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Abstract

We consider the optimal design of complete-information all-pay auctions with mul-

tiple heterogeneous players when a designer can manipulate contestants’ relative com-

petitiveness by imposing identity-dependent treatments. Three types of instruments

are considered: (i) multiplicative biases that assign individualized weights to each

contender’s effective effort, (ii) additive headstarts that directly add to it, and (iii)

tie-breaking rule. We show that in general, both multiplicative biases and additive

headstarts will be used for contest design. Moreover, the contest designer is able to

induce every allocation of the prize while achieving full surplus extraction with an

appropriately designed contest rule and tie-breaking rule.
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1 Introduction

A wide variety of competitive activities resemble a contest. Athletes vie for trophies;

interest groups lobby for policy influence; firms race toward technological breakthroughs;

and workers climb higher rungs in the hierarchy within a firm. In all these scenarios, con-

tenders expend costly effort to compete for limited prizes, while competitive outlays are

nonrefundable regardless of the outcome.

A voluminous body of economics literature has examined contestants’ strategic behavior

and the optimal design of contests. An all-pay auction—which fully rewards superior effort—

is an intuitive framework for modeling the prize allocation mechanism. It awards the prize

to the highest bidder with certainty: In its simplest form, a contestant wins the contest with

probability one if his effort xi exceeds those of the others, i.e.,

pi(x) = 1, if xi > xj, ∀j ̸= i,

for a given set of effort entries x := (x1, . . . , xn).

In this paper, we explore the optimal design of all-pay auctions when a contest designer

is able to award identity-dependent preferential treatments to contestants to manipulate the

competitive balance of the playing field. The economics literature has long espoused the

strategic use of preferential treatments tailored to individual characteristics to incentivize

effort supply: A contest designer can strategically favor or handicap contestants to bias the

competition to promote her own interests (e.g., Siegel, 2014; Szech, 2015). The prevalence

of this practice is evidenced by the numerous examples documented in the literature.1

Two instruments are broadly adopted in the literature to model the biases imposed

on contestants’ effort entries: (i) multiplicative biases and (ii) additive headstarts.2 The

former—e.g., Fu (2006) and Epstein, Mealem, and Nitzan (2011)—places a fixed weight

on a contestant’s effort, while the latter—e.g., Kirkegaard (2012) and Pastine and Pastine

(2012)—directly adds to it. In a biased all-pay auction, each contestant’s effort is adjusted

by the biases and converted into a score, and the highest-scoring contestant wins the prize.

We consider a multi-player all-pay auction and allow the designer to use both instruments

to optimize a general design objective. Fu and Wu (2020) and Deng, Fu, and Wu (2021)

develop an indirect optimization approach for the design of biased lottery contests. We

1See also Mealem and Nitzan (2016); Chowdhury, Esteve-González, and Mukherjee (2023); and Fu and
Wu (2019) for thorough surveys of this strand of the literature.

2Other design instruments considered in the literature include bid caps and taxes/subsidies. See, e.g.,
Che and Gale (1998, 2006); Glazer and Konrad (1999); Gavious, Moldovanu, and Sela (2002); Kaplan and
Wettstein (2006); Pastine and Pastine (2013); Mealem and Nitzan (2014); Olszewski and Siegel (2019); Fu,
Wu, and Zhu (2023); and Cohen, Darioshi, and Nitzan (2022), among others.
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adapt this approach to the setting of all-pay auctions. This allows us to (i) characterize the

feasibility frontier of the contest under a general objective function, then (ii) demonstrate

that an optimally designed all-pay auction, with the use of both multiplicative biases and

headstarts, can achieve the feasibility frontier and fully extract each contestant’s surplus.

The result also implies that a properly designed all-pay auction outperforms all possible

contest mechanisms that yield pure-strategy equilibria.3

Our paper extends the literature in three ways. First, we construct a general objective

function that encompasses a broad array of scenarios. The literature on contest design

typically focuses on specific objective functions, with the majority aiming to maximize total

effort. Examples include Kirkegaard (2012); Li and Yu (2012); Franke, Kanzow, Leininger,

and Schwartz (2014); and Franke, Leininger, and Wasser (2018). However, the pursuit of

alternative objectives is not uncommon in practice. For example, to promote a sporting

event, the organizer may create more suspense about its outcome (see Chan, Courty, and

Hao, 2008), in which case the organizer cares about the winning probabilities of participants.

Alternatively, in public procurement, a government (as a buyer) could be concerned about

domestic suppliers’ efforts and also (as a social planner) concerned about their welfare (see

Epstein, Mealem, and Nitzan, 2011). We construct an objective function that encompasses

a diverse array of preferences.

Second, our analysis departs from the usual two-player setting and allows for an arbitrary

number of contestants. Equilibrium analysis of all-pay auctions with three or more players

poses a technical challenge when contestants are heterogeneous and biases can be imposed.

Fu and Wu (2020) develop an alternative technique that bypasses the analytical difficulty in

generalized lottery contests. In this paper, we revive the equilibrium characterization result

of Baye, Kovenock, and De Vries (1996), which further allows us to adapt the approach of

Fu and Wu (2020) to all-pay auctions.

Third, thanks to the optimization approach described above, our analysis allows the

designer to choose an arbitrary combination of multiplicative biases, headstarts, and tie-

breaking rule. In most prior studies of optimally biased contests, the designer is endowed with

a single instrument (e.g., Franke, Kanzow, Leininger, and Schwartz, 2014). We demonstrate

that the optimum, in general, requires that the multiplicative biases and headstarts be

imposed together. Notable exceptions include Kirkegaard (2012); Franke, Leininger, and

Wasser (2018); and Zhu (2021). However, these studies focus on specific objective functions.

The rest of the paper is organized as follows. Section 2 sets up the contest model and

3Franke, Leininger, and Wasser (2018) show that an all-pay auction, with a proper combination of mul-
tiplicative biases and headstarts, can achieve the first best. However, they only consider the maximization
of total effort.
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describes the objective function for contest design. Section 3 conducts the analysis and

discusses its implications, and Section 4 concludes. Proofs are collected in the Appendix.

2 The Model

There are n ≥ 2 risk-neutral contestants competing for a prize.4 The prize has a value

vi > 0 for each contestant i ∈ N ≡ {1, . . . , n}—with v1 ≥ · · · ≥ vn—which is commonly

known. To win the prize, contestants simultaneously commit to their efforts xi ≥ 0. One’s

bid incurs a unity marginal effort cost.

Winner-selection Mechanism and Design Instruments Fixing a set of effort entries

x ≡ (x1, . . . , xn) ≥ (0, . . . , 0), let us denote by pi(xi,x−i) a contestant i’s probability of

winning the contest, where x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) is the effort profile of his rivals.

Contestant i’s probability of winning the contest—i.e., the contest success function (CSF)—is

given by

pi(xi,x−i) =


1, if αixi + βi > maxj ̸=i

{
αjxj + βj

}
,

ωi(M), if i ∈ M := {m : αmxm + βm ≥ αjxj + βj, ∀j ∈ N} and |M| ≥ 2,

0, if αixi + βi < maxj ̸=i

{
αjxj + βj

}
,

(1)

where αi ≥ 0 and βi ≥ 0 are the multiplicative biases and additive headstarts the designer

imposes on each contestant i ∈ N , respectively. Both instruments are popularly adopted

in the literature to model preferential treatments. For multiplicative biases, see Fu (2006);

Franke (2012); Franke, Kanzow, Leininger, and Schwartz (2014); and Epstein, Mealem, and

Nitzan (2011). For headstarts, see Clark and Riis (2000); Konrad (2002); Siegel (2009, 2014);

Li and Yu (2012); and Seel and Wasser (2014). Kirkegaard (2012); Franke, Leininger, and

Wasser (2018); and Zhu (2021) allow for both.

