  ( t ̃  )  . Indeed, this construction can 
easily be adapted to a  multiplayer setting, and we can restrict our attention to the 
piecewise constant tax schedules under which the cap imposed on each tax bracket 
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coincides with one player’s equilibrium bid. This property greatly simplifies our 
analysis.

COROLLARY 1: Suppose that the optimal tax schedule exists. Then the optimum 
can be achieved by some piecewise constant tax schedule  ⟨ τ   ⋆ ,   x –     ⋆ ⟩ ≡ ⟨ ( τ  1  

  ⋆ , …,  τ  n  
  ⋆ ) ,  

 (  x –   1  
 ⋆ , …,   x –   n  

 ⋆ ) ⟩  under which the equilibrium bidding profile is    x –     ⋆  .

C. Aggregate Bid Maximization

Theorems 1 and 2 set a clear path for our search for the optimum: it depends on 
the comparison between an optimally set flexible cap with a piecewise constant tax 
schedule and a  laissez-faire policy, i.e., no cap. We now consider the commonly 
studied case of aggregate bid maximization—i.e.,  λ = 0 —which allows us to 
focus on a bid cap’s effect on players’ bidding behavior while abstracting away the 
concern about tax revenue.

As stated in the introduction, a flexible cap alters players’ incentives and triggers 
two competing effects with regard to players’ bidding. On the one hand, a flexible 
cap elevates bidding costs and discourages bidding (cost effect); on the other hand, 
such a bid cap leads to an “equalizing shift” in the spirit of Che and Gale (2006): a 
progressive tax schedule automatically handicaps a stronger player because of his 
higher bid, which levels the playing field and fuels competition (competition effect). 
Our next result nevertheless shows that a flexible bid cap’s (indirect) competition 
effect cannot offset the (direct) discouragement caused by higher costs in a noisy 
contest.

THEOREM 3 (Optimality of a  Laissez-Faire Scheme under Aggregate Bid 
Maximization): Suppose that Assumption 1 is satisfied and  λ = 0 . The optimum 
imposes no bid cap, i.e.,   τ  1  

  ⋆  = ⋯ =  τ  n  
  ⋆  = 0 .

Theorem 3 states that a bid cap is always suboptimal when the designer does not 
benefit from tax revenue. We highlight the fact that the prediction, together with 
Theorem 1, overturns the implications obtained from  all-pay auction models (Che 
and Gale 1998; Kaplan and Wettstein 2006): a binding bid cap, regardless of its 
form, always decreases the level of the aggregate bid in the contest.

Theorem 3 provides not only a theoretical contribution but also policy relevance. 
Recall the aforementioned policy debate regarding excessive lobbying tax. By the 
theorem, a binding bid cap of any form leads to a lower aggregate bid. As a result, 
a lobbying tax, as a  revenue-generating flexible cap, would unambiguously curb 
lobbying activities, which stands in contrast to the prediction of Che and Gale 
(1998). Further, a progressive lobbying tax limits the advantage of stronger con-
tenders—e.g., corporate lobbyists—which in turn levels the playing field for pub-
lic interest groups; this contrasts with the neutrality result of Kaplan and Wettstein 
(2006), which will be discussed more extensively in Section IIIB.

In what follows, we interpret the economic logic underlying this result. The 
rationale provides an intuitive account of the roles played by a bid cap in noisy  
contests.
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Intuition.—We consider a simple  two-player example to interpret the logic 
underlying Theorem 3. Assuming   v 1   >  v 2   , we let  f  ( x i  )   take the functional form 
of  f  ( x i  )  =  x  i  

  r  , with  r ∈  (0, 1]  , which yields the frequently studied Tullock contest 
and enables an equilibrium solution in closed form. The parameter  r  is convention-
ally interpreted as a measure of the noisiness of the  winner-selection mechanism. A 
larger  r  implies that additional effort can more effectively be converted into higher 
winning odds.

Fix a piecewise constant tax schedule  ⟨ τ   ⋆ ,   x –     ⋆ ⟩ ≡ ⟨ ( τ  1  
  ⋆ ,  τ  2  

  ⋆ ) ,  (  x –   1  
 ⋆ ,   x –   2  

 ⋆ ) ⟩  with   τ  1  
  ⋆  >  

τ  2  
  ⋆  > 0  and    x –   1  

 ⋆  >   x –   2  
 ⋆  > 0  as described in Corollary 1. The tax schedule  ⟨ τ   ⋆ ,   x –     ⋆ ⟩   

induces the equilibrium bidding profile    x –     ⋆  , and the equilibrium bid pair   (  x –   1  
 ⋆ ,   x –   2  

 ⋆ )   can 
be solved for by the following  first-order conditions:

    
 v i   _ 

1 +  τ  i  
  ⋆ 
   ×  [1 −  p i   (  x –     ⋆ ) ]  ×   

f ′ (  x –   i  
 ⋆ )  _________ 

 ∑ j=1  
2     f  (  x –   j  

 ⋆ ) 
   = 1, i ∈  {1, 2} . 

The conditions imply that the equilibrium bid pair   (  x –   1  
 ⋆ ,   x –   2  

 ⋆ )   under  ⟨ τ   ⋆ ,   x –     ⋆ ⟩  also con-
stitutes the unique equilibrium in an unconstrained contest with prize valuations  
  ( v 1  / (1 +  τ  1  

  ⋆ ) ,  v 2  / (1 +  τ  2  
  ⋆ ) )  .14 The equilibrium bid can be obtained as

    x –   i  
 ⋆  = r   

  (  
 v 1   _ 

1 +  τ  1  
  ⋆ 
  )    

r
   (  

 v 2   _ 
1 +  τ  2  

  ⋆ 
  )    

r
 
  _____________________  

  [  (  
 v 1   _ 

1 +  τ  1  
  ⋆ 
  )    

r
  +   (  

 v 2   _ 
1 +  τ  2  

  ⋆ 
  )    

r
 ]    

2

 
   ×   

 v i   _ 
1 +  τ  i  

  ⋆ 
  , i ∈  {1, 2} . 

The above equilibrium, together with the fact that    x –   1  
 ⋆  >   x –   2  

 ⋆  , implies that   v 1  / v 2   >  

(1 +  τ  1  
 ⋆ ) / (1 +  τ  2  

 ⋆ )  .
We take two steps to show how a flexible cap affects the equilibrium aggregate 

bid in a noisy contest.15 First, we set the marginal tax rate for the favorite to that for 
the underdog: The designer imposes a proportional tax schedule with a flat marginal 
tax rate of   τ  2  

  ⋆  > 0 . The resultant equilibrium bid pair, denoted by   (  x –   1  
 ⋆⋆ ,   x –   2  

 ⋆⋆ )  , can be 
obtained as

    x –   i  
 ⋆⋆  = r   

  ( v 1  )    r   ( v 2  )    r 
  ______________  

  [  ( v 1  )    r  +   ( v 2  )    r ]    
2
 
   ×   

 v i   _ 
1 +  τ  2  

  ⋆ 
  , i ∈  {1, 2} . 

Intuitively, on the one hand, such a tax reduction reduces the favorite’s marginal 
bidding cost and directly boosts his incentive. This, on the other hand, restores the 
favorite’s advantage in the competition and, in turn, discourages the underdog. The 
tension is evidenced by    x –   1  

 ⋆⋆  >   x –   1  
 ⋆   and    x –   2  

 ⋆⋆  <   x –   2  
 ⋆   from the condition   v 1  / v 2   >  (1 +  

τ  1  
  ⋆ ) / (1 +  τ  2  

  ⋆ )  . The former direct positive effect outweighs the indirect negative 
competition effect for the case of small  r —i.e.,  r ≤ 1 —which causes the aggregate 
bid to increase in response as   τ  1  

  ⋆   reduces to   τ  2  
  ⋆  .

14 It is noteworthy that the tax revenue collected through the two scenarios would be different.
15 A similar procedure can be applied when the contest consists of three or more players.
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Next, we remove the constant marginal tax rate   τ  2  
  ⋆  > 0 . By the argument laid 

out above, this is equivalent to a uniform increase in players’ prize valuations—i.e., 
from   ( v 1  / (1 +  τ  2  

  ⋆ ) ,  v 2  / (1 +  τ  2  
  ⋆ ) )   to   ( v 1  ,  v 2  )  —without disturbing the balance of the 

playing field. Equilibrium bids would increase proportionally, which leads to further 
gains in the aggregate bid.

Recall the tension described in the introduction between the cost and compe-
tition effects. The first step in this argument provides an intuitive account of such 
a  trade-off, since reducing   τ  1  

  ⋆   to   τ  2  
  ⋆   unwinds both effects: this lowers the bidding 

cost for the favorite, thereby incentivizing him; however, it restores the favorite’s 
advantage and unevens the contest, which discourages the underdog. The cost effect 
outweighs the competition effect in this noisy contest. It is important to note that 
noise erodes the efficacy of a bid cap as an equalizing device in the contest. Setting   
τ  1  

  ⋆  >  τ  2  
  ⋆   is less effective for incentivizing the underdog, since a win or loss is 

largely random—i.e., with  r ≤ 1 . As a result, when   τ  1  
  ⋆   decreases to   τ  2  

  ⋆  , the increase 
in Player 1’s bid—due to the unwinding of the cost effect—more than offsets the 
decrease in Player 2’s bid when the competition effect is muted. The second step 
further testifies to the costly nature of a bid cap, as it directly discounts players’ 
 incentives.

This rationale can extend well to  multiplayer settings. The tension between the 
cost and competition effects will be further tilted toward the former as the number 
of players increases. The addition of players plays a role analogous to that of a 
noisier  winner-selection mechanism: it is more difficult to inspire an underdog to 
greater efforts when he has to outperform more opponents for a win; thus, a costly 
equalizing device—i.e., a bid cap—tends to further lose its appeal when the contest 
involves more players.

D. Discussion of Key Insights

Theorems 1 and 3 do not provide a ranking of no cap  vis-à-vis flexible cap if the 
designer values the tax revenue, i.e., if  λ > 0 . We subsequently demonstrate that 
either can prevail, and the aforementioned  trade-off between the cost and compe-
tition effects determines the optimum. The observations shed further light on the 
nature of the bid cap.

When the Designer Values Tax Revenue.—We continue with the  two-player 
Tullock contest setting. Define  v ≔  v 2  / v 1   ∈  (0, 1]  , which measures the evenness 
of the contest. A smaller  v  implies a more lopsided race. In online Appendix A, we 
provide the sufficient condition under which a flexible cap or no cap can be optimal 
when  λ > 0 . A numerical exercise fully characterizes the optimum, which is illus-
trated in Figure 1.

The horizontal axis measures  v ≡  v 2  / v 1    and the vertical axis traces the value of  
λ , with both ranging from zero to one. The three positively sloped curves delineate 
the optimal cap schemes for different  r , which take the value one-third, two-thirds, 
and one, respectively, from left to right. For a given  r , a flexible cap is optimal when   

(v, λ)   falls in the region to the left of the corresponding curve, while no cap prevails 
for   (v, λ)   to the right of the curve. Obviously, as Figure 1 shows, a flexible cap is 
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more likely to prevail when  λ  increases, i.e., when the designer values tax revenue 
more.

Two observations are noteworthy. First, all curves are positively sloped, which 
implies that the optimum is more likely to involve no cap when players are closer in 
terms of their strengths, i.e., with a larger  v . Second, the curve is shifted rightward 
when the contest becomes less noisy—i.e., when  r  increases—which implies that 
a flexible cap is more likely to emerge in the optimum when the  winner-selection 
mechanism is more precise.

These observations further demonstrate the  trade-off between the cost and com-
petition effects. The tension fades away when  v  increases: An even race does not 
require costly intervention that compromises the stronger player’s bidding incentive. 
Further, substantial noise—i.e., a smaller  r —evens the race because it diminishes 
the advantage of the stronger player, which also eliminates the need for a costly bid 
cap. More formally, we state the following:

REMARK 1: Suppose that  n = 2 ,  λ ∈  [0, 1]  , and  f  ( x i  )  =  x  i  
  r  , with  r ∈  (0, 1]  . 

The optimal contest requires that no cap be imposed if the contest is sufficiently 
noisy—i.e.,  r ≤ v —or, equivalently, if the contest is sufficiently even, i.e.,  v ≥ r .

By Remark 1, bid caps are suboptimal when the contest is sufficiently noisy or 
players are sufficiently homogeneous, regardless of the designer’s preference for tax 
revenue.

Figure 1. Optimal Bid Cap in  Two-Player Tullock Contests:  r ∈  {1/3, 2/3, 1}  .
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 Multiplayer Settings.—As stated above, the rationale that interprets Theorem 3 
well extends to  multiplayer settings. The optimum continues to be subject to the 
 trade-off between the cost and competition effects. For brevity, additional results 
are provided in online Appendix B. The observations demonstrate how the optimum 
in a  multiplayer contest is shaped by the various environmental factors and echo the 
findings presented above. However, it is noteworthy that the presence of multiple 
heterogeneous players triggers substantial nuances. First, player heterogeneity is 
inherently multidimensional and cannot readily be measured by a single parameter, 
as in a  two-player contest. Second, bid caps continue to be a useful instrument for 
the designer to exploit players’ heterogeneity; however, setting a bid cap gives rise 
to a hidden selection problem: the designer may deploy her instruments to selec-
tively incentivize a certain subset of players.

The following result is obtained, which further illustrates the nature of a bid cap 
as a costly intervention.

PROPOSITION 1 (Zero Marginal Tax Rate for the Minimum Bracket in Tullock 
Contests): Suppose that  λ < 1  and  f  ( x i  )  =  x  i  

  r  , with  r ∈  (0, 1]  . The optimal piece-
wise constant cap schedule sets   τ  κ    ⋆  = ⋯ =  τ  n  

  ⋆  = 0 , where  κ  is the number of 
active players in the optimum.16,17

In a  multiplayer contest the weakest players can be compelled to stay inac-
tive, e.g., players  i  with  i ∈  {κ + 1, …, n}  , in the context of Proposition 1. The 
optimally set flexible cap chosen from the set of piecewise constant tax functions  
   
–
     requires a zero tax rate for the minimum bracket. The weakest active player—who 

is indexed by  κ —does not pay a tax in the optimum. The  trade-off between cost 
and competition effects emerges when setting the cap scheme: a sufficient spread 
between the highest and lowest marginal tax rates—i.e., between   τ 1    and   τ κ   —is 
required to even the race, while a tax burden erodes players’ bidding incentives. 
Tax exemption for the underdog ensures a sufficiently large spread for an effective 
handicap without entailing excessive penalty, which mitigates the aforementioned 
cost effect.

