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Abstract

We consider the optimal design of complete-information all-pay auctions with mul-
tiple heterogeneous players when a designer can manipulate contestants’ relative com-
petitiveness by imposing identity-dependent treatments. Three types of instruments
are considered: (i) multiplicative biases that assign individualized weights to each
contender’s effective effort, (ii) additive headstarts that directly add to it, and (iii)
tie-breaking rule. We show that in general, both multiplicative biases and additive
headstarts will be used for contest design. Moreover, the contest designer is able to
induce every allocation of the prize while achieving full surplus extraction with an

appropriately designed contest rule and tie-breaking rule.
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1 Introduction

A wide variety of competitive activities resemble a contest. Athletes vie for trophies;
interest groups lobby for policy influence; firms race toward technological breakthroughs;
and workers climb higher rungs in the hierarchy within a firm. In all these scenarios, con-
tenders expend costly effort to compete for limited prizes, while competitive outlays are
nonrefundable regardless of the outcome.

A voluminous body of economics literature has examined contestants’ strategic behavior
and the optimal design of contests. An all-pay auction—which fully rewards superior effort—
is an intuitive framework for modeling the prize allocation mechanism. It awards the prize
to the highest bidder with certainty: In its simplest form, a contestant wins the contest with

probability one if his effort x; exceeds those of the others, i.e.,
pl(m) = 1, if xT; > {lfj,Vj 7é i,

for a given set of effort entries @ := (z1,...,z,).

In this paper, we explore the optimal design of all-pay auctions when a contest designer
is able to award identity-dependent preferential treatments to contestants to manipulate the
competitive balance of the playing field. The economics literature has long espoused the
strategic use of preferential treatments tailored to individual characteristics to incentivize

effort supply: A contest designer can strategically favor or handicap contestants to bias the

competition to promote her own interests (e.g., Siegel, 2014} |Szech| 2015)). The prevalence

of this practice is evidenced by the numerous examples documented in the literatureEl

Two instruments are broadly adopted in the literature to model the biases imposed
on contestants’ effort entries: (i) multiplicative biases and (ii) additive headstartsP| The
former—e.g., and [Epstein, Mealem, and Nitzan| (2011)—places a fixed weight
on a contestant’s effort, while the latter—e.g., Kirkegaard| (2012)) and [Pastine and Pastine
—directly adds to it. In a biased all-pay auction, each contestant’s effort is adjusted

by the biases and converted into a score, and the highest-scoring contestant wins the prize.

We consider a multi-player all-pay auction and allow the designer to use both instruments
to optimize a general design objective. [Fu and Wu| (2020) and Deng, Fu, and Wul (2021)

develop an indirect optimization approach for the design of biased lottery contests. We

!See also Mealem and Nitzan| (2016); Chowdhury, Esteve-Gonzalez, and Mukherjee| (2023); and

(2019) for thorough surveys of this strand of the literature.
Other design instruments considered in the literature include bid caps and taxes/subsidies. See, e.g.,

Che and Gale| (1998, 2006)); (Glazer and Konrad, (1999); |Gavious, Moldovanu, and Sela/ (2002); Kaplan and
Wettstein| (2006); [Pastine and Pastine (2013); Mealem and Nitzan| (2014)); |Olszewski and Siegel (2019); [Fu,
Wu, and Zhul (2023); and |Cohen, Darioshi, and Nitzan| (2022)), among others.




adapt this approach to the setting of all-pay auctions. This allows us to (i) characterize the
feasibility frontier of the contest under a general objective function, then (ii) demonstrate
that an optimally designed all-pay auction, with the use of both multiplicative biases and
headstarts, can achieve the feasibility frontier and fully extract each contestant’s surplus.
The result also implies that a properly designed all-pay auction outperforms all possible
contest mechanisms that yield pure-strategy equilibriaﬂ

Our paper extends the literature in three ways. First, we construct a general objective
function that encompasses a broad array of scenarios. The literature on contest design
typically focuses on specific objective functions, with the majority aiming to maximize total
effort. Examples include Kirkegaard (2012); |Li and Yu (2012); Franke, Kanzow, Leininger,
and Schwartz| (2014); and |Franke, Leininger, and Wasser| (2018). However, the pursuit of
alternative objectives is not uncommon in practice. For example, to promote a sporting
event, the organizer may create more suspense about its outcome (see Chan, Courty, and
Hao, 2008), in which case the organizer cares about the winning probabilities of participants.
Alternatively, in public procurement, a government (as a buyer) could be concerned about
domestic suppliers’ efforts and also (as a social planner) concerned about their welfare (see
Epstein, Mealem, and Nitzan, 2011)). We construct an objective function that encompasses
a diverse array of preferences.