According to (1), a contestant i wins the contest if his effective output or score—i.e.,

αixi + βi—exceeds that of all others. Suppose that multiple players achieve the maximum

effective output or score. Denote this set of players by M ⊆ N , with |M| ≥ 2. A player

i ∈ M wins with a probability ωi(M), with ωi(M) ≥ 0 and
∑

i∈M ωi(M) = 1. We

allow the designer to determine the winning probability profile in this case—i.e., the tie-

breaking rule. Note that a fair tie-breaking rule that breaks ties symmetrically corresponds

to ωf
i (M) := 1

|M| for allM ⊆ N . For expositional convenience, denote a general tie-breaking

4For studies relaxing the assumption of risk neutrality, see, e.g., Chen, Ong, and Segev (2017); Klose and
Schweinzer (2022).
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rule
{
(ωi(M))i∈M

}
M⊆N ,|M|≥2

and a symmetric tie-breaking rule
{
(ωf

i (M))i∈M
}
M⊆N ,|M|≥2

by ω and ωf , respectively.

Contestant i’s expected payoff can then be written as

πi(xi,x−i) := pi(xi,x−i) · vi − xi, for all i ∈ N .

Contest Objective It is well known that a complete-information all-pay auction, in gen-

eral, does not have pure-strategy equilibria.5 Let Gi(x̂i) denote an arbitrary cumulative

distribution function (CDF) that represents the mixed-strategy of player i; let Si denote

the support of this distribution. Fixing an arbitrary strategy profile ⟨G1(x1), . . . , Gn(xn)⟩,
denote by xei and p

e
i , respectively, contestant i’s expected effort

∫
xi∈Si

xidGi(xi) and expected

winning probability
∫
·· ·

∫
x∈×n

i=1Si
pi(xi,x−i)dG1(x1) · · · dGn(xn).

We assume that the contest designer’s objective function, which we denote by Λ(·),
is a function of the profile of expected efforts xe := (xe1, . . . , x

e
n); the profile of expected

winning probabilities pe := (pe1, . . . , p
e
n); and the profile of contestants’ prize valuations v :=

(v1, . . . , vn). The following assumption is imposed on the objective function Λ(·) throughout
the paper.

Assumption 1 Fixing v ≡ (v1, . . . , vn), Λ(x
e,pe,v) is continuous with respect to xe and

pe and is weakly increasing in xei for all i ∈ N .

Two remarks are in order. First, Assumption 1 requires that contestants’ expected ef-

forts accrue to the benefit of the contest designer, holding fixed contestants’ expected winning

probabilities and prize valuations. Note that both xe ≡ (xe1, . . . , x
e
n) and pe ≡ (pe1, . . . , p

e
n)

are defined over contestants’ strategy profile ⟨G1(x1), . . . , Gn(xn)⟩. Therefore, changing con-

testants’ mixed-strategy profile in a way that changes xe also changes pe in general.

Second, Assumption 1 specifies a mild regularity condition, and the objective function

Λ(·) encompasses a broad array of scenarios for contest design. It can be satisfied by many

popularly studied objective functions in the literature. The following example demonstrates

the versatility of Λ(·).

Example 1 The following objective function satisfies Assumption 1:

Λ(xe,pe,v) :=
n∑

i=1

xei + λ

n∑
i=1

peivi − γ

n∑
i=1

(
pei −

1

n

)2

, with λ, γ ≥ 0. (2)

5Pastine and Pastine (2023) incorporate constraints on players’ actions in a broad class of complete
information all-pay auctions and derive closed-form formulae for their equilibrium expected payoffs.
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In the case of λ = γ = 0, the above expression degenerates to Λ(xe,pe,v) =
∑n

i=1 x
e
i—i.e.,

maximization of expected total effort—which is the most widely assumed objective for contest

design in the literature. In addition to expected effort supply, the contest designer may be

concerned about selection efficiency and/or the closeness of the competition.6 The former

is captured by the term
∑n

i=1 p
e
ivi, which is the expected prize valuation of the winner. The

contest objective accommodates the concern about selection efficiency when λ > 0. Note

that the concern for selection efficiency also alludes to a preference for contestants’ welfare

(see Epstein, Mealem, and Nitzan, 2011): Ceteris paribus, contestants’ aggregate welfare—

i.e.,
∑n

i=1 (p
e
ivi − xei )—improves when the prize is distributed to the one with the highest

valuation.

The latter is captured by the term
∑n

i=1

(
pei − 1/n

)2
, which depicts a typical scenario

in the administration of sporting events: Spectators often not only appreciate contenders’

efforts, but also demand suspense about the contest outcome. The term is the variance of

the expected equilibrium winning probability profile, which measures the predictability of the

competitive event. The objective function thus reflects the designer’s preference for a closer

race when γ > 0.

Contest Design Prior to the competition, the designer, anticipating contestants’ equilib-

rium bidding strategies, chooses and commits to a contest rule (α,β) := ⟨(α1, . . . , αn), (β1, . . . , βn)⟩
≥ ⟨(0, . . . , 0), (0, . . . , 0)⟩, as well as a tie-breaking rule ω, to maximize Λ(·). Therefore, the

optimal contest design problem yields a constrained optimization problem. A change in the

contest rule (α,β) would reshape contestants’ equilibrium bidding strategies, which in turn

would vary their expected equilibrium efforts and winning probabilities.

As noted by Franke, Leininger, and Wasser (2018), a complete characterization of the

set of equilibria of all-pay auctions with headstarts has yet to be provided in the literature.

Further, Baye, Kovenock, and De Vries (1993, 1996) show that there may exist a continuum

of mixed-strategy equilibria in an unbiased all-pay auction with three or more players. In

what follows, we assume that (i) the contest designer is restricted to choosing from the

set of contest rules under which a (mixed-strategy) Nash equilibrium exists;7 and (ii) the

6For contest design for selection efficiency, see Meyer (1991); Hvide and Kristiansen (2003); Ryvkin and
Ortmann (2008); and Fang and Noe (2022). For economics studies of suspense in competition, see Fort
and Quirk (1995); Szymanski (2003); Runkel (2006); Chan, Courty, and Hao (2008); and Ely, Frankel, and
Kamenica (2015).

7An equilibrium may fail to exist for some contest rules and tie-breaking rules. To see this, suppose
that n = 2 and consider a symmetric tie-breaking rule. Further, set (v1, v2) = (1, 1), (α1, β1) = (4, 0), and
(α2, β2) = (0, 1). Contestant 2 would choose zero effort if an equilibrium exists. However, contestant 1’s
best response is not well defined: His expected payoff by bidding x1 = 1/4 is 1/4, while he would expect a
jump in his payoff if he bids slightly above 1/4, which ensures a win.
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equilibrium most favorable to the contest designer is selected when multiple equilibria exist.8

3 Analysis and Results

Studies on the optimal design of complete-information all-pay auctions typically assume

two players and employ a direct brute-force approach: They first solve for the unique equilib-

rium bidding strategy for any given contest rule (α,β), insert the solution into the objective

function, and then search for the optimal rule (e.g., Epstein, Mealem, and Nitzan, 2011; Li

and Yu, 2012; Zhu, 2021). This approach relies on equilibrium characterization and cannot

be applied to the multi-player setting (n ≥ 3) because, as noted previously, a complete equi-

librium characterization of a biased multi-player all-pay auction is technically challenging

and is absent from the literature.9

To overcome this difficulty, the literature usually takes an indirect constructive approach.