III. Extension and Further Discussion

In this section, we extend our model to allow for convex impact functions, which 
sheds further light on the nature of bid caps and revives the linkage of our analysis 
to the conventional wisdom obtained in the literature.

A. Tullock Contest with  r ∈  (1, 2]  

We now relax the assumption of concave impact function while retaining a 
Tullock contest setting. It is well known that a  pure-strategy equilibrium may not 

16 For the case of  λ = 1 , the optimum can be achieved by a piecewise constant cap scheme that satisfies   
τ κ   = ⋯ =  τ n   = 0 .

17 It is straightforward to verify that  κ = n  if  r < 1 .
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exist when  r  exceeds one;18 the properties of the resulting  mixed-strategy equi-
libria largely remain elusive, especially for the case of  r > 2 .19 We focus on the 
more tractable case of  r ∈  (1, 2]  . In a standard  two-player contest, a  pure-strategy 
equilibrium remains when  r  falls below a cutoff within the interval   (1, 2]  , while a 
 semi-mixed equilibrium emerges when  r  exceeds it (Wang 2010).20

In Appendix B, we establish that in parallel to Theorem 2, it is without loss of 
generality to search for the optimum within the class of  two-part tax schedules that 
set strictly positive tax rates only for the bids in the higher bracket. We then charac-
terize the equilibria under the prevailing bid caps, which lays a foundation for the 
analysis of optimal bid cap schemes. The following result can be obtained.

PROPOSITION 2 (Equilibrium Property in Optimal  Two-Player Tullock Contests 
with  r ∈  (1, 2]   and Bid Caps): Suppose that  n = 2  and  f  ( x i  )  =  x  i  

  r  , with  
 r ∈  (1, 2]  . The following statements hold whenever no cap is suboptimal:

 (i) For  λ = 0 , the optimum can take the form of either a rigid cap or a flexible 
cap. They generate the same amount of expected aggregate bid and induce 
the same bidding equilibrium.21

 (ii) For  λ > 0 , the optimum requires a flexible cap, which strictly dominates all 
rigid caps.22

Proposition 2(i) states that whenever a binding cap is required, the optimum can 
equivalently be achieved by either a rigid cap or a flexible one when the designer 
only cares about the aggregate bid, i.e.,  λ = 0 . However, a rigid cap remains sub-
optimal for  λ > 0  because it does not generate tax revenue.

Proposition 2(i) contrasts radically with Theorems 1 and 3. Recall that with con-
cave impact functions, Theorem 1 states that for every rigid cap there exists a flexi-
ble cap that generates a strictly larger amount of aggregate bid, which indicates the 
suboptimality of a rigid cap. By Proposition 2(i), an optimally set rigid cap and its 
flexible counterpart can induce the same equilibrium bidding outcome, although the 
equivalence dissolves for  λ > 0  because a rigid cap does not generate tax revenue. 
As a result, a rigid cap can be a candidate for the optimum when the designer max-
imizes the aggregate bid only.

18 For instance, Baye, Kovenock, and De  Vries (1994) demonstrate that when  r > 2 , the local maximizer 
defined by the  first-order conditions does not constitute a global maximum.

19 With  r > 2 , the cumulative density function of a player’s mixed strategy has infinite discontinuous points 
and has yet to be explicitly characterized in the literature. Baye, Kovenock, and De Vries (1994) employ a dis-
cretization approach to identify a symmetric  mixed-strategy equilibrium in a  two-player contest with  r ∈  (2, ∞)  .  
Alcalde and Dahm (2010) establish a  mixed-strategy equilibrium in the case  r > 2  and propose the notion of an 
 all-pay-auction equilibrium. Ewerhart (2015) shows in a symmetric setting that the equilibria stand in contrast to 
the  well-characterized  pure-strategy equilibrium in a standard lottery contest and the  mixed-strategy equilibrium 
in an  all-pay auction.

20 Feng and Lu (2017) and Ewerhart (2017) further verify equilibrium uniqueness in this case of  r ∈  (1, 2]  .
21 For  λ = 0 , there could exist multiple equilibria under the optimal rigid cap. We can always construct a flex-

ible cap that leads to a unique  pure-strategy equilibrium to achieve the optimum.
22 For  λ > 0 , whenever policy intervention is required, we can construct a flexible cap that results in a unique 

 pure-strategy equilibrium to achieve the optimum.
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We conduct a numerical exercise that fully characterizes the optimum, which is 
illustrated in Figure 2. As in Figure 1, the horizontal axis measures  v ≡  v 2  / v 1    and 
the vertical axis traces the value of  λ . The three positively sloped curves define the 
optimum for the three cases of  r = 1, 4/3,  and  5/3 , respectively, from left to right. 
For a given  r , a binding cap is optimal when   (v, λ)   is located to the left of the curve, 
while no cap prevails for combinations of   (v, λ)   to the right. These observations are 
largely consistent with those obtained from Figure 1 and Remark 1. In particular, a 
larger  r  expands the set of parameterizations under which a binding cap prevails. For 
a given  λ , a binding cap is less appealing when  v  increases, i.e., when the contest is 
more even.

In Appendix B, we provide sufficient conditions for a flexible cap or no cap to 
be optimal when the designer values tax revenue, i.e.,  λ > 0 . When the designer 
cares only about the aggregate bid, however, we obtain unambiguous sufficient and 
necessary conditions under which either a binding cap or no cap emerges as the 
optimum. Define a cutoff value   r   ∗  ∈  (1, 2]   for  r , which uniquely solves the equa-
tion  r = 1 +  v   r   for a given  v ; further, the equation can be solved by a unique   v   ∗  ∈  

(0, 1)   for a given  r . Similarly, the equation

  r +   1 _ 
1 + v

   −   2r _ 
 (1 +  v   r ) 

   = 0 

can be solved by a unique   r   ∗∗  ∈  (1, 2)   for a given  v  or a unique   v   ∗∗  ∈  (0, 1)   for a 
given  r . The following can be obtained.

Figure 2. Optimal Bid Cap in  Two-Player Tullock Contests:  r ∈  {1, 4/3, 5/3}  .
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PROPOSITION 3 (Optimal  Aggregate-Bid-Maximizing Tax Schedule in  Two-Player 
Tullock Contests with  r ∈  (1, 2]  ): Suppose that  n = 2 ,  λ = 0 , and  f  ( x i  )  =  x  i  

  r  ,  
with  r ∈  (1, 2]  . The optimal contest requires no cap when  r ≤ min { r   ∗ ,  r   ∗∗ }   
or  v ≥ max { v   ∗ ,  v   ∗∗ }  ; it requires a binding cap otherwise, in which case the opti-
mum can be achieved by either a rigid cap or a flexible one.

By Proposition 3, a binding cap, which can be either rigid or flexible, can maxi-
mize the aggregate bid. This observation further demonstrates the rationale laid out in 
Section IID. As a costly equalizing device, a binding bid cap is required to balance the 
playing field when the contest is sufficiently discriminatory—i.e.,  r > min { r   ∗ ,  r   ∗∗ }   
—or the competition is sufficiently uneven, i.e.,  v < max { v   ∗ ,  v   ∗∗ }  .

B. Relation to the Literature: Further Discussion

Our main results sharply contrast with those obtained in  two-player  all-pay auc-
tions, such as in Che and Gale (1998), Kaplan and Wettstein (2006), and Sahuguet 
(2006). As previously stated, an  all-pay auction can be viewed as the limiting form 
of a Tullock contest when the parameter  r  goes to infinity. The analysis in the case 
of  r ∈  (1, 2]   revives the linkage of our baseline analysis to the literature.

Note that objective function (3) can be rewritten as

(9)   (t)  ≔      ∑ 
i=1

  
n

     x  i  
∗  (t)  

⏟

   

aggregate bid

   + λ ×      ∑ 
i=1

  
n

     ∫ 
0
  
 x  i  

∗  (t) 
   t (s) ds  


    

tax revenue

    

  =  (1 − λ)  ×      ∑ 
i=1

  
n

     x  i  
∗  (t)  

⏟

   

aggregate bid

   + λ ×      ∑ 
i=1

  
n

    c ( x  i  
∗  (t) )  


    

aggregate bidding cost

  , with 0 ≤ λ ≤ 1, 

which is a convex combination between the aggregate bid and the aggregate bidding 
cost.

Although neither Che and Gale (1998) nor Kaplan and Wettstein (2006) explic-
itly consider the design of a bid cap scheme, combining their results allows us to 
infer a complete ranking of flexible cap, rigid cap, and no cap in terms of maxi-
mizing   (t)   in  two-player  all-pay auctions: an appropriately set rigid cap strictly 
outperforms no cap, while no cap is strictly preferred to any flexible cap, whenever 
they are enforceable. By Che and Gale (1998), an appropriately set bid cap elicits 
a higher aggregate bid and higher total expenditure than those under no cap; by 
Kaplan and Wettstein (2006), imposing a flexible cap causes the equilibrium aggre-
gate bid—which varies players’ bidding cost functions—to fall below that under no 
cap, while leaving equilibrium total bidding expenditure and winning probabilities 
constant, regardless of the effort cost function (binding flexible cap of any form or 
no cap), which refers to the  well-known neutrality result.

Our Theorem 1, in contrast, establishes that a rigid cap must strictly underper-
form some flexible caps, regardless of the designer’s preference, i.e., the size of  
 λ . As a result, a rigid cap is always suboptimal in our noisy contest for all eligible 
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objective functions. Furthermore, our Theorem 3 shows that when the designer 
aims to maximize only the aggregate bid, no cap outperforms all binding caps. 
A complete ranking immediately arises in our setting when the designer does not 
value tax revenue: no cap outperforms any flexible cap, while every rigid cap can 
be strictly dominated by a properly set flexible cap. These implications clearly 
depart from the conventional wisdom obtained in  complete-information  all-pay 
auction models.

The neutrality result of Kaplan and Wettstein (2006) obviously does not hold 
in our context. When the designer values tax revenue—i.e.,  λ > 0 —either no cap 
or a flexible cap can be optimal (see Section IID). Players’ equilibrium winning 
probabilities will also be affected by the imposition of a flexible cap. Given its pro-
gressive nature, a flexible cap subjects the favorite to a higher marginal effort cost 
and  effectively imposes a handicap, which leads to a more even race than the com-
petition under no cap.23

With  r  in an intermediate range—i.e.,  r ∈  (1, 2]  —Proposition 2(i) establishes 
an equivalence between an optimally set rigid cap and its flexible counterpart, since 
they induce the same equilibrium outcome. Further, by Proposition 3, a rigid cap can 
be optimal in the case with  λ = 0 , although it does not strictly outperform the opti-
mally set flexible cap. The setting of  r ∈  (1, 2]   reconciles the two extreme cases of 
concave impact functions and  all-pay auctions: Proposition 3 echoes Che and Gale 
(1998) and Kaplan and Wettstein (2006), although a rigid cap remains suboptimal 
in the case with  λ > 0 .

Table 1Table 1 provides a summary of the results under different levels of  r . CG98 and 
KW06 in the table stand for Che and Gale (1998) and Kaplan and Wettstein (2006), 
respectively.

IV. Concluding Remarks

This paper explores the optimal bid cap scheme in  multiplayer generalized lottery 
contests. We model the bid cap as a progressive tax schedule that elevates play-
ers’ bidding costs. In contrast to  all-pay auctions, a bid cap, regardless of its form, 
enables an equalizing shift in the spirit of Che and Gale (2006) that levels the play-
ing field and fuels competition, despite the discouragement caused by higher costs. 
We show that when the  winner-selection mechanism of the contest involves substan-
tial noise—i.e., when the impact function is concave—the discouragement caused 
by elevated costs always outweighs the competition effect, and a binding bid cap 

23 We now briefly interpret the neutrality result of Kaplan and Wettstein (2006) and its limit. Note that a con-
test can be understood as an alternative but equivalent game in which each player chooses his bidding cost (or 
distribution of bidding costs in mixed strategy) instead of the bid itself. In an  all-pay auction, the probability of 
winning with a given bidding cost is the same as the probability that the other bidder chooses a bid of lower cost, 
and a lower bid, provided that the bidding cost function is monotone. As a result, manipulating a (common) bidding 
cost function—as a flexible cap does—does not vary players’ distributions of bidding costs in equilibrium, which 
leads to the neutrality. Consider a  two-player noisy contest; the probability of winning with a bid, however, is not 
the same as the probability that the other bidder chooses lower bids and also depends on the particular sizes of the 
bids. As a result, for a given pair of bids, if we vary players’ bidding cost functions and change the bids to maintain 
the same bidding costs, players’ winning probabilities would depart in response from those under the original bid 
profile, which dissolves the neutrality.
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always reduces the aggregate bid. The observations in the case of concave impact 
functions notably contrast with results in the literature based on  two-player  all-pay 
auctions, which sheds light on the nature of bid caps and the complexity inherent in 
optimal contest design in  multiplayer noisy contests. We further extend the analysis 
to allow for convex impact functions. The results allow us to develop a rationale that 
reconciles our analysis with the literature based on  all-pay auctions.

Our results also generate useful practical implications. Consider, for instance, 
the growing call to tax corporate special interest lobbying. The literature—e.g., 
Che and Gale (1998)—suggests that a rigid bid cap may paradoxically intensify the 
competition. Our results nevertheless demonstrate that a binding bid cap, regardless 
of its form, helps limit the aggregate bid. Further, our results show that a bid cap is 
more likely to be optimal when the  winner-selection mechanism is more precise and 
the designer values tax revenue. Salary caps, along with luxury taxes, exemplify the 
flexible cap defined in our paper and are commonly adopted in professional sports 
leagues. Ben-Naim, Vazquez, and Redner (2007) empirically estimate and compare 
the degrees of predictability—i.e., the significance of luck in determining winners 
 vis-à-vis skill or effort—in different sports. Our results could provide useful insights 
into the administration of salary cap schemes across different sports.