Second, our analysis departs from the usual two-player setting and allows for an arbitrary
number of contestants. Equilibrium analysis of all-pay auctions with three or more players
poses a technical challenge when contestants are heterogeneous and biases can be imposed.
Fu and Wu| (2020) develop an alternative technique that bypasses the analytical difficulty in
generalized lottery contests. In this paper, we revive the equilibrium characterization result
of Baye, Kovenock, and De Vries (1996]), which further allows us to adapt the approach of
Fu and Wu| (2020)) to all-pay auctions.

Third, thanks to the optimization approach described above, our analysis allows the
designer to choose an arbitrary combination of multiplicative biases, headstarts, and tie-
breaking rule. In most prior studies of optimally biased contests, the designer is endowed with
a single instrument (e.g., Franke, Kanzow, Leininger, and Schwartz, [2014)). We demonstrate
that the optimum, in general, requires that the multiplicative biases and headstarts be
imposed together. Notable exceptions include Kirkegaard| (2012); [Franke, Leininger, and
Wasser| (2018); and |Zhu| (2021]). However, these studies focus on specific objective functions.

The rest of the paper is organized as follows. Section [2| sets up the contest model and

3Franke, Leininger, and Wasser| (2018) show that an all-pay auction, with a proper combination of mul-
tiplicative biases and headstarts, can achieve the first best. However, they only consider the maximization
of total effort.



describes the objective function for contest design. Section [3| conducts the analysis and

discusses its implications, and Section [4] concludes. Proofs are collected in the Appendix.

2 The Model

There are n > 2 risk-neutral contestants competing for a prizeEl The prize has a value
v; > 0 for each contestant i € N' = {1,...,n}—with v; > --- > v,~—which is commonly
known. To win the prize, contestants simultaneously commit to their efforts x; > 0. One’s

bid incurs a unity marginal effort cost.

Winner-selection Mechanism and Design Instruments Fixing a set of effort entries
x = (x1,...,2,) > (0,...,0), let us denote by p;(x;,€_;) a contestant i’s probability of
winning the contest, where x_; = (21, ..., %1, Tiy1,- . ., Tp) is the effort profile of his rivals.

Contestant ¢’s probability of winning the contest—i.e., the contest success function (CSF)—is

given by
1, if o;T; + 5@ > maX;-; {Oéj[L‘j + ﬂj}a

pi(ri, ) = ¢ wi(M), ifieM:={m:antm+ Bn > ajz;+ B;,Vj € N} and M| > 2,
O, if ;T + ﬁl < max;-; {ozjxj + Bj}a

1)
where a; > 0 and §; > 0 are the multiplicative biases and additive headstarts the designer
imposes on each contestant i € N, respectively. Both instruments are popularly adopted
in the literature to model preferential treatments. For multiplicative biases, see ;
[Franke, (2012); Franke, Kanzow, Leininger, and Schwartz (2014)); and [Epstein, Mealem, and|
(2011)). For headstarts, see|Clark and Riis| (2000); Konrad| (2002); [Siegel (2009} [2014));
Li and Yu| (2012)); and [Seel and Wasser| (2014)). Kirkegaard (2012); Franke, Leininger, and|

(2018)); and (2021)) allow for both.

According to , a contestant ¢ wins the contest if his effective output or score—i.e.,

a;x; + Bi—exceeds that of all others. Suppose that multiple players achieve the maximum
effective output or score. Denote this set of players by M C N, with |[M| > 2. A player
i € M wins with a probability w;(M), with w;(M) > 0 and Y, \,;wi(M) = 1. We
allow the designer to determine the winning probability profile in this case—i.e., the tie-
breaking rule. Note that a fair tie-breaking rule that breaks ties symmetrically corresponds

to w! (M) := ﬁ for all M C N. For expositional convenience, denote a general tie-breaking

i

4For studies relaxing the assumption of risk neutrality, see, e.g., |Chen, Ong, and Segev| (2017)); [Klose and|
[Schweinzer| (2022).




rule {(wi(M))iEM}MCN M[>2 and a symmetric tie-breaking rule {(wif(M))ieM}McN Mz2
by w and w’, respectively.