For instance, Franke, Kanzow, Leininger, and Schwartz (2014) investigate effort-maximizing

multiplicative biases. They first establish an upper bound and a lower bound for the contest

performance, then show that the two bounds coincide. Similarly, Franke, Leininger, and

Wasser (2018) search for optimal combinations of multiplicative biases and headstarts that

maximize expected total effort. Again, they construct a contest rule to achieve the maximum

expected total effort (revenue), which corresponds to the highest prize valuation among

contestants. Their constructions are effective when total effort (revenue) is the focus, but

may lose value when alternative objectives are pursued in contest design.

Our analysis borrows from the indirect approach proposed by Fu and Wu (2020) and

Deng, Fu, and Wu (2021), which can be summarized as follows. Instead of focusing on

contestants’ equilibrium effort profile under a contest rule, we take a detour and focus on

the expected equilibrium winning probability profile. Specifically, we show that all expected

winning probability profiles—except those in which some contestant wins the contest with

probability one—can be induced by some contest rule under symmetric tie-breaking. If the

designer is allowed to manipulate the tie-breaking rule, all expected winning probability

profiles can be induced in equilibrium. We then demonstrate that we can maintain an

expected equilibrium winning probability profile, while modifying the contest rule to fully

extract surplus from each contestant, which closes the loop.

8These two restrictions are innocuous. As will become clear later, the contest rule we construct in
Lemma 2 fully extracts each contestant’s surplus and thus achieves the first-best result, given that no one
wins with certainty; moreover, all equilibria under the constructed contest rule are payoff equivalent for all
contestants. Lemma 3 provides further support for the plausibility and relevance of our exercises.

9See Siegel (2009, 2014) and Franke, Leininger, and Wasser (2018) for important results on equilibrium
characterization.
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In the remainder of this section, we first present the main result, then discuss the impli-

cations of our results in relation to the literature.

3.1 Optimal All-pay Auction

Before we proceed to the formal analysis, it is useful to state the following.

Definition 1 (Feasible Effort Profile) An expected effort profile xe ≡ (xe1, . . . , x
e
n) is

feasible for the expected winning probability profile pe ∈ ∆n−1 if there exists a contest rule

(α,β) ≥ (0,0), a tie-breaking rule ω, and an equilibrium for this contest and tie-breaking

rule that generates the expected effort profile xe and leads to pe.

Suppose β = 0. Let v̂i := αivi and v̂ := (v̂1, . . . , v̂n). Denote by Ĝi(xi) the CDF

that represents the equilibrium mixed-strategy of player i and by Ŝi the support of the

distribution in an unbiased contest, i.e., αi = αj > 0 for all i, j ∈ N . Further, denote by

x̂ei and p̂
e
i , respectively, contestant i’s expected effort

∫
xi∈Ŝi

xidĜi(xi) and expected winning

probability
∫
·· ·

∫
x∈×n

i=1Ŝi
pi(xi,x−i)dĜ1(x1) · · · dĜn(xn). The following result presented by

Franke, Kanzow, Leininger, and Schwartz (2014) allows us to transform the biased all-pay

auction with zero headstarts—i.e., with αi ̸= αj for some i, j ∈ N—into a standard unbiased

all-pay auction.

Lemma 1 Consider a biased all-pay auction contest with zero headstarts and a symmet-

ric tie-breaking rule ωf . For every equilibrium strategy profile ⟨G1(x1), . . . , Gn(xn)⟩ un-

der ⟨v,α⟩, there exists an equilibrium strategy profile ⟨Ĝ1(x1), . . . , Ĝn(xn)⟩ under (v̂, α̂) :=

⟨(α1v1, . . . , αnvn), (1, . . . , 1)⟩ such that x̂ei = αix
e
i for all i ∈ N . Moreover, the equilibrium

strategy profile ⟨G1(x1), . . . , Gn(xn)⟩ under the contest rule α and ⟨Ĝ1(x1), . . . , Ĝn(xn)⟩ un-
der α̂ lead to the same profile of expected winning probabilities, i.e., (pe1, . . . , p

e
n) = (p̂e1, . . . , p̂

e
n).

Lemma 1 unveils the strategic equivalence between the biased all-pay auction and the

transformed unbiased counterpart, which revives the equilibria characterization result of

Baye, Kovenock, and De Vries (1996) in our setting. We obtain the following key result.

Lemma 2 Consider all-pay auctions with a CSF as specified in (1) under symmetric tie-

breaking and fix an arbitrary pe ∈ ∆n−1 such that pei ̸= 1 for all i ∈ N . Then xe ≡
(xe1, . . . , x

e
n) = pe ◦ v = (pe1v1, . . . , p

e
nvn) is feasible for pe under some contest rule (α,β).

Moreover, there exist multiple equilibria under the contest rule (α,β) and the symmetric

tie-breaking rule ωf , and all equilibria are payoff equivalent for contestants.
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Two remarks are in order. First, Lemma 2 states that for every expected winning prob-

ability profile pe such that pei ̸= 1 for all i ∈ N , there exists a contest rule (α,β) under

symmetric tie-breaking that induces pe and a profile of expected efforts xe ≡ (pe1v1, . . . , p
e
nvn).

Obviously, each player’s participation constraint binds under this contest rule, which indi-

cates that the maximum expected effort is achieved. It is thus innocuous to restrict the

designer’s choice to the set of contest rules under which an equilibrium exists when the

designer values contestants’ expected efforts, since she is able to fully extract contestants’

surplus.

Second, all equilibria are payoff equivalent for contestants under the constructed contest

rule outlined in the proof of Lemma 2, assuming a symmetric tie-breaking rule ωf . In other

words, contestants are indifferent across all equilibria and do not prefer the equilibria that are

at odds with the designer’s choice. In this light, it is sensible to assume that the equilibrium

most favorable to the designer is selected whenever multiple equilibria exist.

The result is proven by construction. Two key steps in the proof are delineated as

follows: They elucidate the different roles played by multiplicative biases and headstarts in

this context and also help us understand the comparison between all-pay auctions and noisy

contests, which we further elaborate on in Section 3.2. For ease of exposition, let us consider

the case in which pei ̸= 1 for all i ∈ N and pe1 > pe2 ≥ · · · ≥ pen.
10

Step I (Introducing Multiplicative Biases): Assume a symmetric tie-breaking rule ωf ,

fix an arbitrary expected equilibrium winning probability profile pe ∈ ∆n−1 with pei ̸= 1

for all i ∈ N , and set headstarts to zero. We can construct a set of multiplicative biases

α∗ ≡ (α∗
1, . . . , α

∗
n) that satisfies α

∗
1v1 > α∗

2v2 = · · · = α∗
nvn > 0, such that there exists

a mixed-strategy equilibrium that leads to the given expected equilibrium winning

probabilities pe ≡ (pe1, . . . , p
e
n). By our construction, contestants 2 to n each earn

an expected payoff of zero, and player 1 receives a positive expected payoff of size

(α∗
1v1 − α∗

2v2)/α
∗
1. It is noteworthy that although we have verified its existence, the

set of multiplicative biases α∗ ≡ (α∗
1, . . . , α

∗
n) cannot be expressed in closed form in

general when three or more contestants place positive bids with positive probabilities.