Caveats and room for future extensions remain. First, our results are obtained in 
a  complete-information setting and should be interpreted with caution. For instance, 
the designer is required to know players’ valuations to obtain the exact form of the 
optimal piecewise constant tax schedule. However, the majority of our results do not 
require the exact form of the optimal bid cap; rather, they yield qualitatively useful 
implications of broad relevance. Theorem 3, for instance, establishes the ranking 
between no cap and binding cap regardless of the specific form of the latter. That 
said, it is theoretically intriguing to extend the model to allow for more general 
information structures.

Second, our framework assumes  risk-neutral players. The economics litera-
ture—e.g., Konrad and Schlesinger (1997); Cornes and Hartley (2003, 2012); and 
Treich (2010)—has broadly recognized the role played by risk aversion in shaping 
contenders’ strategic behavior. This calls for efforts to reexamine the various clas-
sical issues of contest design under alternative risk attitudes. Fu, Wang, and Wu 
(2021) and Drugov and Ryvkin (2021), for instance, explore optimal prize alloca-
tion in contests with  risk-averse players and demonstrate how such predictions may 
diverge from the conventional wisdom obtained under risk neutrality. Bid caps in 
contests also deserve to be investigated in a setting of richer risk preferences, which 
could be a fruitful avenue for future research.

Table 1—Optimal Bid Cap in  Two-Player Tullock Contests

 0 < r ≤ 1  1 < r ≤ 2  r = ∞ 
(This paper) (This paper) (CG98, KW06)

Equilibrium behavior Pure strategy Pure strategy or  semi-mixed strategy  
  under a  two-part bid cap  

(pure strategy under optimal policy)

Mixed strategy

Optimum   (λ = 0)  No cap No cap, rigid cap, or flexible cap Rigid cap

Optimum   (λ > 0)  No cap, flexible cap No cap, flexible cap Rigid cap
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Appendix A. Proofs of Results in the Baseline Setting

Proof of Theorem 1.—

PROOF:
Consider a rigid cap and denote the corresponding equilibrium bid profile by   

x   ∗  ≡  ( x  1  
∗ , …,  x  n  

∗ )  . For the sake of exposition, we focus on the case in which play-
ers have different prize valuations—i.e.,   v 1   > ⋯ >  v n   > 0 —and place different 
positive bids in equilibrium, i.e.,   x  1  

∗  > ⋯ >  x  n  
∗  > 0 . The analysis is similar for 

cases in which two or more players have the same prize valuation, some players 
remain inactive in equilibrium, or two or more players place the same bid.

Step 1: We first construct a series of bid profiles    { x   k }   k=1  
n
   ≔   { ( x  1  

  k , …,  x  n  
  k ) }   

k=1
  

n
   ,  

with   x   1  =  x   ∗  . For  k ∈  {2, …, n}  , the bid profile   x   k  ≡  ( x  1  
  k , …,  x  n  

  k )   can be derived 

from   x   k−1  ≡  ( x  1  
  k−1 , …,  x  n  

  k−1 )   as follows:

(10)   x  j  
  k  =   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

 x  j  
  k−1  −  ϵ  k  

  k−1 ,

  

if j = k;

    x  j  
  k−1  +  ϵ  k−1  

  k−1 ,  if j = k − 1;    

 x  j  
  k−1 ,

  

if j ∈   \ {k − 1, k} ;

   

where   ϵ  k  
  k−1  > 0  and   ϵ  k−1  

  k−1  > 0  are sufficiently small and satisfy

(11)  f  ( x  k−1  
  k−1 )  + f  ( x  k  

  k−1 )  = f  ( x  k−1  
  k−1  +  ϵ  k−1  

  k−1 )  + f  ( x  k  
  k−1  −  ϵ  k  

  k−1 ) . 

The above equation, together with the weak concavity of  f  ( · )   and Jensen’s inequal-
ity, implies that   ϵ  k  

  k−1  ≤  ϵ  k−1  
  k−1  ; thus,   ∑ j=1  

n     x  j  
  k  ≥  ∑ j=1  

n     x  j  
  k−1  .

Step 2: Next, we construct a tax schedule   t     k  ( · )  , with  k ∈  {1, …, n}  , to induce 
the bid profile   x   k  ≡  ( x  1  

  k , …,  x  n  
  k )  . Let   t   1  ( · )   be the original rigid cap we consider. 

By construction,   x   1   is the equilibrium under   t   1  ( · )  . Further, because   t   1  ( · )   is a rigid 
cap, we must have that

(12)     
∂  π 1   _ ∂  x 1  

    |    x 1  =  x  1  
1 

   =   
f ′ ( x  1  

1 )  p 1   ( x   1 )  [1 −  p 1   ( x   1 ) ] 
  _____________________  

f  ( x  1  
1 ) 

    v 1   − 1 > 0 

and

(13)     
∂  π 2   _ ∂  x 2  

    |    x 2  =  x  2  
1 

   =   
f ′ ( x  2  

1 )  p 2   ( x   1 )  [1 −  p 2   ( x   1 ) ] 
  _____________________  

f  ( x  2  
1 ) 

    v 2   − 1

 =   
f ′ ( x  2  

1 )  [ ∑ j≠2  
 
     f  ( x  j  

1 ) ] 
  _______________  

  [ ∑ j=1  
n     f  ( x  j  

1 ) ]    
2
 
    v 2   − 1 = 0. 
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Combining (10), (11), (12), and (13), for sufficiently small   ϵ  2  
1   and   ϵ  1  

1  , we can obtain 
that

(14)   τ   1  2  ≔   
f ′ ( x  1  

2 )  p 1   ( x   2 )  [1 −  p 1   ( x   2 ) ] 
  ______________________  

f  ( x  1  
2 ) 

    v 1   − 1 > 0 

and

(15)   τ   2  2  ≔   
f ′ ( x  2  

2 )  p 2   ( x   2 )  [1 −  p 2   ( x   2 ) ] 
  ______________________  

f  ( x  2  
2 ) 

    v 2   − 1 > 0. 

By continuity,   τ   1  2  >  τ   2  2  > 0  when   ϵ  2  
1   and   ϵ  1  

1   are sufficiently small. Let   τ   2  ≔ 
 ( τ   1  2 , …,  τ   n  2 )  , where   τ   1  2   and   τ   2  2   are defined in (14) and (15) above and   τ   j  2  = 0  for  
j ∈  {3, …, n}  . Next, we define the tax schedule   t    2  ( · )   based on the constructed 
  τ   2   and   x   2   as follows:

       t    2  (x)  =   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
   

 τ   n  2 ,

  

if 0 ≤ x ≤  x  n  
2 ;

    τ   i  2 ,  if  x  i+1  
2   < x ≤  x  i  

2 , i ∈  {1, …, n − 1} ;     

 τ   1  2 ,

  

if x >  x  1  
2 .
    

It is straightforward to verify that the bid schedule   t    2  ( · )   induces the bid profile   
x   2  ≡  ( x  1  

2 , …,  x  n  
2 )   in equilibrium and generates a positive amount of tax revenue. 

That is,   t    2  ( · )   is a flexible cap.
Similarly, for  k ∈  {3, …, n}  , the  first-order conditions for players  k − 1  and  

 k  under tax schedule   t     k−1  ( · )   imply that

   v k    p k   ( x   k−1 )  [1 −  p k   ( x   k−1 ) ]  ×   
f ′ ( x  k  

  k−1 ) 
 _______ 

f  ( x  k  
  k−1 ) 

   = 1 +  τ   k   k−1  = 1 

and

   v k−1    p k−1   ( x   k−1 )  [1 −  p k−1   ( x   k−1 ) ]  ×   
f ′ ( x  k−1  

  k−1 ) 
 _______ 

f  ( x  k−1  
  k−1 ) 

   = 1 +  τ   k−1  
 k−1  > 1. 

Let   τ    k  ≔  ( τ   1  k  , …,  τ   n  k  )  , where   τ   j  k   is given by

   τ   j  k  ≔   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   
 v j    p j   ( x   k )  [1 −  p j   ( x   k ) ]  ×   

f ′ ( x  j  
  k ) 
 _____ 

f  ( x  j  
  k ) 

   − 1,
  

if j ∈  {k − 1, k} ;
      

 τ   j  k−1 ,

  

if j ∈   \ {k − 1, k} .

   

Again, by continuity,   τ   k−1  
k   >  τ   k  k  > 0  when   ϵ  k  

  k−1   and   ϵ  k−1  
  k−1   are sufficiently small. 

Define the tax schedule   t     k  ( · )   based on the constructed   τ    k  ≡  ( τ   1  k  , …,  τ   n  k  )   and  
  x   k  ≡  ( x  1  

  k , …,  x   k )   as follows:

      t     k  (x)  =   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
   

 τ   n  k  ,

  

if 0 ≤ x ≤  x  n  
  k ;

    τ   i  k ,  if  x  i+1  
  k   < x ≤  x  i  

  k , i ∈  {1, …, n − 1} ;     

 τ   1  k  ,

  

if x >  x  1  
  k .
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Again, it can be verified that the bid schedule   t     k  ( · )   induces the bid profile  
  x   k  ≡  ( x  1  

  k , …,  x  n  
  k )   in equilibrium and generates a positive amount of tax revenue.

Step 3: From the above construction, we know that the tax schedule   t    n  ( · )   induces 
the bid profile   x   n  ≡  ( x  1  

  n , …,  x  n  
  n )   with   ∑ j=1  

n     x  j  
 n  ≥  ∑ j=1  

n     x  j  
∗   and generates a positive 

amount of tax revenue. Note that   τ   1  n  > ⋯ >  τ   n  n  > 0  by construction.
Define   x   n+1  ≡  ( x  1  

  n+1 , …,  x  n  
  n+1 )  , where   x  j  

 n+1   is given by

   x  j  
 n+1  =   {   

 x  j  
  n ,

  
if j ≠ n;

   
 x  j  

  n  + ϵ,
  

if j = n.
    

Further, define   τ   j  n+1  , with  j ∈  {1, …, n}  , as follows:

   τ   j  n+1  ≔  v j    p j   ( x   n+1 )  [1 −  p j   ( x   n+1 ) ]  ×   
f ′ ( x  j  

 n+1 ) 
 _______ 

f  ( x  j  
 n+1 ) 

   − 1. 

By continuity, we have that   τ   1  n+1  > ⋯ >  τ   n  n+1  > 0  when  ϵ  is sufficiently small. 
Next, define   t    n+1  ( · )   as

      t    n+1  (x)  =   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
   

 τ   n  n+1 ,

  

if 0 ≤ x ≤  x  n  
  n+1 ;

     τ   i  n+1 ,  if  x  i+1  
  n+1  < x ≤  x  i  

  n+1 , i ∈  {1, …, n − 1} ;     

 τ   1  n+1 ,

  

if x >  x  1  
  n+1 .

    

It can be verified that   x   n+1   is the unique equilibrium under the flexible cap   t    n+1  ( · )  . 
Further, it is obvious that the aggregate bid under   t    n+1  ( · )   is strictly higher than that 
under the original rigid cap. This completes the proof. ∎

Proof of Theorem 2 and Corollary 1.—

PROOF:
Consider an arbitrary tax schedule  t ∈   and denote the equilibrium bid pro-

file by   x   ∗  ≡  ( x  1  
∗ , …,  x  n  

∗ )  . For expositional convenience, we assume that  t ( · )   is a 
continuous function. The proof can be easily adapted to the case in which  t ( · )   is 
discontinuous.

It is evident that   x  1  
∗  ≥ ⋯ ≥  x  n  

∗  ≥ 0 . Consider the following piecewise con-
stant tax schedule   t ̃   ( · )  :

       t ̃   (x)  =   

⎧

 
⎪

 ⎨ 
⎪

 

⎩
   

t ( x  n  
∗ ) ,

  

if 0 ≤ x ≤  x  n  
∗ ;

   t ( x  i  
∗ ) ,  if  x  i+1  

∗   < x ≤  x  i  
∗ , i ∈  {1, …, n − 1} ;     

t ( x  1  
∗ ) ,

  

if x >  x  1  
∗ .
    

It is straightforward to verify that   x   ∗  ≡  ( x  1  
∗ , …,  x  n  

∗ )   constitutes the unique equilib-
rium under   t ̃   ( · )  . That is, the aggregate bid remains unchanged when the prevailing 
tax schedule is switched from  t ( · )   to   t ̃   ( · )  . Further,   t ̃   (x)  ≥ t (x)   for all  x ∈  [0,  x  1  

∗ ]    
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by our construction, implying that   ∑ i=1  
n     ∫ 0  

 x  i  
∗     t ̃   (s) ds ≥  ∑ i=1  

n     ∫ 0  
 x  i  

∗    t (s) ds . As a result,  
  ( t ̃  )  ≥  (t)  . This completes the proof of Theorem 2. Corollary 1 can be proved 
by the same argument. ∎

Proof of Theorem 3.—

PROOF:
For expositional convenience, let us consider a continuous tax schedule  t ( · )   

and denote the equilibrium by   x   ∗  ≡  ( x  1  
∗ , …,  x  n  

∗ )  . Let   τ i   = t ( x  i  
∗ )   for  i ∈   with 

slight abuse of notation. Clearly, we have   x  1  
∗  ≥ ⋯ ≥  x  n  

∗  ; thus,   τ 1   ≥ ⋯ ≥  τ n   . If 
Player  i  remains active in the contest—i.e.,   x  i  

∗  > 0 —then the following  first-order 
condition holds:

    
 v i   _ 

1 +  τ i  
   ×  [1 −  p i   ( x   ∗ ) ]  ×   

f ′ ( x  i  
∗ ) 
 _________ 

 ∑ j∈  
 
     f  ( x  j  

∗ ) 
   = 1. 

Similarly, if Player  i  remains inactive in the equilibrium—i.e.,   x  i  
∗  = 0 —then we 

have that

    
 v i   _ 

1 +  τ i  
   ×  [1 −  p i   ( x   ∗ ) ]  ×   

f ′ ( x  i  
∗ ) 
 _________ 

 ∑ j∈  
 
     f  ( x  j  

∗ ) 
   ≤ 1. 