Contestant i’s expected payoff can then be written as
(i, ) = pi(x;, @) - v; — xy, for all i € N

Contest Objective It is well known that a complete-information all-pay auction, in gen-
eral, does not have pure-strategy equilibria.ﬂ Let G;(#;) denote an arbitrary cumulative
distribution function (CDF) that represents the mixed-strategy of player i; let S; denote
the support of this distribution. Fixing an arbitrary strategy profile (G1(z1),...,Gy(z,)),
denote by zf and pf, respectively, contestant i’s expected effort fz es, 2;dG;(z;) and expected
winning probability [ --- fwex?ﬂsi pi(Ti, x_;)dGi(xy) - - - dGp(xy,).

We assume that the contest designer’s objective function, which we denote by A(:),
is a function of the profile of expected efforts x¢ := (z5,...,2%); the profile of expected
winning probabilities p® := (p§, ..., p%); and the profile of contestants’ prize valuations v :=
(v1,...,v,). The following assumption is imposed on the objective function A(-) throughout

the paper.

Assumption 1 Fizing v = (vy,...,v,), Az, p°,v) is continuous with respect to ¢ and

p° and is weakly increasing in x¢ for all i € N.

Two remarks are in order. First, Assumption [I| requires that contestants’ expected ef-
forts accrue to the benefit of the contest designer, holding fixed contestants’ expected winning
probabilities and prize valuations. Note that both x¢ = (zf,...,z%) and p® = (pf,...,p5)
are defined over contestants’ strategy profile (Gy(x1),...,Gn(z,)). Therefore, changing con-
testants’ mixed-strategy profile in a way that changes ¢ also changes p® in general.

Second, Assumption [I] specifies a mild regularity condition, and the objective function
A(+) encompasses a broad array of scenarios for contest design. It can be satisfied by many
popularly studied objective functions in the literature. The following example demonstrates

the versatility of A(-).

Example 1 The following objective function satisfies Assumption [1:

n n n 1 2
A(z®, p¢,v) == me + )\prvi — VZ (pj3 — —) , with A,y > 0. (2)
n
i=1 i=1 i=1

9Pastine and Pastine| (2023) incorporate constraints on players’ actions in a broad class of complete
information all-pay auctions and derive closed-form formulae for their equilibrium expected payoffs.




In the case of X = v = 0, the above expression degenerates to Az, p®,v) => "  zf—i.e.,
mazimization of expected total effort—which is the most widely assumed objective for contest
design in the literature. In addition to expected effort supply, the contest designer may be
concerned about selection efficiency and/or the closeness of the competitionﬁ The former
is captured by the term Y . | pfv;, which is the expected prize valuation of the winner. The
contest objective accommodates the concern about selection efficiency when A > 0. Note
that the concern for selection efficiency also alludes to a preference for contestants’ welfare
(see |[Epstein, Mealem, and Nitzan, 2011)): Ceteris paribus, contestants’ aggregate welfare—
i.e., > (pfv; — xf)—improves when the prize is distributed to the one with the highest
valuation.

The latter is captured by the term Y ., (pf — 1/n)2, which depicts a typical scenario
in the administration of sporting events: Spectators often not only appreciate contenders’
efforts, but also demand suspense about the contest outcome. The term is the variance of
the expected equilibrium winning probability profile, which measures the predictability of the
competitive event. The objective function thus reflects the designer’s preference for a closer

race when v > 0.

Contest Design Prior to the competition, the designer, anticipating contestants’ equilib-
rium bidding strategies, chooses and commits to a contest rule (e, 3) := (a1, ..., @), (B1, .-, 5n))
> ((0,...,0),(0,...,0)), as well as a tie-breaking rule w, to maximize A(-). Therefore, the
optimal contest design problem yields a constrained optimization problem. A change in the
contest rule (a, 3) would reshape contestants’ equilibrium bidding strategies, which in turn
would vary their expected equilibrium efforts and winning probabilities.