Step II (Introducing Additive Headstarts): We add headstarts to the contest rule to

further incentivize player 1 without disturbing the equilibrium incentives of the other

10Step II is unnecessary for the proof of Lemma 2 in the case pe1 = pe2 ≥ · · · ≥ pen. In other words,
headstarts are not used if the contest designer aims to induce a profile of expected winning probabilities in
which the highest equilibrium winning probability is equal to the second highest one.
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players. Consider the following set of contest rules (α†,β†) := ⟨(α†
1, . . . , α

†
n), (β

†
1, . . . , β

†
n)⟩:

(
α†
i , β

†
i

)
:=


(
α∗
1, 0

)
, for i = 1,(

α∗
i , α

∗
1v1 − α∗

2v2
)
, for i ∈ {2, . . . , n}.

In words, we give the same headstarts to all players except for player 1. Compared with

the equilibrium constructed in Step I, contestant 1’s equilibrium effort distribution is

shifted upward by (α∗
1v1 − α∗

2v2)/α
∗
1, whereas all other players’ equilibrium strategies

remain unchanged. The additional effort supply from contestant 1 completely offsets

the preferential treatment awarded to other players through the headstart, and the

sizes of the headstarts are chosen to fully deplete the surplus left to contestant 1 in

the equilibrium, i.e., earning zero expected payoff in the contest. This, in turn, implies

that xei = peivi for all i ∈ N in equilibrium under the contest rule (α†,β†).

Note that Lemma 2 requires pei ̸= 1 for all i ∈ N . This requirement is caused by the

restriction of the symmetric tie-breaking rule and can be dropped if we allow the contest

designer to modify the prevailing tie-breaking rule, as in Szech (2015) and Franke, Leininger,

and Wasser (2018).

Lemma 3 Consider all-pay auctions with a CSF as specified in (1) and pe ∈ ∆n−1 such

that pes = 1 for some s ∈ N and pei = 0 for all i ̸= s. The following statements hold:

(i) The effort profile xe ≡ (xe1, . . . , x
e
n) = pe ◦ v = (0, . . . , 0, vs, 0, . . . , 0) is feasible for pe.

Specifically, consider a contest rule with (αs, βs) = (1, 0) and (αk, βk) = (0, vs) for all

k ̸= s and the following tie-breaking rule that favors player s: He wins the contest with

certainty if s ∈ M and the prize is distributed with equal probability among the highest

bidders if s /∈ M. There exist two equilibria in the contest game. In the first, player

s exerts effort vs and all other players remain inactive. In the second, all contestants

remain inactive. The first equilibrium results in the expected winning probability profile

with pes = 1 and pek = 0 for all k ̸= s, whereas the second leads to pes = 0. The two

equilibria are not payoff equivalent for contestants: The latter Pareto-dominates the

former.

(ii) Fix an arbitrarily small ε > 0. The effort profile xe ≡ (xe1, . . . , x
e
n) = pe ◦ v =

(0, . . . , 0, vs − ε, 0, . . . , 0) is feasible for pe. Specifically, consider a contest rule with

(αs, βs) = (1, 0) and (αk, βk) = (0, vs − ε) for all k ̸= s and a tie-breaking rule that

favors player s, as outlined above in (i). Player s exerting effort vs − ε and all others

remaining inactive constitutes the unique Nash equilibrium of the contest game.
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By Lemma 3(i), when the designer can enforce the equilibrium she prefers, she can set

a contest rule and a tie-breaking rule such that player s wins the contest with probability

one and contestants’ surplus is fully extracted. If she cannot, Lemma 3(ii) shows that she is

able to induce a unique equilibrium in which player s wins with certainty and his payoff is

positive but arbitrarily close to zero.

Lemmas 2 and 3 enable us to reformulate the designer’s optimization problem. Under

Assumption 1, the designer’s objective is weakly increasing in contestants’ efforts. Therefore,

for any target probability profile pe, the designer strictly prefers the contest rule constructed

in the lemmas that induces the highest feasible effort profile xe = pe ◦ v. Consequently,

xe can be replaced by pe ◦ v, and she chooses the expected winning probability profile

pe ≡ (pe1, . . . , p
e
n) as the design variable to maximize an objective function Λ(pe ◦ v,pe,v),

subject to the constraint pe ∈ ∆n−1. The continuity of Λ imposed by Assumption 1 ensures

the existence of a maximum. The following result ensues.

Theorem 1 Suppose that Assumption 1 holds and the designer can select any equilibrium

she would like to induce whenever multiple equilibria exist. Then an optimal contest rule

(α∗,β∗) and tie-breaking rule ω∗ exist. The equilibrium winning probability profile p∗ under

the optimal contest solves maxpe∈∆n−1 Λ(pe ◦ v,pe,v) and the associated equilibrium effort

profile is x∗ = p∗ ◦ v.

Next, we continue with Example 1 and characterize the optimal contest under the ob-

jective function (2). By Lemmas 2 and 3, there exists a contest rule and an equilibrium for

this contest rule that leads to an arbitrary expected winning probability profile. However, as

noted in Step I in the proof of Lemma 2, a closed-form solution to the optimal contest rule

cannot be obtained in general.11 As a result, we focus on the expected winning probability

profile pe ≡ (pe1, . . . , p
e
n) and expected effort profile xe ≡ (xe1, . . . , x

e
n) when characterizing

the optimum.

Example 1 Suppose that the contest designer aims to maximize the objective function as

given by (2). In the optimal contest, contestants’ equilibrium winning probabilities are given

by

pei =


1+λ
2γ

{
vi − 1

τ
×
[(∑τ

j=1 vj

)
− 2γ

1+λ

]}
, for i ≤ τ,

0, for i > τ,

11Despite the lack of a closed-form solution, an algorithm that numerically searches for the optimal contest
rule can be developed from the proof of Lemma 2.
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where τ indicates the number of contestants who submit a positive bid with positive probability

and is given by

τ =


1, if γ

1+λ
≤ 1

2
(v1 − v2),

max

{
m = 1, . . . , n

∣∣∣ ∑m
j=1(vj − vm) <

2γ
1+λ

}
, if γ

1+λ
> 1

2
(v1 − v2).

The expected equilibrium effort profile in the optimal contest is xe = (pe1v1, . . . , p
e
nvn).

12

3.2 Discussion

In what follows, we elaborate on the implications of the results established in Section 3.1.

3.2.1 Multiplicative Biases vs. Additive Headstarts

The literature typically focuses on contest design with a single instrument, either mul-

tiplicative biases or headstarts. Kirkegaard (2012); Franke, Leininger, and Wasser (2018);

and Zhu (2021) show that in a revenue-maximizing all-pay auction, it is generally optimal

to employ both. The following can directly be inferred from Lemma 2 and its proof.

Remark 1 The two key steps in the proof of Lemma 2 imply that in general, the optimum

requires a combination of multiplicative biases (Step I) and additive headstarts (Step II) for

a general contest objective described by Assumption 1.

A proper combination of the two instruments allows the contest to achieve the frontier

of feasible expected effort profile. However, the same does not hold in generalized lottery

contests with ratio-form contest success functions. Consider a contest in which one’s winning

probability is given by

pi(xi,x−i) =


αif(xi) + βi∑n

j=1[αjf(xj) + βj]
, if

∑n
j=1[αjf(xj) + βj] > 0,

1

n
, if

∑n
j=1[αjf(xj) + βj] = 0,

(3)

where f(·) is twice differentiable, with f(0) = 0, f ′(xi) > 0, and f ′′(xi) ≤ 0 for all xi > 0.

In the extreme case in which αi > 0 and βi = 0 for some player i, while (αj, βj) = (0, 0) for

all j ∈ N \ {i}, we assume that player i wins automatically.Fu and Wu (2020) establish the

following result.

12Note that the expression for pei is undefined when γ = 0. In this case, the optimal solution is given by
pe1 = 1 and pei = 0 for all i > 1.