The above conditions imply immediately that the equilibrium bid profile  
  x   ∗  ≡  ( x  1  

∗ , …,  x  n  
∗ )   under the bid cap  t ( · )   also constitutes the unique equilib-

rium in a contest without a cap in which the profile of players’ prize valuations is  
  ( v 1  / (1 +  τ 1  ) , …,  v n  / (1 +  τ n  ) )  . Denote by  X ( v 1  , …,  v n  )   the equilibrium aggre-
gate bid in a contest with no cap. Given the profile of players’ prize valuations  
  ( v 1  , …,  v n  )  , it suffices to show that

  X ( v 1  , …,  v n  )  ≥ X (  
 v 1   _ 

1 +  τ 1  
  , …,   

 v n   _ 
1 +  τ n  

  ) , 

where the inequality holds with equality if and only if   τ i   = 0  for all  i ∈  .
It is useful to prove several intermediate results.

LEMMA 1: Let  g ( · ) :  핉   +  →  핉   +   be a strictly increasing and convex function. Fix  
k ∈  {1, …, n}  . Suppose that    { y  i  ′ }   i=1  

n    and    { y i  }   i=1  
n    satisfy the following conditions:

 (i)   y  1  ′   ≥  y  2  ′   ≥ ⋯ ≥  y  n  ′   ≥ 0  and   y 1   ≥ ⋯ ≥  y n   ≥ 0 .

 (ii)   ∑ i=1  
n     y  i  ′  ≥  ∑ i=1  

n     y i   .

 (iii)   y  i  ′  ≥  y i    for  i ≤ k  and    
 y  i  ′  _ 

 ∑ j=1  
n     y  j  ′ 

   ≤   
 y i   _ 

 ∑ j=1  
n     y j  

    for  i ≥ k + 1 .

Then, we have that

    ∑ 
i=1

  
n

    g ( y  i  ′ )  ≥   ∑ 
i=1

  
n

    g ( y i  ) . 
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PROOF:
The lemma follows directly from Karamata’s inequality if we can show that

    ∑ 
i=1

  
m

     y  i  ′  ≥   ∑ 
i=1

  
m

     y i  , for all m ∈  {1, 2, …, n} . 

It is evident that the above inequality holds for  m ≤ k  because   y  i  ′  ≥  y i    for  i ≤ k ,  
and it remains to prove the inequality for  m ≥ k + 1 . First,    

 y  i  ′  _ 
 ∑ j=1  

n     y  j  ′ 
   ≤   

 y i   _ 
 ∑ j=1  

n     y j  
    for  

i ≥ k + 1  implies that

    
 ∑ i=m+1  

n     y  i  ′  ________ 
 ∑ i=1  

n     y  i  ′ 
   ≤   

 ∑ i=m+1  
n     y i   ________ 

 ∑ i=1  
n     y i  

  , 

which, in turn, implies that

(16)    
 ∑ i=1  

m     y  i  ′  ______ 
 ∑ i=1  

n     y  i  ′ 
   ≥   

 ∑ i=1  
m     y i   ______ 

 ∑ i=1  
n     y i  

  . 

Moreover, note that

(17)    ∑ 
i=1

  
n

     y  i  ′  ≥   ∑ 
i=1

  
n

     y i  . 

Combining (16) and (17), we can obtain that   ∑ i=1  
m     y  i  ′  ≥  ∑ i=1  

m     y i    for  m ≥ k + 1 . 
This completes the proof. ∎

LEMMA 2: Suppose that   w 1   ≥ ⋯ ≥  w n   > 0  and let  𝐰 ≔  ( w 1  , …,  w n  )  . Fix  
k ∈  {1, 2, …, n}   and  τ ≥ 0  and define  w′ ≔  ( w  1  ′  , …,  w  n  ′  )  =  ( w 1   (1 + τ) , …,  
w k   (1 + τ) ,  w k+1  , …,  w n  )  . Then

  X (w′)  ≥ X (w) . 

PROOF:
With slight abuse of notation, let us denote the equilibrium bid profile and 

equilibrium winning probabilities in the absence of a bid cap under the profile of 
prize valuations  w ≡  ( w 1  , …,  w n  )   by   x   ∗  ≡  ( x  1  

∗ , …,  x  n  
∗ )   and   p   ∗  ≡  ( p  1  

∗ , …,  p  n  
∗ )  , 

respectively. Further, let   y  i  
∗  ≔ f  ( x  i  

∗ )   and define   S   ∗  ≔  ∑ i=1  
n     y  i  

∗  .
An active player’s  first-order condition can be then be rewritten as

(18)    
 w i   (1 −  p  i  

∗ ) 
 _ 

 S   ∗ 
   × f ′ (  f    −1  ( S   ∗    p  i  

∗ ) )  = 1, if  x  i  
∗  > 0. 

Note that the  left-hand side of the above equation strictly increases with   w i    and 
strictly decreases with   S   ∗   and   p  i  

∗  . Similarly, the following condition holds for an 
inactive player:

(19)    
 w i   _ 
 S   ∗ 

   × f ′ (0)  ≤ 1, if  x  i  
∗  = 0. 
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Next, define a function  𝔭 ( w i  ,  S   ∗ )   based on (18) and (19) as follows:

 𝔭 ( w i  ,  S   ∗ )  

=   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
   
0,

  
if   

 w i   _ 
 S   ∗ 

    f ′ (0)  ≤ 1;
       

unique positive solution to   
 w i   (1 −  p i  ) 

 _ 
 S   ∗ 

    f ′ (  f    −1  ( S   ∗   p i  ) )  = 1
  

otherwise.
    

It is straightforward to verify that  𝔭 ( w i  ,  S   ∗ )   is decreasing in   S   ∗   and is increasing in   
w i   . Moreover,   S   ∗   is the unique solution to

    ∑ 
i∈

  
 

    𝔭 ( w i  ,  S   ∗ )  = 1, 

and   p  i  
∗  = 𝔭 ( w i  ,  S   ∗ )   for all  i ∈  .

Note that for an inactive player, we can obtain  𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) )   
= 𝔭 ( w i  ,  S   ∗ )  = 0  from (19). Moreover, for an active player, the  first-order condi-
tion (18) implies that

     
 w i   (1 − 𝔭 ( w i  ,  S   ∗ ) ) 

  _______________ 
 S   ∗ 

   × f ′ (  f    −1  ( S   ∗ 𝔭 ( w i  ,  S   ∗ ) ) )  

   = 1 =   
 w i   (1 + τ)  [1 − 𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) ) ] 

    __________________________________  
 S   ∗  (1 + τ) 

   

 × f ′ (  f    −1  ( S   ∗  (1 + τ) 𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) ) ) ) 

 ≤   
 w i   [1 − 𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) ) ] 

   ___________________________  
 S   ∗ 

   

 × f ′ (  f    −1  ( S   ∗ 𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) ) ) ) , 

where the second equality follows from the definition of  𝔭 ( · ,  · )   and the inequality 
follows from Assumption 1. The above inequality, in turn, implies that  𝔭 ( w i   (1 + τ) ,  
 S   ∗  (1 + τ) )  ≤ 𝔭 ( w i  ,  S   ∗ )  . Therefore, we have that

(20)    ∑ 
i∈

  
 

    𝔭 ( w  i  ′ ,  S   ∗ )  ≥   ∑ 
i∈

  
 

    𝔭 ( w i  ,  S   ∗ )  = 1 ≥   ∑ 
i∈

  
 

    𝔭 ( w  i  ′ ,  S   ∗  (1 + τ) ) , 

where the first inequality follows from the fact that  𝔭 ( w i  ,  S   ∗ )   is increasing in   w i    and 
the second inequality follows from  𝔭 ( w i   (1 + τ) ,  S   ∗  (1 + τ) )  ≤ 𝔭 ( w i  ,  S   ∗ )   and that  
𝔭 ( w i  ,  S   ∗ )   is decreasing in   S   ∗  .

Denote the equilibrium bid profile and equilibrium winning probabilities in 
the absence of a bid cap under the profile of prize valuations  w′ ≡  ( w  1  ′  , …,  w  n  ′  )   
by   x   ∗′  ≡  ( x  1  

∗′ , …,  x  n  
∗′ )   and   p   ∗′  ≡  ( p  1  

∗′ , …,  p  n  
∗′ )  , respectively. Further, let   y  i  

∗′  ≔ 
f  ( x  i  

∗′ )   and define   S   ∗′  ≔  ∑ i=1  
n     y  i  

∗′  . It follows from (20) that

(21)   S   ∗  ≤  S   ∗′  ≤  S   ∗  (1 + τ) , 
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where the first inequality holds with equality if and only if  τ = 0 .
Note that for  i ≥ k + 1 , we have that

    
 y  i  

∗′ 
 ________ 

 ∑ j=1  
n     y  j  

∗′ 
   =  p  i  

∗′  = 𝔭 ( w  i  ′ ,  S   ∗′ )  = 𝔭 ( w i  ,  S   ∗′ )  ≤ 𝔭 ( w i  ,  S   ∗ )  =  p  i  
∗  =   

 y  i  
∗ 
 ______ 

 ∑ j=1  
n     y  j  

∗ 
  , 

where the inequality follows from (21) and the fact that  𝔭 ( w i  ,  S   ∗ )   is decreasing in   S   ∗  .
For  i ≤ k , we must have that   y  i  

∗′  ≥  y  i  
∗  . To see this, note that if   p  i  

∗′  ≥  p  i  
∗  , then   

y  i  
∗′  =  S   ∗′  p  i  

∗′  ≥  S   ∗  p  i  
∗  =  y  i  

∗  , where the inequality follows from the postulated   p  i  
∗′  ≥  

p  i  
∗   and (21). Otherwise, suppose   p  i  

∗′  <  p  i  
∗  . Then we have that

    
 w i   (1 −  p  i  

∗ ) 
 _ 

 S   ∗ 
    f ′ (  f    −1  ( S   ∗  p  i  

∗ ) )  = 1 ≥    
 w  i  ′  (1 −  p  i  

∗′ ) 
 ___________ 

 S   ∗′ 
     f ′ (  f    −1  ( S   ∗′  p  i  

∗′ ) ) 

 ≥   
 w i   (1 + τ)  (1 −  p  i  

∗ ) 
  ________________  

 S   ∗  (1 + τ) 
    f ′ (  f    −1  ( S   ∗′  p  i  

∗′ ) ) 

 =   
 w i   (1 −  p  i  

∗ ) 
 _ 

 S   ∗ 
    f ′ (  f    −1  ( S   ∗′  p  i  

∗′ ) ) , 

where the first equality follows from   p  i  
∗  > 0  and (18); the first inequality follows 

from (18) and (19); the second inequality follows from (21). Therefore, we must 
have that   S   ∗′  p  i  

∗′  ≥  S   ∗   p  i  
∗   by Assumption 1, which is equivalent to   y  i  

∗′  ≥  y  i  
∗  .

Applying Lemma 1 by taking  g =  f    −1   and considering    { y  i  
∗′ }   i=1  

n
    and    { y  i  

∗ }   i=1  
n   , we 

can obtain that

  X (w′)  =   ∑ 
i∈

  
 

     x  i  
∗′  =   ∑ 

i=1
  

n

      f    −1  ( y  i  
∗′ )  ≥   ∑ 

i=1
  

n

      f    −1  ( y  i  
∗ )  =   ∑ 

i∈
  

 

     x  i  
∗  = X (w) , 

where the inequality holds with equality if and only if  τ = 0 . This concludes the 
proof. ∎

Now we can prove the theorem. For notational convenience, denote   τ n+1   ≔ 0 .  
For each  k ∈  {1, 2, …, n}  , applying Lemma 2 by taking  τ =  ( τ k   −  τ k+1  ) / (1  
+  τ k+1  )   and  w =  ( v 1  / (1 +  τ k  ) , …,  v k  / (1 +  τ k  ) ,  v k+1  / (1 +  τ k+1  ) , …,  v n  / (1 + 
 τ n  ) )  , we can obtain that

       X (  
 v 1   _ 

1 +  τ k+1  
  , …,   

 v k+1   _ 
1 +  τ k+1  

  ,   
 v k+2   _ 

1 +  τ k+2  
  , …,   

 v n   _ 
1 +  τ n  

  )  

        ≥ X (  
 v 1   _ 

1 +  τ k  
  , …,   

 v k   _ 
1 +  τ k  

  ,   
 v k+1   _ 

1 +  τ k+1  
  , …,   

 v n   _ 
1 +  τ n  

  ) . 

Combining the above  n  inequalities, we can obtain that

  X ( v 1  , …,  v n  )  ≥ X (  
 v 1   _ 

1 +  τ 1  
  , …,   

 v n   _ 
1 +  τ n  

  ) . 
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Clearly, the above inequality holds with equality if and only if   τ 1   = ⋯ =  
τ n+1   = 0 , which implies that the optimum can only be achieved by imposing no 
cap on the contest. This completes the proof. ∎

Proof of Proposition 1.—

PROOF:
It is useful to first prove the following lemma, which enables us to reformulate the 

designer’s optimization problem for the case of  r < 1 .

LEMMA 3: Suppose that  λ ∈  [0, 1]   and  f  ( x i  )  =  x  i  
  r   with  r ∈  (0, 1)  . The opti-

mal piecewise constant tax schedule  ⟨ τ   ⋆ ,   𝐱–     ⋆ ⟩ ≡ ⟨ ( τ  1  
  ⋆ , …,  τ  n  

  ⋆ ) ,  (  x –   1  
 ⋆ , …,   x –   n  

 ⋆ ) ⟩  can be 
obtained via the following indirect approach. The designer first chooses the optimal 
equilibrium winning probability distribution, denoted by   𝐩   ⋆  ≡  ( p  1  

⋆ , …,  p  n  
⋆ )  , for the 

maximization problem

(22)   max  
 p   ∗ ∈

     (1 − λ) r   v n    ( p  n  
∗ )    1−  1 _ r    (1 −  p  n  

∗ )    ∑ 
i=1

  
n

      ( p  i  
∗ )      

1 _ r    

          + λ   ∑ 
i=1

  
n

      
ir   v i    p  i  

∗  (1 −  p  i  
∗ ) 
  ____________ 

  ( p  i  
∗ )      

1 _ r   
   [  ( p  i  

∗ )      
1 _ r    −   ( p  i+1  

∗  )      
1 _ r   ] , 

where

(23)   ≔  { p   ∗   |    p   ∗  ∈  Δ   n−1 ,  p  1  
∗  ≥ ⋯ ≥  p  n  

∗ , r   v 1    ( p  1  
∗ )    1−  1 _ r    (1 −  p  1  

∗ ) 

 ≥ ⋯ ≥ r   v n    ( p  n  
∗ )    1−  1 _ r    (1 −  p  n  

∗ ) } . 