As noted by [Franke, Leininger, and Wasser (2018), a complete characterization of the
set of equilibria of all-pay auctions with headstarts has yet to be provided in the literature.
Further, Baye, Kovenock, and De Vries| (1993} |1996]) show that there may exist a continuum
of mixed-strategy equilibria in an unbiased all-pay auction with three or more players. In
what follows, we assume that (i) the contest designer is restricted to choosing from the

set of contest rules under which a (mixed-strategy) Nash equilibrium exists{] and (ii) the

SFor contest design for selection efficiency, see [Meyer| (1991); Hvide and Kristiansen| (2003); Ryvkin and
Ortmann| (2008)); and [Fang and Noe| (2022). For economics studies of suspense in competition, see [Fort
and Quirk| (1995)); [Szymanski| (2003)); Runkel (2006); |Chan, Courty, and Hao| (2008); and [Ely, Frankel, and
Kamenical (2015)).

“An equilibrium may fail to exist for some contest rules and tie-breaking rules. To see this, suppose
that n = 2 and consider a symmetric tie-breaking rule. Further, set (v1,v2) = (1,1), (a1,81) = (4,0), and
(a2, B2) = (0,1). Contestant 2 would choose zero effort if an equilibrium exists. However, contestant 1’s
best response is not well defined: His expected payoff by bidding x1 = 1/4 is 1/4, while he would expect a
jump in his payoff if he bids slightly above 1/4, which ensures a win.



equilibrium most favorable to the contest designer is selected when multiple equilibria eXistE]

3 Analysis and Results

Studies on the optimal design of complete-information all-pay auctions typically assume
two players and employ a direct brute-force approach: They first solve for the unique equilib-
rium bidding strategy for any given contest rule (a, 3), insert the solution into the objective
function, and then search for the optimal rule (e.g., Epstein, Mealem, and Nitzan) 2011} |Li
and Yu, 2012; Zhu, 2021). This approach relies on equilibrium characterization and cannot
be applied to the multi-player setting (n > 3) because, as noted previously, a complete equi-
librium characterization of a biased multi-player all-pay auction is technically challenging
and is absent from the literaturel’

To overcome this difficulty, the literature usually takes an indirect constructive approach.
For instance, Franke, Kanzow, Leininger, and Schwartz (2014) investigate effort-maximizing
multiplicative biases. They first establish an upper bound and a lower bound for the contest
performance, then show that the two bounds coincide. Similarly, Franke, Leininger, and
Wasser, (2018) search for optimal combinations of multiplicative biases and headstarts that
maximize expected total effort. Again, they construct a contest rule to achieve the maximum
expected total effort (revenue), which corresponds to the highest prize valuation among
contestants. Their constructions are effective when total effort (revenue) is the focus, but
may lose value when alternative objectives are pursued in contest design.

Our analysis borrows from the indirect approach proposed by Fu and Wul (2020) and
Deng, Fu, and Wu (2021), which can be summarized as follows. Instead of focusing on
contestants’ equilibrium effort profile under a contest rule, we take a detour and focus on
the expected equilibrium winning probability profile. Specifically, we show that all expected
winning probability profiles—except those in which some contestant wins the contest with
probability one—can be induced by some contest rule under symmetric tie-breaking. If the
designer is allowed to manipulate the tie-breaking rule, all expected winning probability
profiles can be induced in equilibrium. We then demonstrate that we can maintain an
expected equilibrium winning probability profile, while modifying the contest rule to fully

extract surplus from each contestant, which closes the loop.

8These two restrictions are innocuous. As will become clear later, the contest rule we construct in
Lemma [2] fully extracts each contestant’s surplus and thus achieves the first-best result, given that no one
wins with certainty; moreover, all equilibria under the constructed contest rule are payoff equivalent for all
contestants. Lemma [3| provides further support for the plausibility and relevance of our exercises.

9See |Siegel (2009, [2014) and [Franke, Leininger, and Wasser| (2018) for important results on equilibrium
characterization.



In the remainder of this section, we first present the main result, then discuss the impli-

cations of our results in relation to the literature.

3.1 Optimal All-pay Auction

Before we proceed to the formal analysis, it is useful to state the following.

Definition 1 (Feasible Effort Profile) An expected effort profile ¢ = (xf,...,x5) is
feasible for the expected winning probability profile p¢ € A™1 if there exists a contest rule
(e, 3) > (0,0), a tie-breaking rule w, and an equilibrium for this contest and tie-breaking

rule that generates the expected effort profile ¢ and leads to p°.