11



Remark 2 (Fu and Wu, 2020, Theorem 2) Suppose that the CSF is given as in (3)

and that Assumption 1 is satisfied. Then the optimum can always be achieved by choosing

only multiplicative biases α and setting headstarts β to zero.13

The contrast between Remarks 1 and 2 demonstrates that headstarts play different roles

in all-pay auctions and generalized lottery contests. By Remark 2, headstarts are not required

to optimize generalized lottery contests. As shown by Fu and Wu (2020), for any contest

rule that involves positive headstarts, one can always construct an alternative rule with

zero headstarts that induces the same equilibrium winning probability profile and higher

effort. However, an all-pay auction would invoke headstarts in the optimum. The two key

steps in the proof of Lemma 2 sketched in the main text reveal the logic: In the first step,

we resort to multiplicative biases α ≡ (α1, . . . , αn) to induce a given equilibrium winning

probability profile. We then further incentivize the contestant with the highest winning

probability by giving additive headstarts to his opponents, as in the second step. This

occurs because of the perfectly discriminatory nature of all-pay auctions: The headstarts

awarded to underdogs simply force the favorite to shift up the distribution of his effort,

which perfectly offsets the headstarts and preserves all contestants’ winning odds. This is

impossible in a noisy contest that leads to a pure-strategy equilibrium, given the probabilistic

nature of the winner-selection mechanism (3).

3.2.2 Full Surplus Extraction in All-pay Auctions

Franke, Leininger, and Wasser (2018) show that a proper combination of multiplicative

biases and additive headstarts can achieve a first-best result when the designer aims to

maximize expected total effort.14 Lemma 2, together with Lemma 3, implies that their

result extends to a large class of objective functions, as described by Assumption 1. To see

this, note that a contestant i ∈ N can always guarantee himself a payoff of at least zero

by investing zero effort. As a result, in every equilibrium of every contest (i.e., with an

arbitrary CSF), the expected payoff of contestant i must be nonnegative, i.e., xei ≤ peivi. By

Lemmas 2 and 3, with an appropriately designed contest rule and tie-breaking rule, every

13It should be noted that we do not allow for negative headstarts. Drugov and Ryvkin (2017) allow for
negative headstarts and show that a deviation from zero headstarts can locally improve the performance of
the contest, depending on the sign of the third derivative of the effort cost function.

14The first-best expected total effort is obviously max{v1, . . . , vn}. Attaining first best requires that the
strongest player win the contest with certainty. Similar to our Lemma 3, Franke, Leininger, and Wasser
(2018) show in their Proposition 4.7 that first best can be achieved if the designer is able to manipulate the
tie-breaking in favor of the strongest player. In addition, Franke, Leininger, and Wasser (2018) show in their
Proposition 4.8 that, with a symmetric tie-breaking rule, the contest designer can generate an amount of
expected total effort that is arbitrarily close to the first best.
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prize allocation that induces xei = peivi for each contestant i ∈ N can be implemented. This

implies immediately that all-pay auctions dominate any other contest mechanism—e.g., the

generalized lottery contest specified in (3)—in terms of the resultant (expected) effort xei .

Remark 3 Suppose that Assumption 1 is satisfied. For any other form of contest that

induces a pure-strategy equilibrium (e.g., a generalized lottery contest), there exists an all-

pay auction with a CSF as specified in (1) that generates a weakly higher payoff for the

contest designer.

A handful of studies examine the comparison between all-pay auctions and Tullock

contests—e.g., Fang (2002); Epstein, Mealem, and Nitzan (2011); Franke, Kanzow, Leininger,

and Schwartz (2014); and Franke, Leininger, and Wasser (2018). Our analysis sheds light on

this literature: It accommodates a broader design objective and establishes the dominance

of all-pay auctions over a larger class of contest mechanisms, i.e., any contest that induces

pure-strategy bidding.

4 Concluding Remarks

In this paper, we consider the optimal design of complete-information all-pay auctions

with general contest objectives.15 We apply the indirect approach suggested by Fu and Wu

(2020) and Deng, Fu, and Wu (2021) and characterize the general properties of the optimal

contest. In particular, we show that both instruments will be used in the optimum in general.

Further, an optimally designed all-pay auction can achieve full surplus extraction for a large

class of objectives.

Our framework leaves room for future extensions. We focus on expected efforts as a

measure of contestants’ incentives. Maximizing the expected winner’s effort is common in

the auction literature (e.g., Moldovanu and Sela, 2006) and has recently gained increasing

attention in studies of contests (e.g., Baye and Hoppe, 2003; Serena, 2017; Fu and Wu, 2020,

2022; Wasser and Zhang, 2023). Because contestants typically employ a mixed strategy in a

complete-information all-pay auction, incorporating the expected winner’s effort in the design

objective induces substantial nuances and is analytically challenging within our framework:

The expected winner’s effort is defined over the entire joint distribution of efforts based on

the whole profile of contestants’ mixed strategies. In contrast, each contestant’s expected

15For studies on the design of incomplete-information all-pay auctions, see, e.g., Gavious, Moldovanu, and
Sela (2002); Wasser and Zhang (2023); Antsygina and Teteryatnikova (2023).
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effort depends on his own bidding strategy.16 We leave exploration of this possibility to

future research.
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Appendix: Proofs

Proof of Lemma 2

Proof. Denote the expected equilibrium winning probability profile we would like to induce

with a symmetric tie-breaking rule ωf by p∗ ≡ (p∗1, . . . , p
∗
n) ∈ ∆n−1. Without loss of gener-

ality, let us assume p∗1 ≥ · · · ≥ p∗n. We apply the equilibrium characterization in Theorem 2

in Baye, Kovenock, and De Vries (1996) to prove the result for the case p∗1 > p∗2 ≥ · · · ≥ p∗n.

The case p∗1 = p∗2 ≥ · · · ≥ p∗n can be proved in a similar way by invoking Theorem 1 in Baye,

Kovenock, and De Vries (1996).

Step I (Introducing Multiplicative Biases): We show that, fixing an arbitrary p∗ ≡
(p∗1, . . . , p

∗
n) ∈ ∆n−1 such that p∗i ̸= 1 for all i ∈ N , we can construct a set of multiplicative

biases α∗ ≡ (α∗
1, . . . , α

∗
n) to induce p

∗. To proceed, we set β = 0 and choose α ≡ (α1, . . . , αn)

such that v̂1 > v̂2 = · · · = v̂n > 0, where v̂i := αivi for all i ∈ N . The prize valuation v̂2

can be an arbitrary positive real number and v̂1—or equivalently, the ratio v̂2/v̂1—will be

determined later in the proof.

Let Ĝi(xi) denote the CDF representing the equilibrium mixed-strategy of player i. By

Theorem 2 in Baye, Kovenock, and De Vries (1996), there exists a continuum of equilibria of

the unbiased all-pay auction with valuations v̂ and α̂ ≡ (1, . . . , 1), which is fully characterized

by a set of cutoffs (free parameters) b ≡ (b1, . . . , bn) that satisfy 0 = b1 = b2 ≤ · · · ≤ bn ≤ v̂2.

In equilibrium, player i stays inactive with some probability and bids continuously over (bi, v̂2]

with complementary probability. For notational convenience, let ci :=
v̂1−v̂2+bi

v̂1
for all i ∈ N .