The optimal piecewise constant tax rates   τ   ⋆  ≡  ( τ  1  
  ⋆ , …,  τ  n  

  ⋆ )   and caps    𝐱–     ⋆  ≡ 
 (  x –   1  

 ⋆ , …,   x –   n  
 ⋆ )   can then be recovered by

   τ  i  
  ⋆  =   

r   v i    p  i  
⋆  (1 −  p  i  

⋆ ) 
  ____________ 

  ( S   ⋆    p  i  
⋆ )      

1 _ r   
   − 1, i ∈  

and

    x –   i  
 ⋆  =  x  i  

⋆  =   ( S   ⋆    p  i  
⋆ )      

1 _ r   , i ∈ , 

where    ( S   ⋆ )      
1 _ r    = r   v n    p  n  

⋆  (1 −  p  n  
⋆ ) /  ( p  n  

⋆ )      
1 _ r    .

PROOF:
The proof consists of the following five steps.

Step 1: Note that all players would remain active in the equilibrium for all pos-
sible finite piecewise constant tax rates when  r < 1 . Consider a potential piece-
wise constant tax schedule  ⟨τ,  x –  ⟩ ≡ ⟨ ( τ 1  , …,  τ n  ) ,  (  x –  1  , …,   x –  n  ) ⟩ . By Corollary 1, the 
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equilibrium bidding profile   x   ∗   coincides with the profile of taxation cutoffs   x –   , which, 
in turn, implies

(24)    
∂  π i   _ ∂  x i  

   =   
r  p i   (1 −  p i  ) 

 _  x i      v i   −  (1 +  τ i  )  = 0, i ∈ . 

Step 2: By the specified contest success function (1), the equilibrium bidding 
profile   x   ∗   can be written as a function of the equilibrium winning probability distri-
bution   p   ∗  ≡  ( p  1  

∗ , …,  p  n  
∗ )   and the aggregate output   S   ∗  ≔  ∑ j∈  

 
      ( x  j  

∗ )    r  :

(25)   x  i  
∗  =   ( S   ∗    p  i  

∗ )      
1 _ r   , i ∈ . 

Combining equations (24) and (25), we can derive the set of marginal tax rates  τ ≡  

( τ 1  , …,  τ n  )   as

(26)   τ i   =   
r   v i    p  i  

∗  (1 −  p  i  
∗ ) 
  ____________ 

  ( S   ∗    p  i  
∗ )      

1 _ r   
   − 1, i ∈ . 

Step 3: The winning probability distribution and aggregate output in equilibrium,   

( p   ∗ ,  S   ∗ )  , must satisfy the following conditions:

(27)   p  1  
∗  ≥ ⋯ ≥  p  n  

∗  and   
r   v 1    p  1  

∗  (1 −  p  1  
∗ ) 
  ____________ 

  ( S   ∗    p  1  
∗ )      

1 _ r   
   ≥ ⋯ ≥   

r   v n    p  n  
∗  (1 −  p  n  

∗ ) 
  ____________ 

  ( S   ∗    p  n  
∗ )      

1 _ r   
   ≥ 1, 

where the first inequality follows from the observation that a stronger player 
must place a higher bid in equilibrium and the second inequality follows from 
the  first-order condition equation (7) and the assumption of progressive taxes   
τ 1   ≥ ⋯ ≥  τ n   ≥ 0 .

Step 4: Let   x  n+1  
∗   = 0 . The amount of tax that the designer is able to collect from 

Player  i  can be expressed as

    ∑ 
i=1

  
n

     ∫ 
0
  
 x  i  

∗  (t) 
   t (s) ds =   ∑ 

i=1
  

n

    i  τ i   ( x  i  
∗  −  x  i+1  

∗  ) . 

Define   p  n+1  
∗   = 0  for notational convenience. The above expression, together with 

equations (25) and (26), enables us to rewrite the objective function (3) and refor-
mulate the designer’s optimization problem as follows:

(28)   max  
 ( p   ∗ , S   ∗ ) ∈  S  

    (1 − λ)   ( S   ∗ )      
1 _ r      ∑ 

i=1
  

n

      ( p  i  
∗ )      

1 _ r    + λ   ∑ 
i=1

  
n

    
{

  
ir   v i    p  i  

∗  (1 −  p  i  
∗ ) 
  ____________ 

  ( p  i  
∗ )      

1 _ r   
   [  ( p  i  

∗ )      
1 _ r    −   ( p  i+1  

∗  )      
1 _ r   ] 

}
 , 

where the set    S    is defined as

       S   ≔  
{

 ( 𝒑   ∗ ,  S   ∗ )   |     𝒑   ∗  ∈  Δ   n−1 ,  p  1  
∗  ≥ ⋯ ≥  p  n  

∗ , 

   
r   v 1    p  1  

∗  (1 −  p  1  
∗ ) 
  ____________ 

  ( S   ∗    p  1  
∗ )      

1 _ r   
   ≥ ⋯ ≥   

r   v n    p  n  
∗  (1 −  p  n  

∗ ) 
  ____________ 

  ( S   ∗    p  n  
∗ )      

1 _ r   
   ≥ 1

}
 . 
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Step 5: Note that    ( S   ∗ )      
1 _ r    ≤ r   v n    p  n  

∗  (1 −  p  n  
∗ ) /  ( p  n  

∗ )      
1 _ r     by the constraints (27). Further, 

fixing a winning probability distribution   p   ∗  , the reformulated objective (28) strictly 
increases with   S   ∗   for  λ < 1 . Therefore, the contest objective can be maximized 
only if   S   ∗   is set to satisfy    ( S   ∗ )      

1 _ r    = r   v n    p  n  
∗  (1 −  p  n  

∗ ) /  ( p  n  
∗ )      

1 _ r    . For  λ = 1 , the reformu-
lated contest objective (28) is independent of   S   ∗  . It is evident that the maximum can 
again be achieved by setting    ( S   ∗ )      

1 _ r    = r   v n    p  n  
∗  (1 −  p  n  

∗ ) /  ( p  n  
∗ )      

1 _ r    .
From the above analysis, we can further reformulate the objective func-

tion (28) to eliminate   S   ∗  . Note that the choice set    defined in (23) is com-
pact and the reformulated objective (22) is continuous in  p ∈  . As a result, 
a maximizer of the above optimization problem exists. This completes the  
proof. ∎

Now we can prove Proposition 1. For  r < 1 , by the argument in Step 5, we have 
that    ( S   ⋆ )      

1 _ r    = r   v n    p  n  
⋆  (1 −  p  n  

⋆ ) /  ( p  n  
⋆ )      

1 _ r    , which implies that   τ  n  
  ⋆  = 0 .

For  r = 1 , suppose that  κ  players remain active in the optimal contest, i.e.,   
p κ+1   = ⋯ =  p  n  

∗  = 0 . Similar to the analysis in Lemma 3, the designer’s prob-
lem can be reformulated as follows:

    max  
 ( p   ∗ , S   ∗ ) ∈  S  

    (1 − λ)  S   ∗    ∑ 
i=1

  
n

     p  i  
∗  + λ   ∑ 

i=1
  

n

    {ir   v i   (1 −  p  i  
∗ )  [ ( p  i  

∗ )  −  ( p  i+1  
∗  ) ] } , 

where the set    S    is defined as

    S   ≔  { ( p   ∗ ,  S   ∗ )   |     p   ∗  ∈  Δ   n−1 ,  p  1  
∗  ≥ ⋯ ≥  p  κ  ∗   ≥  p  κ+1  

∗   = ⋯ =  p  n  
∗  = 0,

   
r   v 1   (1 −  p  1  

∗ ) 
 ___________ 

 S   ∗ 
   ≥ ⋯ ≥   

r   v κ   (1 −  p  κ  ∗  ) 
 ___________ 

 S   ∗ 
   ≥ 1 ≥   

r   v κ+1   _ 
 S   ∗ 

  } . 

It is evident that the optimum requires that    
r   v κ   (1 −  p  κ  ∗  ) 

 _ 
 S   ∗ 

   = 1 , which implies that   
τ  κ    ⋆  = 0 . This concludes the proof. ∎

Appendix B. Analysis and Additional Results of Tullock Contests  
with  r ∈  (1, 2]  

B1. Preliminary Analysis

We consider a case in which the impact function is moderately convex—with  r ∈  

(1, 2]  —which alludes to a more discriminatory  winner-selection mechanism than in 
our baseline setting. The literature has yet to characterize the equilibrium under bid 
caps. We first obtain the following lemma, which, in parallel to Theorem 2, greatly 
simplifies our search for the optimum without fully characterizing the equilibria for 
all eligible bid caps  t ( · )  ∈  .
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LEMMA 4 (Optimality of  Two-Part Tax Schedules): Suppose that  n = 2  and  
r ∈  (1, 2]  . The optimum can be achieved by a bid cap scheme  t ( · )   that takes the  
form of

(29)  t (x)  =   {   
0,

  
if x ≤  x – ;

   τ,
  

if x >  x – .   

PROOF:
A mixed strategy for Player  i ∈  {1, 2}   is a probability measure   μ i    on the interval   

[0,  v i  ]  . For any measurable set   𝔛 i   ⊆  [0,  v i  ]  ,   μ i   ( 𝔛 i  )   specifies the probability that the 
bid realization chosen by Player  i  is contained in   𝔛 i   . Pure strategies can be consid-
ered as degenerate probability measures. The support of Player  i ’s mixed strategy is 
denoted by  supp ( μ i  )  , and players’ equilibrium bidding strategies under a tax sched-
ule  t ( · )   are denoted by   ( μ  1  

∗ ,  μ  2  
∗ )  . We use   μ −i    and   x −i    to denote the strategy and bid 

of Player  i ’s opponent, respectively.
The proof proceeds in five steps. We first show in Lemma 6 that one player   

i H   ∈  {1, 2}   would employ a pure strategy in equilibrium and the bid, which 
we denote by   X   i H    

∗   , is higher than all of his opponent’s possible bids; i.e.,   X   i H    
∗   ≥ 

 max  x − i H    ∈supp ( μ  − i H    
∗  )    { x − i H    }  ≕  X  − i H    

∗   . Second, we show in Lemma 7 that Player   i H    is the 
stronger player; i.e.,   i H   = 1 . Third, we construct a tax schedule   t ̌   ( · )   in Lemma 8 
that induces a  pure-strategy equilibrium   ( x  1  

∗ ,  x  2  
∗ )  =  ( X  1  

∗ ,  X  2  
∗ )   and generates more 

aggregate bid and tax revenue than the equilibrium   ( μ  1  
∗ ,  μ  2  

∗ )   under the tax schedule  
t ( · )  . Fourth, we construct a  two-part tax schedule   t ̆   ( · )   to replicate the equilibrium 
bid profile and tax revenue under   t ̌   ( · )  . Last, we construct a  two-part tax schedule 
with zero marginal tax rate for the minimum tax bracket to further improve the con-
test performance.

Step 1: We show that at least one player uses a pure strategy in equilibrium. 
Recall that bidding   x i   >  v i    is strictly dominated by bidding   x i   = 0;  thus,  
 supp ( μ  i  

∗ )  ⊆  [0,  v i  ]  . Let

   i H   ≔  arg max  
i∈ {1,2} 

      max  
 x i  ∈supp ( μ  i  

∗ ) 
   { x i  } . 

In the case of   max  x 1  ∈supp ( μ  1  
∗ )    { x 1  }  =  max  x 2  ∈supp ( μ  2  

∗ )    { x 2  }  , we set   i H   = 1 . Next, define   
X  i  

∗  ≔  max  x i  ∈supp ( μ  i  
∗ )    { x i  }  .

Because   X   i H    
∗   ∈ supp ( μ   i H    

∗  )  , we can obtain the following  first-order condition:

  1 +   lim  
x ↗   X   i H    

∗  
  t (x)  ≤  E  μ  − i H    

∗     
[

  
r   v  i H      ( X   i H    

∗  )    r−1   ( x − i H    )    r 
  _________________  

  [  ( X   i H    
∗  )    r  +   ( x − i H    )    r ]    

2
 
  
]

  ≤ 1 +   lim  
x↘ X   i H    

∗  
  t (x) , 

where we use the notation   E  μ  − i H    
∗     [ · ]   to denote the expectation under   μ  − i H    

∗   . Let

(30)   τ  i H     ≔  E  μ  − i H    
∗     

[
  
r   v  i H      ( X   i H    

∗  )    r−1   ( x − i H    )    r 
  _________________  

  [  ( X   i H    
∗  )    r  +   ( x − i H    )    r ]    

2
 
  
]

  − 1, 
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and consider the following auxiliary function

(31)  ψ (x)  ≔  E  μ  − i H    
∗     [  

 v  i H      (x)    r 
 ____________  

  (x)    r  +   ( x − i H    )    r 
  ]  −  (1 +  τ  i H    ) x. 

In words,  ψ (x)   is Player   i H   ’s expected payoff given his opponent’s strategy   μ  − i H    
∗    and 

that the marginal tax rate is constant and is equal to   τ  i H     . By construction, we have 
that  ψ′ ( X   i H    

∗  )  = 0 .

LEMMA 5:  ψ ( X   i H    
∗  )  > ψ (x)   for all  x ∈  (0,  X   i H    

∗  )   and  ψ ( X   i H    
∗  )  ≥ ψ (0)  .

PROOF:
We first show that  ψ ( X   i H    

∗  )  ≥ ψ (0)  . In fact, we have that

  ψ (0)  = 0 =  X   i H    
∗   ψ′ ( X   i H    

∗  )  

  =  E  μ  − i H    
∗     

[
  

r   v  i H      ( X   i H    
∗  )    r   ( x − i H    )    r 

  ________________  
  [  ( X   i H    

∗  )    r  +   ( x − i H    )    r ]    
2
 
  
]

  −  (1 +  τ  i H    )  X   i H    
∗   

  ≤ r   v  i H     ×  E  μ  − i H    
∗     [  

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  ×  E  μ  − i H    
∗     [1 −   

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  

 −  (1 +  τ  i H    )  X   i H    
∗   

  ≤   
r   v  i H    

 _ 
2
   ×  E  μ  − i H    

∗     [  
  ( X   i H    

∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  (1 +  τ  i H    )  X   i H    
∗   

  ≤  v  i H     ×  E  μ  − i H    
∗     [  

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  (1 +  τ  i H    )  X   i H    
∗   

  = ψ ( X   i H    
∗  ) , 

where the second equality follows from  ψ′ ( X   i H    
∗  )  = 0 , the first inequality follows 

from the strict concavity of the function  z (1 − z)  , the second inequality follows 
from the fact that   X   i H    

∗   ≥  x − i H      for all   x − i H     ∈ supp ( μ  − i H    
∗  )  , and the third inequality 

follows from  r ≤ 2 . Moreover, it is straightforward to see that  ψ (0)  = ψ ( X   i H    
∗  )  

; i.e., all of the above equalities hold with equality, if and only if player  − i H    uses a 
pure strategy,   X   i H    

∗   =  max  x − i H    ∈supp ( μ  − i H    
∗  )    { x − i H    }  ≡  X  − i H    

∗   , and  r = 2 .
To prove the lemma, it suffices to show that  ψ ( X   i H    

∗  )  > ψ (x)   for all  x ∈  (0,  X   i H    
∗  )   

such that  ψ′ (x)  = 0 . It follows from (30) that

   v  i H     ×  E  μ  − i H    
∗     

[
  

r  ( X   i H    
∗  )    r   ( x − i H    )    r 

  ________________  
  [  ( X   i H    

∗  )    r  +   ( x − i H    )    r ]    
2
 
  
]

  =  (1 +  τ  i H    )  X   i H    
∗  . 
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The above equation, together with (31), implies that

(32)  ψ ( X   i H    
∗  )  =  v  i H     ×  E  μ  − i H    

∗     [  
  ( X   i H    

∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  (1 +  τ  i H    )  X   i H    
∗   

  =  v  i H     ×  E  μ  − i H    
∗     [  

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  E  μ  − i H    
∗     

[
  

r   v  i H      ( X   i H    
∗  )    r   ( x − i H    )    r 

  ________________  
  [  ( X   i H    

∗  )    r  +   ( x − i H    )    r ]    
2
 
  
]

  

  =  v  i H     ×  E  μ  − i H    
∗     [p ( X   i H    

∗  ;  x − i H    )  ×  {1 − r [1 − p ( X   i H    
∗  ;  x − i H    ) ] } ] , 

where  p ( · ;  · )   is defined as

(33)  p (x;  x − i H    )  ≔   
  (x)    r 
 ____________  

  (x)    r  +   ( x − i H    )    r 
  . 

Analogously, it follows from  ψ′ (x)  = 0  that

(34)  ψ (x)  =  v  i H     ×  E  μ  − i H    
∗     [p (x;  x − i H    )  ×  {1 − r [1 − p (x;  x − i H    ) ] } ] . 

It is evident that  p ( X   i H    
∗  ;  x − i H    )  ≥ 1/2  for   x − i H     ∈ supp ( μ  − i H    

∗  )   and  p ( X   i H    
∗  ;  x − i H    )  >  

p (x;  x − i H    )   for  x <  X   i H    
∗   . Together with (32) and (34), we can obtain that

  ψ ( X   i H    
∗  )  =  v  i H     ×  E  μ  − i H    

∗     [p ( X   i H    
∗  ;  x − i H    )  ×  {1 − r [1 − p ( X   i H    

∗  ;  x − i H    ) ] } ]  

  >  v  i H     ×  E  μ  − i H    
∗     [p (x;  x − i H    )  ×  {1 − r [1 − p (x;  x − i H    ) ] } ]  

  = ψ (x) , for all x ∈  (0,  X   i H    
∗  ) , 

where the inequality follows from the fact that  p [1 − r (1 − p) ]  > p′ [1 − r (1 − 
p′) ]   for  r ∈  (1, 2]   if  p > p′  and  p ≥ 1/2 . This concludes the proof. ∎

LEMMA 6: Player   i H    would use a pure strategy in equilibrium; i.e.,  supp ( μ   i H    
∗  )  =  

 { X   i H    
∗  }  . Moreover,   X   i H    

∗   ≥  X  − i H    
∗   .

PROOF:
Recall that   X   i H    

∗    is Player   i H   ’s maximum bid in equilibrium; thus, it suffices to 
show that Player   i H    will not place a bid that is strictly below   X   i H    

∗   . Denote Player  i ’s 
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expected payoff of placing a bid   x i    under  t ( · )   given his opponent’s strategy   μ −i    by   
Π i   ( x i  ;  μ −i  )  . Then, we can obtain that

    Π  i H     ( X   i H    
∗  ;  μ  − i H    

∗  )  −  Π  i H     (x;  μ  − i H    
∗  )  

  =  v  i H     ×  E  μ  − i H    
∗     [  

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  v  i H     ×  E  μ  − i H    
∗     [  

  (x)    r 
 ____________  

  (x)    r  +   ( x − i H    )    r 
  ]  

 −  ∫ 
x
  
 X   i H    

∗  
   [1 + t (s) ] ds 

  ≥  v  i H     ×  E  μ  − i H    
∗     [  

  ( X   i H    
∗  )    r 
 ______________  

  ( X   i H    
∗  )    r  +   ( x − i H    )    r 

  ]  −  v  i H     ×  E  μ  − i H    
∗     [  

  (x)    r 
 ____________  

  (x)    r  +   ( x − i H    )    r 
  ]  

 −  ( X   i H    
∗   − x)  (1 +  τ  i H    )  

  = ψ ( X   i H    
∗  )  − ψ (x)  ≥ 0, 

where the first inequality follows from the fact that  t (s)  ≤  
lim x ↗   X   i H    

∗     t (x)  ≤  τ  i H      for all  s ∈  (x,  X   i H    
∗  )   and the second inequality follows from  

Lemma 5.
From the above analysis, we know that Player   i H    can only randomize between 

0 and   X   i H    
∗    in the equilibrium. If all of the above equalities hold with equality, then  

 ψ ( X   i H    
∗  )  = ψ (0)  , which implies that Player  − i H    must use a pure strategy and   X   i H    

∗   =  
X  − i H    

∗    from the proof of Lemma 5. In that case, we can simply relabel Player  − i H    as   
i H   . This concludes the proof. ∎

Step 2: We show that the stronger player always uses a pure strategy in  
equilibrium.

LEMMA 7: Player 1 is the one that uses a pure strategy; i.e.,   i H   = 1 .

PROOF:
Recall by definition that   X   i H    

∗   ≥  max  x − i H    ∈supp ( μ  − i H    
∗  )    { x − i H    }  ≡  X  − i H    

∗   . We consider the 
following two cases:

Case I:   X   i H    
∗   >  X  − i H    

∗   . It follows immediately from (33) that

(35)  p ( X   i H    
∗  ;  x − i H    )  ≥ p ( X   i H    

∗  ;  X  − i H    
∗  )  >   1 _ 

2
  , for all  x − i H     ∈ supp ( μ  − i H    

∗  ) . 
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Moreover, we can obtain that

(36)   v  i H     =   
 (1 +  τ  i H    )  X   i H    

∗  
 ___________ r   ×   

{
 E  μ  − i H    

∗     
[

  
  ( X   i H    

∗  )    r   ( x − i H    )    r 
  ________________  

  [  ( X   i H    
∗  )    r  +   ( x − i H    )    r ]    

2
 
  
]

 
}

    

−1

  

  =   
 (1 +  τ  i H    )  X   i H    

∗  
 ___________ r   ×   { E  μ  − i H    

∗     [p ( X   i H    
∗  ;  x − i H    )  [1 − p ( X   i H    

∗  ;  x − i H    ) ] ] }    
−1

  

  ≥   
 (1 +  τ  i H    )  X   i H    

∗  
 ___________ r   ×   {p ( X   i H    

∗  ;  X  − i H    
∗  )  [1 − p ( X   i H    

∗  ;  X  − i H    
∗  ) ] }    

−1
  

  >   
 [1 +  lim x↘ X  − i H    

∗     t (x) ]  X  − i H    
∗  
  ____________________ r   ×   {p ( X   i H    

∗  ;  X  − i H    
∗  )  [1 − p ( X   i H    

∗  ;  X  − i H    
∗  ) ] }    

−1
  

  ≥  v − i H    , 

where the first equality follows from the rearrangement of the  first-order condition 
(30), the first inequality follows from (35) and the fact that  p (1 − p)   decreases with  
p  if  p > 1/2 , the second inequality follows from the fact that   X   i H    

∗   >  X  − i H    
∗   , and the 

last inequality follows from the  first-order condition of Player  − i H   . Therefore, we 
must have that   v  i H     >  v − i H     , which implies that   i H   = 1 .

Case II:   X   i H    
∗   =  X  − i H    

∗   . From the proof of Lemmata 5 and 6, we know that Player  
− i H    either chooses a pure strategy or randomizes between zero and   X  − i H    

∗   . If Player  
− i H    chooses a pure strategy, then both players choose pure strategies; thus, Player 
1 uses a pure strategy. Otherwise, it must be the case that Player  − i H    is indifferent 
between bidding zero, which generates an expected payoff of zero regardless of the 
tax schedule, and bidding   X  − i H    

∗   . As a result, we can obtain that

  0 =  v − i H     × p ( X  − i H    
∗  ;  X   i H    

∗  )  −  ∫ 
0
  
 X  − i H    

∗  
   [1 + t (s) ] ds 

  ≥  v − i H     × p ( X  − i H    
∗  ;  X   i H    

∗  )  −  [1 +  lim x ↗   X  − i H    
∗     t (x) ]  X  − i H    

∗  , 

which, in turn, implies that

(37)   v − i H     ≤   [p ( X  − i H    
∗  ;  X   i H    

∗  ) ]    
−1

  ×  [1 +  lim x ↗   X  − i H    
∗     t (x) ]  X  − i H    

∗   

 = 2 [1 +  lim x ↗   X  − i H    
∗     t (x) ]  X  − i H    

∗  , 

where the last equality follows from the postulated   X   i H    
∗   =  X  − i H    

∗   .
Therefore, we have that

   v  i H     =   
 (1 +  τ  i H    )  X   i H    

∗  
 ___________ r   ×   { E  μ  − i H    

∗     [p ( X   i H    
∗  ;  x − i H    )  [1 − p ( X   i H    

∗  ;  x − i H    ) ] ] }    
−1

  

  ≥   
4 (1 +  τ  i H    )  X   i H    

∗  
  ____________ r   

  ≥ 2 [1 +  lim x ↗   X  − i H    
∗     t (x) ]  X  − i H    

∗   ≥  v − i H    , 
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where the first equality follows from (36); the second inequality follows from  r ≤ 2 ,  
  lim x ↗   X  − i H    

∗     t (x)  ≤  τ  i H     , and the postulated   X   i H    
∗   =  X  − i H    

∗   ; and the third inequality fol-
lows from (37). Therefore, we have that   i H   = 1 . This completes the proof. ∎

Step 3: From Steps 1 and 2, fixing a tax schedule  t ( · )  , we know that Player 1 
would employ a pure strategy   X  1  

∗   and   X  1  
∗  ≥  X  2  

∗   in an equilibrium   ( μ  1  
∗ ,  μ  2  

∗ )  . Consider 
the following tax schedule:

(38)   t ̌   (x)  ≔   
{

   
t (x) ,

  
if x <  X  1  

∗ ;
     

  
r   v 1   _ 
 X  1  

∗ 
   × p ( X  1  

∗ ;  X  2  
* )  [1 − p ( X  1  

∗ ;  X  2  
* ) ]  − 1,

  
if x ≥  X  1  

∗ .   

The following result can then be obtained.

LEMMA 8: Consider the tax schedule   t ̌   (x)   specified in (38). There exists a 
 pure-strategy equilibrium in which Player 1 bids   X  1  

∗   and Player 2 bids   X  2  
∗  .

PROOF:
Clearly, bidding   X  2  

∗   is optimal to Player 2 under the constructed tax schedule   t ̌   ( · )   
given that Player 1 bids   X  1  

∗   with certainty because   t ̌   (x)  = t (x)   for  x <  X  1  
∗  ; it thus 

remains to examine Player 1’s incentive.
By the same argument used in Lemma 6, we can show that   π 1   ( x 1  ,  X  2  

∗ )  ≤  π 1   ( X  1  
∗ ,  

X  2  
∗ )   for all   x 1   ∈  [0,  X  1  

∗ )  . Moreover, fixing   x 2   =  X  2  
∗  , the first derivative of Player 1’s 

expected payoff with respect to his bid   x 1    is given by

    lim  
 x 1   ↗   X  1  

∗ 
     
∂  π 1   ( x 1  ,  X  2  

∗ ) 
 _ ∂  x 1  

   =   
r   v 1   _ 
 X  1  

∗ 
   × p ( X  1  

∗ ;  X  2  
∗ )  [1 − p ( X  1  

∗ ;  X  2  
∗ ) ]  −  [1 +   lim  

 x 1   ↗   X  1  
∗ 
   t ( x 1  ) ]  

  ≥   
r   v 1   _ 
 X  1  

∗ 
   ×  E  μ  2  

∗    [p ( X  1  
∗ ;  x 2  )  [1 − p ( X  1  

∗ ;  x 2  ) ] ]  − 1 −  τ 1   = 0, 

where the first equality follows from (36); the inequality follows from the fact that  
p ( X  1  

∗ ;  x 2  )   is strictly decreasing in   x 2    and is greater than  1/2  for all   x 2   ∈ supp ( μ  2  
∗ )  

; and the last equality follows from (31). Therefore, Player 1 has no strict incentive 
to place a bid that is strictly less than   X  1  

∗  , and it remains to show that bidding   x 1   >  
X  1  

∗   is suboptimal to Player 1.
Note that Player 1’s expected payoff is twice differentiable for   x 1   >  X  1  

∗  . Carrying 
out the algebra, we have that

    
 ∂    2   π 1   ( x 1  ,  X  2  

* ) 
 ___________ 

∂  x  1  
2 
   =   

r   v 1    ( x 1  )    r−2   ( X  2  
∗ )    r 
  ______________  

  [  ( x 1  )    r  +   ( X  2  
∗ )    r ]    

3
 
   ×  [ (r − 1)   ( X  2  

∗ )    r  −  (r + 1)   ( x 1  )    r ]  

  <   
r   v 1    ( x 1  )    r−2   ( X  2  

∗ )    r 
  ______________  

  [  ( x 1  )    r  +   ( X  2  
∗ )    r ]    

3
 
   ×  (r − 1)  ×  [  ( X  2  

∗ )    r  −   ( x 1  )    r ]  

 < 0, for all  x 1   >  X  1  
∗ . 
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Note that   lim  x 1  ↘   X  1  
*      
∂  π 1   ( x 1  ,  X  2  

∗ ) 
 _ ∂  x 1  

   = 0  by our construction of the tax schedule   t ̌   ( · )  . 
Together with the above condition, we know that that   π 1   ( x 1  ,  X  2  

∗ )   is strictly decreas-
ing in   x 1    for   x 1   ∈  ( X  1  

∗ , +∞)  . Therefore, bidding   X  1  
∗   is optimal to Player 1 under the 

tax schedule   t ̌   ( · )   given that Player 2 bids   X  2  
∗  . This concludes the proof. ∎

Step 4: Next, we construct a  two-part tax schedule   t ̆   ( · )   to induce the bid profile   

( X  1  
∗ ,  X  2  

∗ )  . Specifically, let    τ ˘   2   ≔  [ ∫ 
0
  
 X  2  

∗ 
    t ̌   (s) ds] / X  2  

∗   and    τ ˘   1   ≔  t ̌   ( X  1  
∗ )   and consider the 

following  two-part tax schedule:

   t ̆   (x)  ≔   {   
  τ ˘   2  ,  

if x ≤  X  2  
∗ ;

   
  τ ˘   1  ,

  
if x >  X  2  

∗ .
   