Baye, Kovenock, and De Vries (1996) show that the following CDFs ⟨Ĝ1(x1), . . . , Ĝn(xn)⟩
constitute a mixed-strategy equilibrium of the unbiased all-pay auction:

∀x ∈
[
bn, v̂2

]
: Ĝ1(x) =

x

v̂2

[
v̂1 − v̂2 + x

v̂1

] 2−n
n−1

;

Ĝi(x) =

[
v̂1 − v̂2 + x

v̂1

] 1
n−1

, i ∈
{
2, 3, . . . , n

}
;

∀x ∈
[
bj, bj+1

)
, j ∈ {3, . . . , n− 1} : Ĝ1(x) =

x

v̂2

[
v̂1 − v̂2 + x

v̂1

] 2−j
j−1 ∏

k>j

c
− 1

(k−1)(k−2)

k ;

Ĝi(x) =

[
v̂1 − v̂2 + x

v̂1

] 1
j−1 ∏

k>j

c
− 1

(k−1)(k−2)

k , i ∈
{
2, . . . , j

}
;

Ĝk(x) = c
1

k−1

k

∏
s>k

c
− 1

(s−1)(s−2)
s , k ∈

{
j + 1, . . . , n

}
;
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∀x ∈
[
0, b3

]
: Ĝ1(x) =

x

v̂2

∏
k>2

c
− 1

(k−1)(k−2)

k ;

Ĝ2(x) =

[
v̂1 − v̂2 + x

v̂1

]∏
k>2

c
− 1

(k−1)(k−2)

k ;

Ĝk(x) = c
1

k−1

k

∏
s>k

c
− 1

(s−1)(s−2)
s , k ∈

{
3, . . . , n

}
.

According to the above equilibrium characterization, we can calculate contestant i’s expected

effort, which we denote by x̂ei . For notational convenience, define µ := v̂2/v̂1 < 1 and let

bn+1 := v̂2. The expected effort of player 1 can then be derived as

x̂e1 =

∫ v̂2

0

xdĜ1(x)

= v̂2 −
n∑

j=2

[∫ bj+1

bj

Ĝ1(x)dx

]

= v̂2 −
n∑

j=2

∫ bj+1

bj

x

v̂2

(
v̂1 − v̂2 + x

v̂1

) 2−j
j−1 ∏

k>j

c
− 1

(k−1)(k−2)

k dx


= v̂2 −

n∑
j=2

∫ cj+1

cj

v̂21
v̂2
(y − 1 + µ)y

2−j
j−1

∏
k>j

c
− 1

(k−1)(k−2)

k dy


= v̂2 −

v̂21
v̂2

n∑
j=2


[
j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)
− (1− µ)(j − 1)

(
c

1
j−1

j+1 − c
1

j−1

j

)]∏
k>j

c
− 1

(k−1)(k−2)

k

 .

(4)

Similarly, for contestant i ∈ {2, . . . , n}, we have that

x̂ei =

∫ v̂2

bi

xdĜi(x)

= v̂2 − biĜi(bi)−
n∑

j=i

[∫ bj+1

bj

Ĝi(x)dx

]

= v̂2 − biĜi(bi)−
n∑

j=i

∫ bj+1

bj

(
v̂1 − v̂2 + x

v̂1

) 1
j−1 ∏

k>j

c
− 1

(k−1)(k−2)

k dx


= v̂2 − biĜi(bi)−

n∑
j=i

v̂1 ∫ cj+1

cj

y
1

j−1

∏
k>j

c
− 1

(k−1)(k−2)

k dy


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= v̂2 − biĜi(bi)−
n∑

j=i

v̂1 j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)∏
k>j

c
− 1

(k−1)(k−2)

k


= v̂2 − v̂1(ci − 1 + µ)c

1
i−1

i

∏
k>i

c
− 1

(k−1)(k−2)

k −
n∑

j=i

v̂1 j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)∏
k>j

c
− 1

(k−1)(k−2)

k

 .
(5)

By Theorem 2 in Baye, Kovenock, and De Vries (1996), player 1 earns an expected payoff

of v̂1 − v̂2, while every other player receives an expected payoff of zero in the transformed

unbiased all-pay auction with valuations v̂ ≡ (v̂1, . . . , v̂n), i.e.,

p̂e1v̂1 − x̂e1 = v̂1 − v̂2, (6)

p̂ei v̂i = x̂ei , i ∈
{
2, . . . , n

}
, (7)

where p̂ei is contestant i’s expected winning probability.

Combining (4) and (6), we can obtain p̂e1 as a function of µ and c ≡ (c1, . . . , cn):

p̂e1(µ, c) =
x̂e1
v̂1

+
v̂1 − v̂2
v̂1

= 1− 1

µ

n∑
j=2


[
j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)
− (1− µ)(j − 1)

(
c

1
j−1

j+1 − c
1

j−1

j

)]∏
k>j

c
− 1

(k−1)(k−2)

k

 .

(8)

Similarly, combining (5) and (7), for i ∈ {2, . . . , n}, we have that

p̂ei (µ, c) =
x̂ei
v̂2

= 1− 1

µ
(ci − 1 + µ) c

1
i−1

i

∏
k>i

c
− 1

(k−1)(k−2)

k −
n∑

j=i

 1

µ

j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)∏
k>j

c
− 1

(k−1)(k−2)

k

 .
(9)

To prove the statement we made at the beginning of Step I, it suffices to construct

µ ∈ (0, 1) and c ≡ (c1, . . . , cn), with 1− µ = c1 = c2 ≤ · · · ≤ cn ≤ 1, such that p∗i = p̂ei (µ, c)

for all i ∈ N . To proceed, it is useful to prove an intermediate result.

Lemma 4 For any i ≥ 3, p̂ei (µ, c) is strictly decreasing in ci.
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Proof. p̂ei (µ, c) in (9) can be rewritten as

p̂ei (µ, c) =

1−
n∑

j=i+1

 1

µ

j − 1

j

(
c

j
j−1

j+1 − c
j

j−1

j

)∏
k>j

c
− 1

(k−1)(k−2)

k

− 1

µ

i− 1

i
c

i
i−1

i+1

∏
k>i

c
− 1

(k−1)(k−2)

k


+

1

µ

∏
k>i

c
− 1

(k−1)(k−2)

k

[
i− 1

i
c

i
i−1

i − (ci − 1 + µ)c
1

i−1

i

]
.

Therefore, it suffices to show that

h(ci) :=
i− 1

i
c

i
i−1

i − (ci − 1 + µ)c
1

i−1

i

is decreasing in ci. Simple algebra yields that

h′(ci) = − 1

i− 1

[
ci − (1− µ)

]
c

2−i
i−1

i ≤ 0,

where the inequality follows from ci ≥ c2 ≡ 1− µ for i ≥ 3. This concludes the proof.

We are now ready to prove the statement we made at the beginning of Step I. Note that

p̂ei (µ, c) is a function of µ and (ci, . . . , cn), and is independent of (c1, . . . , ci−1) for i ≥ 3. With

slight abuse of notation, we write p̂ei (µ, c) in (9) as p̂ei (µ, ci, . . . , cn) in what follows.

Fix p∗ ≡ (p∗1, . . . , p
∗
n). We recursively define a set of functions

{
c̃i(µ)

}n

i=1
and a function

ψ(µ) as follows:

Step 0: Set ψ(µ) = 1, and define c̃n(µ) as

c̃n(µ) :=

1− µ, if p̂en(µ, 1− µ) < p∗n,

The unique solution to p̂en(µ, cn) = p∗n, otherwise.
(10)

Lemma 4, together with the fact that p̂en(µ, 1) = 0, implies that c̃n(µ) is well defined

and c̃n(µ) ∈ [1 − µ, 1]. If p̂en(µ, 1 − µ) < p∗n, define c̃i(µ) = 1 − µ for i ≥ 3, update

ψ(µ) = n, and move to Step n− 2. Otherwise, we proceed to Step 1.