It is straightforward to verify that

   ∫ 
0
  
x
   [1 +  t ̆   (s) ] ds ≥  ∫ 

0
  
x
   [1 +  t ̌   (s) ] ds, for all x ∈  [0,  X  1  

∗ ] , 

where the inequality holds with equality at  x =  X  2  
∗  . Therefore, given that Player 1’s  

bid is   X  1  
∗  , Player 2’s expected payoff under   t ̆   ( · )   is weakly less than that under   t ̌   ( · )  ,  

and his expected payoff at   ( X  1  
∗ ,  X  2  

∗ )   under   t ̆   ( · )   coincides with that under 
  t ̌   ( · )  . Therefore, Player 2 has no strict incentive to deviate from   X  2  

∗   when Player 1 
chooses   x 1   =  X  1  

∗  .
For Player 1, note that the  first-order condition (38) is satisfied at   x 1   =  X  1  

∗   under   
t ̆   ( · )  . By the same argument used in the proof of Lemma 6, we can show that Player 
1 has no strict incentive to choose a bid below   X  1  

∗  . Moreover, Player 1’s equilibrium 
behavior is governed by the  first-order condition, and his marginal cost remains 
unchanged when we switch from   t ̌   ( · )   to   t ̆   ( · )  , implying that Player 1 has no 
strict incentive to place a bid that is greater than   X  1  

∗  . Therefore,   ( X  1  
∗ ,  X  2  

∗ )   also consti-
tutes an equilibrium under the constructed  two-part tax schedule   t ̆   ( · )  .

Step 5: Last, we construct a  two-part tax schedule   t ̃   ( · )   with zero marginal tax 
rate for the minimum bracket that outperforms   t ̆   ( · )  . Specifically, let

   t ̃   (x)  =   {   
0,

  
if x ≤  (1 +   τ ˘   2  )  X  2  

∗ ;
     

 (  τ ˘   1   −   τ ˘   2  ) / (1 +   τ ˘   2  ) ,
  

if x >  (1 +   τ ˘   2  )  X  2  
∗ .

   

It can be verified that the bid profile   ( (1 +   τ ˘   2  )  X  1  
∗ ,  (1 +   τ ˘   2  )  X  2  

∗ )   constitutes an equi-
librium under   t ̃   ( · )  , which generates a larger aggregate bid amount than that under   
t ̆   ( · )  . Further, the equilibrium aggregate bidding cost under   t ̃   ( · )   is   (1 +   τ ˘   2  )  ( X  1  

∗  +  
X  2  

∗ )  +  (  τ ˘   1   −   τ ˘   2  )  ( X  1  
∗  −  X  2  

∗ )  , which is the same as that under   t ̆   ( · )  . Note that the 
designer’s objective function can be rewritten as a convex combination between 
the aggregate bid and the aggregate bidding cost by (9). Therefore, the tax schedule  
  t ̃   ( · )   generates a higher payoff to the designer than   t ̆   ( · )   does. This completes the 
proof. ∎

By Lemma 4, a candidate optimal bid cap is fully defined by a tuple   (τ,  x – )  . We are 
now ready to characterize the equilibria under an arbitrary   (τ,  x – )  .
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LEMMA 9 (Equilibrium in  Two-Player Contests with Bid Caps): Consider a 
 two-player Tullock contest with  r ∈  (1, 2]  . Fix an arbitrary  two-part tax schedule  
 t ( · )   in the form of (29), as defined in Lemma 4. Whenever an equilibrium exists, it 
must take one of the following forms:

 (i) a  pure-strategy equilibrium with a unique bid profile   ( x  1  
∗ ,  x  2  

∗ )  .

 (ii) a  semi-mixed equilibrium in which Player 1 chooses   x  1  
∗   and Player 2 ran-

domizes between zero and   x  2  
∗  . In case multiple equilibria exist, they share 

the same support and only differ in the probabilities of Player 2’s remaining 
inactive.

 (iii) a  semi-mixed equilibrium in which Player 1 chooses   x  1  
∗   and Player 2 random-

izes between zero,   x  2L  ∗   , and   x  2H  ∗   , with  0 <  x  2L  ∗   <  x  2H  ∗   . In case multiple equi-
libria exist, they share the same support and only differ in the probabilities of 
Player 2’s choosing each bid level.

PROOF:
Consider an arbitrary equilibrium   ( μ  1  

∗ ,  μ  2  
∗ )  . By Lemmata 6 and 7, Player 1 always 

employs a pure strategy in equilibrium. A closer look at Player 2’s expected payoff 
enables us to conclude that Player 2 can randomize between zero and at most two 
positive bids. More formally, the following lemma can be established.

LEMMA 10: Suppose that  r ∈  (1, 2]  , and consider a  two-part tax schedule in the 
form of (29). Fixing Player 1’s bid   x 1   > 0 , Player 2’s expected payoff

   π 2   ( x 2  )  =   
 v 2    ( x 2  )    r 

 ___________  
  ( x 1  )    r  +   ( x 2  )    r 

   −  ∫ 
0
  
 x 2  

   [1 + t (s) ] ds 

has at most two positive local maxima.

PROOF:
Note that   π 2   ( · )   is differentiable on   (0,  x – )   and   ( x – , +∞)  . Carrying out the algebra, 

we have that

   π  2  ′   ( x 2  )  =   

⎧

 
⎪

 ⎨ 

⎪
 

⎩

   

  
r   v 2     ( x 1  )    r   ( x 2  )    r−1 

  ______________  
  [  ( x 1  )    r  +   ( x 2  )    r ]    

2
 
   − 1,

  

if  x 2   <  x – ;

    

  
r   v 2    ( x 1  )    r   ( x 2  )    r−1 

  ______________  
  [  ( x 1  )    r  +   ( x 2  )    r ]    

2
 
   − 1 − τ,

  

if  x 2   >  x – .
   

It can be verified that

  h ( x 2  )  ≔   
r   v 2    ( x 1  )    r    ( x 2  )    r−1 

  ______________  
  [  ( x 1  )    r  +   ( x 2  )    r ]    

2
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increases with   x 2    on   (0,   [ (r − 1) / (r + 1) ]    
1/r

   x 1  )   and decreases with   x 2    on   

(  [ (r − 1) / (r + 1) ]    
1/r

   x 1  , +∞)  , which implies that there exist at most three solu-
tions to   π  2  ′   ( x 2  )  = 0 . Therefore,   π 2   ( x 2  )   has at most two positive local maxima. This 
concludes the proof. ∎

The next lemma, which is essentially the same as Lemma A.1 in Ewerhart 
(2017), demonstrates that all equilibria must share the same support. The proof is a 
 straightforward adaptation of an argument detailed in Klumpp and Polborn (2006) 
and is presented below with the notations in our paper.

LEMMA 11: Consider a  two-player contest with an arbitrary tax schedule  t ( · )  . 
Suppose that   ( μ  1  

∗ ,  μ  2  
∗ )   and   ( μ  1  

∗∗ ,  μ  2  
∗∗ )   are ( mixed-strategy) equilibria of the contest 

game. Then,   ( μ  1  
∗ ,  μ  2  

∗∗ )   and   ( μ  1  
∗∗ ,  μ  2  

∗ )   are equilibria as well.

PROOF:
Recall that   p i   ( x 1  ,  x 2  )   is Player  i ’s winning probability given the bid profile   ( x 1  ,  x 2  )  .  

For notational convenience, fixing a  mixed-strategy   ( μ 1  ,  μ 2  )  , denote Player  i ’s  
ex ante winning probability by  E [ p i   ( x 1  ,  x 2  )  |  μ 1  ,  μ 2  ]   and his expected cost by  
 E [c ( x i  )  |  μ i  ]  .

Because   ( μ  1  
∗ ,  μ  2  

∗ )   and   ( μ  1  
∗∗ ,  μ  2  

∗∗ )   are equilibria, we have that

(39)   v 1   × E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  − E [c ( x 1  )  |  μ  1  
∗ ]  ≥  v 1   × E [ p 1   ( x 1  ,  x 2  )  |  μ  1  

∗∗ ,  μ  2  
∗ ]  

 − E [c ( x 1  )  |  μ  1  
∗∗ ] , 

(40)   v 1   × E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  − E [c ( x 1  )  |  μ  1  
∗∗ ]  ≥  v 1   × E [ p 1   ( x 1  ,  x 2  )  |  μ  1  

∗ ,  μ  2  
∗∗ ]  

 − E [c ( x 1  )  |  μ  1  
∗ ] , 

(41)   v 2   × E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  − E [c ( x 2  )  |  μ  2  
∗ ]  ≥  v 2   × E [ p 2   ( x 1  ,  x 2  )  |  μ  1  

∗ ,  μ  2  
∗∗ ]  

 − E [c ( x 2  )  |  μ  2  
∗∗ ] , 

(42)   v 2   × E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  − E [c ( x 2  )  |  μ  2  
∗∗ ]  ≥  v 2   × E [ p 2   ( x 1  ,  x 2  )  |  μ  1  

∗∗ ,  μ  2  ∗ ]  

 − E [c ( x 2  )  |  μ  2  
∗ ] . 

Summing up (39) and (40), we can obtain that

(43)  E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  + E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  ≥ E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗ ]  

 + E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗∗ ] . 
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Similarly, summing up (41) and (42), we can obtain that

(44)  E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  ≥ E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗∗ ]  

 + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗ ] . 

Note that

       E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  + E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  

        + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗ ]  + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗∗ ]  = 2, 

       E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗ ]  + E [ p 1   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗∗ ]  

        + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗ ,  μ  2  

∗∗ ]  + E [ p 2   ( x 1  ,  x 2  )  |  μ  1  
∗∗ ,  μ  2  

∗ ]  = 2. 

Therefore, the inequalities in (43) and (44) must hold with equality, which, in turn, 
implies that the inequalities in (39)–(42) must hold with equality, as well. Therefore,   

( μ  1  
∗ ,  μ  2  

∗∗ )   and   ( μ  1  
∗∗ ,  μ  2  

∗ )   are equilibria of the contest game. ∎

By Lemma 11, we can conclude that the equilibrium is unique if it is in pure strat-
egy and that all equilibria share the same support if there exist multiple  semi-mixed 
equilibria. This completes the proof. ∎

Lemma 9 shows that one of the three cases would emerge in the equilibrium 
when a  two-part bid cap   (τ,  x – )   is imposed. As previously mentioned, the equilibrium 
in a  two-player contest without bid caps is unique for  r ∈  (1, 2]  . Bid caps alter 
equilibrium plays substantially and could cause multiple equilibria. In what follows, 
we assume that the equilibrium most favorable to the designer is selected whenever 
multiple equilibria exist. It is noteworthy that equilibrium selection is not essential 
for contest design because the optimum can always be achieved by a flexible tax 
schedule that leads to a unique equilibrium, as pointed out in Footnotes 21 and 22 
in the main text.

B2. Proof of Proposition 2

PROOF:
By Lemma 4, the optimum can be achieved via a  two-part bid cap in the form of

   t   ⋆  (x)  =   {   
0,

  
if x ≤   x –     ⋆ ;

   
 τ     ⋆ ,

  
if x >   x –     ⋆ .

   

Note that step 3 in the proof of Lemma 4 suggests that the selected equilibrium in 
the optimum must be in pure strategy, which we denote by   ( x  1  

⋆ ,  x  2  
⋆ )  . Moreover, steps 

4 and 5 in the proof of Lemma 4 imply that    x –     ⋆  =  x  2  
⋆  .

It is useful to first prove an intermediate result.
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LEMMA 12: Suppose that  n = 2 ,  r ∈  (1, 2]  , and no cap is suboptimal. Then,   
x  1  

⋆  >  x  2  
⋆  .

PROOF:
Note that   x  1  

⋆  ≥  x  2  
⋆   by Lemmata 6 and 7. Suppose, to the contrary, that   x  1  

⋆  =  x  2  
⋆  . 

The  first-order condition for Player 2 implies that

(45)  r   v 2    p 1   ( x  1  
⋆ ,  x  2  

⋆ )  p 2   ( x  1  
⋆ ,  x  2  

⋆ )  ≥  x  2  
⋆ . 

We consider the following two cases:

Case I: The inequality in (45) is strict. Then, the designer can further increase 
the contest performance by increasing the threshold    x –     ⋆  . Specifically, consider the 
following tax schedule:

(46)   t  ϵ  
⋆  (x)  =   {   

0,
  

if x ≤   x –     ⋆  + ϵ;
   

 τ     ⋆ ,
  

if x >   x –     ⋆  + ϵ.
   