Step j ∈ {1, . . . , n− 3}: Define c̃n−j(µ) as

c̃n−j(µ) :=

1− µ, if p̂en−j

(
µ, 1− µ, c̃n−j+1(µ), . . . , c̃n(µ)

)
< p∗n−j,

The unique solution to p̂en−j

(
µ, cn−j, c̃n−j+1(µ), . . . , c̃n(µ)

)
= p∗n−j, otherwise.
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Lemma 4, together with the fact that p̂en−j

(
µ, c̃n−j+1(µ), c̃n−j+1(µ), . . . , c̃n(µ)

)
= p∗n−j+1 ≤

p∗n−j, implies that c̃n−j(µ) is well defined and c̃n−j(µ) ∈
[
1−µ, c̃n−j+1(µ)

]
. If p̂en−j

(
µ, 1−

µ, c̃n−j+1(µ), . . . , c̃n(µ)
)
< p∗n−j, define c̃i(µ) = 1 − µ for i ∈ {3, . . . , n − j}, update

ψ(µ) = n− j, and move to Step n− 2. Otherwise, we proceed to Step j + 1.

Step n− 2: Set c̃1(µ) = c̃2(µ) = 1− µ.

Let c̃(µ) :=
(
c̃1(µ), . . . , c̃n(µ)

)
. Fixing µ, we can calculate c̃(µ) and ψ(µ) through the

steps above. To complete the proof, it suffices to show that there exists µ ∈ (0, 1] such that

p̂e1
(
µ, c̃(µ)

)
= p∗1 and ψ(µ) = 1.

We first show that there exists a solution to p̂e1
(
µ, c̃(µ)

)
= p∗1. It can be verified that c̃(µ)

is continuous on the interval µ ∈ (0, 1]. Moreover, it follows from Equation (10) and the

construction in Step 0 that c̃(µ) = (1 − µ, . . . , 1 − µ) when µ is sufficiently small; together

with Equation (8), we have that limµ↘0 p̂
e
1

(
µ, c̃(µ)

)
= 1 > p∗1. Therefore, it suffices to show

that p̂e1
(
1, c̃(1)

)
< p∗1. We consider two cases:

Case (a): ψ(1) = 1. Then c̃2 = 1 − µ = 0, and thus p̂e1
(
1, c̃(1)

)
= p̂e2

(
1, c̃2(1), . . . , c̃n(1)

)
by (8) and (9). Moreover, we have that p̂ej

(
1, c̃j(1), . . . , c̃n(1)

)
= p∗j for all j ≥ 3.

Therefore, we have that

p̂e1
(
1, c̃(1)

)
= p̂e2

(
1, c̃2(1), . . . , c̃n(1)

)
=
p∗1 + p∗2

2
< p∗1.

Case (b): ψ(1) ̸= 1. For notational convenience, let κ := ψ(1) ≥ 3. By (8), (9), and the

definition of ψ(·), p̂ej
(
1, c̃j(1), . . . , c̃n(1)

)
= p∗j for all j ≥ κ+ 1 and p̂e1

(
1, c̃(1)

)
= · · · =

p̂eκ
(
1, c̃κ(1), . . . , c̃n(1)

)
. By the same argument used in Case (a), we have that

p̂e1
(
1, c̃(1)

)
=

∑κ
i=1 p

∗
i

κ
< p∗1.

Denote the solution to p̂e1
(
µ, c̃(µ)

)
= p∗1 by µ∗. It remains to show that κ∗ := ψ(µ∗) = 1.

Suppose, to the contrary, that κ∗ ≥ 3. Then

p̂ej
(
µ∗, c̃j(µ

∗), . . . , c̃n(µ
∗)
)
= p∗j for all j ≥ κ∗ + 1,

and

p̂e2
(
µ∗, c̃2(µ

∗), . . . , c̃n(µ
∗)
)
= · · · = p̂eκ∗

(
µ∗, c̃κ∗(µ∗), . . . , c̃n(µ

∗)
)
< p∗κ∗ ,
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by (9) and the definition of ψ(·). Therefore, we have that

p̂e1
(
µ∗, c̃(µ∗)

)
= 1−

κ∗∑
i=2

p̂ei
(
µ∗, c̃i(µ

∗), . . . , c̃n(µ
∗)
)
−

n∑
i=κ∗+1

p̂ei
(
µ∗, c̃i(µ

∗), . . . , c̃n(µ
∗)
)

> 1− (κ∗ − 1)p∗κ∗ −
n∑

i=κ∗+1

p∗i

≥ 1−
κ∗∑
i=2

p∗i −
n∑

i=κ∗+1

p∗i = p∗1,

which contradicts p̂e1
(
µ∗, c̃(µ∗)

)
= p∗1. Therefore, p̂ei

(
µ∗, c̃(µ∗)

)
= p∗i for all i ∈ N and

ψ(µ∗) = 1.

Step II (Introducing Additive Headstarts): Denote the set of multiplicative biases

we constructed in Step I that leads to p∗ ≡ (p∗1, . . . , p
∗
n) by α∗ ≡ (α∗

1, . . . , α
∗
n). Let

v̂∗i := α∗
i vi for all i ∈ N and denote the corresponding equilibrium strategy profile un-

der (v̂∗, α̂) := ⟨(v̂∗1, . . . , v̂∗n), (1, . . . , 1)⟩ and zero headstarts by ⟨Ĝ∗
1(x1), . . . , Ĝ

∗
n(xn)⟩. Denote

player i’s expected equilibrium effort by x̂e∗i .

By Lemma 1, there exists an equilibrium strategy profile under (v,α∗) and zero head-

starts, which we denote by ⟨G∗
1(x1), . . . , G

∗
n(xn)⟩, that leads to the profile of the expected

winning probabilities p∗ ≡ (p∗1, . . . , p
∗
n); moreover, contestant i’s expected effort in the equi-

librium, which we denote by xe∗1 , satisfies

xe∗1 =
x̂e∗1
α∗
1

= p∗1
v̂∗1
α∗
1

− v̂∗1 − v̂∗2
α∗
1

= p∗1v1 −
α∗
1v1 − α∗

2v2
α∗
1

< p∗1v1,

xe∗i =
x̂e∗i
α∗
i

= p∗i
v̂∗i
α∗
i

= p∗i vi, for i ∈ {2, . . . , n}.

In fact, ⟨G∗
1(x1), . . . , G

∗
n(xn)⟩ = ⟨Ĝ∗

1(α
∗
1x1), . . . , Ĝ

∗
n(α

∗
nxn)⟩.

Next, we introduce additive headstarts to the contest rule. To be more specific, consider

the following contest rule (α†,β†):

(α†
i , β

†
i ) :=

 (α∗
1, 0), for i = 1,

(α∗
i , α

∗
1v1 − α∗

2v2) , for i ∈ {2, . . . , n}.
(11)

It can be verified that a mixed-strategy equilibrium exists in the all-pay auction under the

contest rule (α†,β†), in which player 1 randomizes according to CDF Ĝ∗
1

(
α∗
1x1 − (α∗

1v1 − α∗
2v2)

)
and player i ∈ {2, . . . , n} randomizes according to CDF Ĝ∗

i (α
∗
ixi). It is straightforward to
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verify that this equilibrium strategy profile again leads to the expected equilibrium winning

probability profile p∗ ≡ (p∗1, . . . , p
∗
n) and contestant i’s expected effort is p∗i vi, which in turn

implies that each contestant earns an expected payoff of zero.