It is can be verified that the bid profile   ( x  1  
 ⋆  + ϵ,  x  2  

 ⋆  + ϵ)   constitutes an equilibrium 
under   t  ϵ  

⋆  ( · )   for a sufficiently small  ϵ > 0 , which yields a higher aggregate bid than 
that under   t   ⋆  ( · )  . Note that the tax revenue under   t  ϵ  

⋆  ( · )   is zero, which is the same as 
that under   t   ⋆  ( · )  . Therefore, the contest performance is higher under   t  ϵ  

⋆  ( · )  , which 
contradicts the optimality of   t   ⋆  ( · )  .

Case II: The inequality in (45) holds with equality. In this case, we must have   
v 1   >  v 2   . Otherwise, suppose that   v 1   =  v 2   . Then we have that

  r   v 1    p 1   ( x  1  
⋆ ,  x  2  

⋆ )  p 2   ( x  1  
⋆ ,  x  2  

⋆ )  = r   v 2    p 1   ( x  1  
⋆ ,  x  2  

⋆ )  p 2   ( x  1  
⋆ ,  x  2  

⋆ )  =  x  2  
⋆  =  x  1  

⋆ ; 

thus, the optimal tax schedule   t   ⋆  ( · )   is equivalent to having no cap—a contradiction.
From the above analysis, we have that

  r   v 1    p 1   ( x  1  
⋆ ,  x  2  

⋆ )  p 2   ( x  1  
⋆ ,  x  2  

⋆ )  >  x  1  
⋆  

and

  r   v 2    p 1   ( x  1  
⋆ ,  x  2  

⋆ )  p 2   ( x  1  
⋆ ,  x  2  

⋆ )  =  x  2  
⋆ . 

Similar to the analysis in Case I, we consider the tax schedule   t  ϵ  
⋆  ( · )   specified in 

(46) and denote the equilibrium by   ( x  1  
∗  (ϵ) ,  x  2  

∗  (ϵ) )  . It is straightforward to verify that   
x  1  

∗  (ϵ)  =   x –     ⋆  + ϵ  and   x  2  
∗  (ϵ)   is governed by the following  first-order condition:

  r   v 2    p 1   ( x  1  
∗  (ϵ) ,  x  2  

∗  (ϵ) )  [1 −  p 1   ( x  1  
∗  (ϵ) ,  x  2  

∗  (ϵ) ) ]  =  x  2  
∗  (ϵ) . 
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Note that   p 1   ( x  1  
∗  (0) ,  x  2  

∗  (0) )  = 1/2 . Therefore, we have that

     
d  x  2  

∗  (ϵ) 
 _ 

dϵ    |   ϵ=0

   = 0. 

Moreover, it follows from   x  1  
∗  (ϵ)  =   x –     ⋆  + ϵ  that

     
d  x  1  

∗  (ϵ) 
 _ 

dϵ    |   ϵ=0

   = 1. 

Therefore, we have that

     
d  x  1  

∗  (ϵ) 
 _ 

dϵ    |   ϵ=0

   +    
d  x  2  

∗  (ϵ) 
 _ 

dϵ    |   ϵ=0

   = 1 > 0. 

The above condition implies that the aggregate bid increases when we switch from   
t   ⋆  (x)   to   t  ϵ  

⋆  (x)   while the tax revenue remains at zero, which is a contradiction to the 
optimality of   t   ⋆  (x)  . This completes the proof. ∎

Now we can prove Proposition 2. Consider the following two cases:

Case I:  λ = 0 . In this case, the designer is concerned only with the aggregate 
bid. Consider the following rigid cap:

   t   ⋆⋆  (x)  =   {   
0,

  
if x ≤  x  1  

⋆ ;
   

∞,
  

if x >  x  1  
⋆ .

   

It can be verified that the equilibrium bid profile   ( x  1  
⋆ ,  x  2  

⋆ )   under   t   ⋆  ( · )   is also an 
equilibrium under   t   ⋆⋆  ( · )  . Next, note that   x  1  

⋆  >  x  2  
⋆   by Lemma 12. Following step 

4 in the proof of Lemma 4, we can construct a flexible cap to induce the bid profile 
  ( x  1  

⋆ ,  x  2  
⋆ )  . Therefore, the optimum can take the form of either a rigid cap or a flexible 

cap.

Case II:  λ > 0 . Because   x  1  
⋆  >  x  2  

⋆   by Lemma 12, we can always adopt the con-
struction in step 4 in the proof of Lemma 4 to induce the bid profile   ( x  1  

⋆ ,  x  2  
⋆ )   and 

generate a positive amount of tax revenue. Therefore, a rigid cap that generates zero 
tax revenue is suboptimal. ∎

B3. Optimal Tax Schedule in Tullock Contests with  r ∈  (1, 2]  

We are ready to spell out the following sufficient conditions for either a flexible 
cap or no cap to be optimal.
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PROPOSITION 4 (Optimal Tax Schedule in  Two-Player Tullock Contests with  r ∈  

(1, 2]  ): Suppose that  n = 2 ,  λ ∈  [0, 1]  , and  r ∈  (1, 2]  . The following statements 
hold:

 (i) If  r > 1 +  v   r   or

    
r (1 −  v   r ) 

 _ 
1 +  v   r 

   +   
 (1 − v) λ − 1

  ____________ 
1 + v

   > 0, 

the optimum requires a binding cap.

 (ii) If  r ≤ 1 +  v   r   and

   (2r + 1)  v   r+1  − r + 1 − r  v > λ [1 + r  v +  v   r+1  −  (r + 2)  v   r ] , 

then no cap is optimal.

PROOF:
We first prove part (i) of the proposition. It is well known that the equilibrium 

without policy intervention is unique and is in mixed strategy when  r > 1 +  v   r   
(Feng and Lu 2017; Ewerhart 2017). Recall that the selected equilibrium in the opti-
mal contest is in pure strategy by Proposition 2. Therefore, a binding cap is required 
in the optimum.

In what follows, we focus on the case of  r ≤ 1 +  v   r  . First, note that Player 1’s  
bid   x  1  

∗   in the selected  pure-strategy equilibrium is pinned down by the  first-order 
condition according to the construction in step 3 in the proof of Lemma 4. Second, 
by the same argument used in the proof of Theorem 2, Player 2’s equilibrium bid   x  2  

∗   
is also governed by the  first-order condition in the optimal contest. Therefore, the 
argument in Lemma 3 applies if we ignore players’ participation constraints—i.e.,  
  p i   ( x  1  

∗ ,  x  2  
∗ )  v i   −  x  i  

∗  ≥ 0 , with  i ∈  {1, 2}  —and the designer’s optimization problem 
can be reformulated as

    max  
 p  1  

∗ ∈ [1/2, p  1  
† ] 

    ( p  1  
∗ ; λ) , 

where

(47)   ( p  1  
∗ ; λ)  = r { (1 − λ) v p  1  

∗   (1 −  p  1  
∗ )    1−  1 _ r    [  ( p  1  

∗ )      
1 _ r    +   (1 −  p  1  

∗ )      
1 _ r   ] 

 + λ [2v p  1  
∗  (1 −  p  1  

∗ )  +  (1 −  p  1  
∗ )  [ p  1  

∗  −   ( p  1  
∗ )    1−  1 _ r     (1 −  p  1  

∗ )      
1 _ r   ] ] } , 

and   p  1  
†  ≡ 1/ (1 +  v   r )   is Player 1’s equilibrium winning probability in a contest 

under no cap. It can verified that both players’ participation constraints are indeed 
satisfied for all   p  1  

∗  ∈  [1/2,  p  1  
† ]  .
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A sufficient condition for a flexible cap to be optimal is     
∂  ( p  1  

∗ ; λ) 
 _ ∂  p  1  

∗ 
    |    p  1  

∗ = p  1  
† 

   < 0 , 

which is equivalent to   ( v   −r )  < 0 , where   ( · )   is defined as

 
  (η)  ≔ r { (1 − λ) v [ (1 +   1 _ r  )  η     

1 _ r    +  (  1 _ r   − 1)  η   1+  1 _ r    + 1 − η] 

 + λ [2v (1 − η)  +  (1 − η +  (  1 _ r   − 1)   (  1 _ η  )    
  1 _ r  
  +  (  1 _ r   + 1)   (  1 _ η  )    

  1 _ r  −1
 ) ] } . 

It is straightforward to verify that   ( v   −r )  < 0  is equivalent to

    
r (1 −  v   r ) 

 _ 
1 +  v   r 

   +   
 (1 − v) λ − 1

  ____________ 
1 + v

   > 0. 

Next, we prove part (ii). As previously discussed, a flexible cap is optimal if  
r > 1 +  v   r  . Therefore, the condition  r ≤ 1 +  v   r   is required for having no cap to 
be optimal. A sufficient condition for having no cap to be optimal is

   (η)  > 0, for all η ∈  [1,  v   −r ] . 

Carrying out the algebra,   (η)   can be bounded from below by

   (η)  =  (1 − λ) v [ (1 +   1 _ r  )  η     
1 _ r    +  (  1 _ r   − 1)  η     

1 _ r  +1  + 1 − η]  

  + λ [2v (1 − η)  + 1 − η +  (  1 _ r   − 1)  η   −  1 _ r    +  (  1 _ r   + 1)  η   1−  1 _ r   ]  

  ≥  (1 − λ) v [ (1 +   1 _ r  )  +  (  1 _ r   − 1)  v   −r−1  + 1 −  v   −r ]  

  + λ [2v (1 −  v   −r )  + 1 −  v   −r  +  (  1 _ r   − 1)  +  (  1 _ r   + 1) ]  

  =   1 _ 
r   v   r 

   ×  { (2r + 1)  v   r+1  − r + 1 − r  v + λ [− v   r+1  +  (r + 2)  v   r  − r  v − 1] } . 

Therefore, if

   (2r + 1)  v   r+1  − r + 1 − r  v > λ [1 + r  v +  v   r+1  −  (r + 2)  v   r ] , 

then it is optimal to have no cap. This concludes the proof. ∎

B4. Proof of Proposition 3

PROOF:
Recall that if  v <   (r − 1)      

1 _ r    —or, equivalently, if  r >  r   ∗   or  v <  v   ∗  —then the 
equilibrium under no cap is  semi-mixed, which is suboptimal by Proposition 2. In 
what follows, we assume that  v ≥   (r − 1)      

1 _ r    .
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Substituting  λ = 0  into the contest objective (47) yields that

    0   ( p  1  
∗ )  ≔  ( p  1  

∗ ; 0)  = r   v 2    p  1  
∗  (1 −  p  1  

∗ )  ×  [1 +   (  
 p  1  

∗ 
 _ 

1 −  p  1  
∗ 
  )    

  1 _ r  

 ] . 

Carrying out the algebra, we can obtain that

     0  ′   ( p  1  
∗ )  =   

  0   ( p  1  
∗ ) 
 _ r   ×  

[
  r _ 
 p  1  

∗ 
   −   r − 1 _ 

1 −  p  1  
∗ 
   +   

  ( p  1  
∗ )      

1 _ r  −1  −   (1 −  p  1  
∗ )      

1 _ r  −1 
  ___________________  

  ( p  1  
∗ )      

1 _ r    +   (1 −  p  1  
∗ )      

1 _ r   
  

]
  

  =   
  0   ( p  1  

∗ ) 
 _ 

r  p  1  
∗ 
   ×  

[
r −  (r − 1) η +   

 η     
1 _ r    − η _ 

 η     
1 _ r    + 1

  
]

  

  =   
  0   ( p  1  

∗ )  η     
1 _ r  +1 
 ___________ 

r  p  1  
∗  ( η     

1 _ r    + 1) 
   ×  [r ( η   −1  − 1)  (1 +  η   −  1 _ r   )  +  (1 +  η   −1 ) ] , 

where  η ≔  p  1  
∗ / (1 −  p  1  

∗ )  ∈  [1,  v   −r ]  . It can be verified that     0  ′   ( p  1  
∗ )  > 0  is equiv-

alent to

  ϕ (η)  ≔ r ( η   −1  − 1)  (1 +  η   −  1 _ r   )  +  (1 +  η   −1 )  > 0. 

If  ϕ ( v   −r )  < 0 —or, equivalently, if  v <  v   ∗∗   or  r >  r   ∗∗  —then     0  ′   ( p  1  
† )  < 0;  

thus, having no cap is suboptimal. It remains to show that if  ϕ ( v   −r )  ≥ 0 , then  
 ϕ (η)  > 0  for  η ∈  [1,  v   −r )  , which implies that    0   ( p  1  

∗ )   strictly increases with   p  1  
∗   for   

p  1  
∗  ∈  [1/2,  p  1  

† ]  ; hence, it is optimal to have no cap.
Note that  v ≥   (r − 1)      

1 _ r     implies that   v   −r  ≤ 1/ (r − 1)  ; thus,   [1,  v   −r ]  ⊆  [1, 1/ 

(r − 1) ]  . Next, we show that  ϕ′ (η)  < 0  for all  η ∈  [1, 1/ (r − 1) ]  . Carrying out 
the algebra, we have that

  ϕ′ (η)  = −r  η   −2  (1 +  η   −  1 _ r   )  −  η   −  1 _ r  −1  ( η   −1  − 1)  −  η   −2  

  =  η   −  1 _ r  −1  ×  [1 −  (r + 1)  η     
1 _ r  −1  (1 +  η   −  1 _ r   ) ]  

  ≤  η   −  1 _ r  −1  ×  {1 −  (r + 1)   (r − 1)      
r−1 _ r    [1 +   (r − 1)      

1 _ r   ] }  

  ≤  η   −  1 _ r  −1  ×  [1 − 2  (r − 1)    r−1 ]  

  ≤  η   −  1 _ r  −1  ×  [1 − 2  e   −  1 _ e   ]  < 0, 

where the first inequality follows from  η ≤  v   −r  ≤ 1/ (r − 1)  ; the second inequal-
ity follows from  r > 1 ,    (r − 1)      

r−1 _ r    ≥   (r − 1)    r−1  , and  1 +   (r − 1)      
1 _ r    ≥ 1 ; and the 

third inequality follows from the fact that    (r − 1)    r−1  ≥  e   −  1 _ e     for  r ∈  (1, 2]  .
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From the above analysis, we know that  ϕ (η)   is strictly decreasing in  η  for  η ∈ 
 [1,  v   −r ]  . Therefore,  ϕ (η)  > ϕ ( v   −r )  ≥ 0  for  η ∈  [1,  v   −r )  . This completes the 
proof. ∎
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