Step III (Proving Payoff Equivalence): We show that all equilibria under the contest

rule (α†,β†) outlined in Step II are payoff equivalent—i.e., each contestant’s expected payoff

is zero in every equilibrium. The result for the case of n = 2 follows immediately from Lemma

1 in Li and Yu (2012) and we focus on the case of n ≥ 3 in what follows.

Let ⟨G̃∗
1(x1), . . . , G̃

∗
n(xn)⟩ denote an equilibrium strategy profile under prize valuations

v and the contest rule (α†,β†) under symmetric tie-breaking, as defined in (11). It can be

verified that the strategy profile ⟨Ǧ∗
1(x1), . . . , Ǧn(xn)⟩ := ⟨G̃∗

1(x1/α
†
1), . . . , G̃

∗
n(xn/α

†
n)⟩ consti-

tutes an equilibrium of the contest game with prize valuations v̂∗ = (v̂∗1, . . . , v̂
∗
n) and contest

rule (α̂, β̂) = ⟨(1, 1, . . . , 1), (0, v̂∗1 − v̂∗2, . . . , v̂
∗
1 − v̂∗2)⟩. Further, player i’s equilibrium payoff

under ⟨Ǧ∗
1(x1), . . . , Ǧn(xn)⟩ equals α†

i times that under ⟨G̃∗
1(x1), . . . , G̃

∗
n(xn)⟩. Therefore, it

suffices to show that in a contest with prize valuations v̂∗ and contest rule (α̂, β̂) under sym-

metric tie-breaking, an arbitrary equilibrium strategy profile ⟨Ǧ∗
1(x1), . . . , Ǧn(xn)⟩ generates

zero expected equilibrium payoff for all contestants.

Clearly, for player 1, choosing x1 ∈ (0, v̂∗1 − v̂∗2) is strictly dominated by choosing x1 = 0.

If player 1 chooses positive effort with probability one, the game is isomorphic to one in

which headstarts are set to zero and multiplicative biases remain unchanged for all players,

and the payoff equivalence result follows immediately from Theorem 2 in Baye, Kovenock,

and De Vries (1996). In what follows, we restrict attention to the equilibrium in which

player 1 chooses x1 = 0 with a strictly positive probability, which implies that player 1’s

expected payoff is zero. It suffices to show that players 2 through n receive zero payoff in

the equilibrium.

Denote the upper bound and lower bound of the support of Ǧi by s̄i and si, respectively.

By an argument similar to the proof of Lemma 2 in Baye, Kovenock, and De Vries (1996),

we can show that si = 0 for all i ≥ 2. Consider the following three cases depending on the

number of players (including player 1) who choose xi = 0 with a strictly positive probability,

which we denote by np:

Case (a): np = n. We show that this case is impossible. Note that (α̂i, β̂i) = (1, v̂∗1 − v̂∗2) ≥
(1, 0) = (α̂1, β̂1) for all i ∈ {2, . . . , n}; together with the postulated np = n ≥ 3, we

can conclude that player i ∈ {2, . . . , n} wins with a positive probability when he bids

zero. This implies that he can strictly increase his expected payoff by exerting an

infinitesimal effort—a contradiction.
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Case (b): np ≤ n− 2. Denote the set of players whose equilibrium bidding strategy does

not have an atom at 0 by N0. We have that |N0| = n−np ≥ 2. Note that player 1 bids

zero with a positive probability and thus 1 /∈ N0. Fix an arbitrary player i ∈ N \ {1}
and a player j ∈ N0, with j ̸= i. We have that (α̂i, β̂i) = (1, v̂∗1−v̂∗2) = (α̂j, β̂j). Further,

player i’s winning probability approaches zero as his effort xi approaches zero, because

player j will outbid him with probability one; together with the fact that si = 0, we

can conclude that player i’s expected equilibrium payoff is zero for all i ∈ N \ {1}.

Case (c): np = n− 1. There exists exactly one player whose strategy does not have an atom

at 0. Suppose it is player 2 without loss of generality. By an argument similar to

that laid out in Case (b), we can verify that the winning probability of player i ≥ 3

approaches zero as his bid approaches zero, because player 2 will outbid him with prob-

ability one; together with the fact fact si = 0, we can conclude that player i’s expected

equilibrium payoff is zero. It remains to show that player 2’s expected equilibrium

payoff, denoted by ǔ2, is also zero.

By an argument similar to the proof of Lemma 5 in Baye, Kovenock, and De Vries

(1996), we can deduce that Ǧi(x) and Ǧ1(x− v̂∗1 + v̂
∗
2) are all continuous on (0, v̂∗2]. Let

A(x) := Ǧ1(x− v̂∗1 + v̂∗2)×
∏n

i=2 Ǧi(x) and Ai(x) := A(x)/Ǧi(x) for each i ∈ N \ {1}.
By the continuity of Ǧi(x) and Ǧ1(x− v̂∗1 + v̂

∗
2), Ai(x) gives the probability that player

i wins the prize when his effort is x.

Suppose, to the contrary, that ǔ2 > 0. Then we have that

0 < ǔ2 = v̂∗2A2(s̄2)− s̄2 ≤ v̂∗2 − s̄2,

from which we can conclude that s̄2 < v̂∗2. Moreover, we have that

ǔ2 = v̂∗2A2(s̄2)− s̄2 = v̂∗2A(s̄2)/Ǧ2(s̄2)− s̄2 = v̂∗2A(s̄2)− s̄2,

or equivalently,

A(s̄2) =
s̄2 + ǔ2
v̂∗2

. (12)

Recall that the expected equilibrium payoff of player i ≥ 3 is zero. Therefore, bidding

xi = s̄2 cannot generate a strictly positive expected payoff for player i—i.e.,

0 ≥ v̂∗2Ai(s̄2)− s̄2 = v̂∗2A(s̄2)/Ǧi(s̄2)− s̄2 =
s̄2 + ǔ2

Ǧi(s̄2)
− s̄2, (13)

where the last equality follows from (12). Rearranging (13) yields that Ǧi(s̄2) ≥
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1 + ǔ2/s̄2 > 1, a contradiction.

This concludes the proof.

Proof of Lemma 3

Proof. For notational convenience, we assume s = 1 without loss of generality. Let

(α∗,β∗) = ⟨(1, 0, . . . , 0), (0, v1 − ε, . . . , v1 − ε)⟩ with 0 ≤ ε < v1 and consider the follow-

ing tie-breaking rule:

ωi(M) =


1, i = 1 and 1 ∈ M,

0, i ̸= 1 and 1 ∈ M,
1

|M| , otherwise.

Evidently, for each player i with i ≥ 2, xi > 0 is strictly dominated by xi = 0. Therefore,

they choose zero effort in the equilibrium.

Next, consider player 1. When ε = 0, player 1 is indifferent between choosing 0 and v1,

and there exist two equilibria of the contest game: x = (0, . . . , 0) and x = (v1, 0, . . . , 0).

When ε ∈ (0, v1), player 1 would optimally choose x1 = v1 − ε, and x = (v1 − ε, 0, . . . , 0)

constitutes the unique equilibrium of the contest game.

Proof of Theorem 1

Proof. By Lemmas 2 and 3, for any pe, the effort profile xe = pe ◦ v is feasible. Since

any feasible effort must satisfy xei ≤ peivi, this profile yields the highest expected effort for

a given pe. By Assumption 1, the objective function Λ is weakly increasing in xei for all

i ∈ N , implying that the designer optimally chooses xe = pe ◦v. Consequently, the problem
reduces to maxpe∈∆n−1 Λ(pe ◦ v,pe,v). The existence of an optimal solution then follows

directly from the continuity of Λ (as imposed by Assumption 1) and the compactness of

∆n−1.
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