Suppose B8 = 0. Let 0; := ov; and © = (01,...,0,). Denote by az(xl) the CDF
that represents the equilibrium mixed-strategy of player ¢ and by §Z the support of the
distribution in an unbiased contest, i.e., o; = «; > 0 for all 4, j € M. Further, denote by
z¢ and pg, respectively, contestant ¢’s expected effort fx 3 xld@(xz) and expected winning
probability [ - fmex?ﬂ@ pi(;, w_i)dé'l(xl) e d@n(xn). The following result presented by
Franke, Kanzow, Leininger, and Schwartz (2014) allows us to transform the biased all-pay
auction with zero headstarts—i.e., with a; # «; for some i, j € N—into a standard unbiased

all-pay auction.

Lemma 1 Consider a biased all-pay auction contest with zero headstarts and a symmet-

ric tie-breaking rule w/. For every equilibrium strategy profile (Gi(x1),...,Gp(z,)) un-
der (v, ), there exists an equilibrium strategy profile (G (z1),.. ., Gn(x)) under (9, é) =
((aqv1, ..., anvy), (1,...,1)) such that ©¢ = oa§ for all i € N'. Moreover, the equilibrium

strategy profile (G1(z1), ..., Gn(xn)) under the contest rule o and (Gy(xy), ..., Gp(xy)) un-

der & lead to the same profile of expected winning probabilities, i.e., (pS, ..., pE) = (p5, ..., p).

Lemma (1| unveils the strategic equivalence between the biased all-pay auction and the
transformed unbiased counterpart, which revives the equilibria characterization result of

Baye, Kovenock, and De Vries| (1996)) in our setting. We obtain the following key result.

Lemma 2 Consider all-pay auctions with a CSF as specified in under symmetric tie-
breaking and fix an arbitrary p¢ € A"' such that p¢ # 1 for alli € N. Then x¢ =
(xf,...,25%) = p*owv = (pfv1,...,p5ov,) is feasible for p® under some contest rule (e, 3).
Moreover, there exist multiple equilibria under the contest rule (o, 3) and the symmetric

tie-breaking rule w’, and all equilibria are payoff equivalent for contestants.



Two remarks are in order. First, Lemma [2| states that for every expected winning prob-
ability profile p® such that p¢ # 1 for all i € N, there exists a contest rule (a,3) under
symmetric tie-breaking that induces p® and a profile of expected efforts ¢ = (p§ovy, ..., pSv,).
Obviously, each player’s participation constraint binds under this contest rule, which indi-
cates that the maximum expected effort is achieved. It is thus innocuous to restrict the
designer’s choice to the set of contest rules under which an equilibrium exists when the
designer values contestants’ expected efforts, since she is able to fully extract contestants’
surplus.

Second, all equilibria are payoff equivalent for contestants under the constructed contest
rule outlined in the proof of Lemma , assuming a symmetric tie-breaking rule w/. In other
words, contestants are indifferent across all equilibria and do not prefer the equilibria that are
at odds with the designer’s choice. In this light, it is sensible to assume that the equilibrium
most favorable to the designer is selected whenever multiple equilibria exist.

The result is proven by construction. Two key steps in the proof are delineated as
follows: They elucidate the different roles played by multiplicative biases and headstarts in
this context and also help us understand the comparison between all-pay auctions and noisy
contests, which we further elaborate on in Section [3.2] For ease of exposition, let us consider
the case in which pf # 1 for all i € N and p§ > p§ > --- > pflm

Step I (Introducing Multiplicative Biases): Assume a symmetric tie-breaking rule w/,
fix an arbitrary expected equilibrium winning probability profile p¢ € A"~ with p¢ # 1
for all i € NV, and set headstarts to zero. We can construct a set of multiplicative biases
o* = (af,..., ) that satisfies ajv; > ajve = -+ = alv, > 0, such that there exists
a mixed-strategy equilibrium that leads to the given expected equilibrium winning
probabilities p¢ = (p§,...,p%). By our construction, contestants 2 to n each earn
an expected payoff of zero, and player 1 receives a positive expected payoff of size

(ajvy — advs) /. Tt is noteworthy that although we have verified its existence, the

*

set of multiplicative biases a* = (of, ..., o}

) cannot be expressed in closed form in

general when three or more contestants place positive bids with positive probabilities.

Step II (Introducing Additive Headstarts): We add headstarts to the contest rule to

further incentivize player 1 without disturbing the equilibrium incentives of the other

0Step II is unnecessary for the proof of Lemma [2| in the case p{ = p§ > --- > p¢. In other words,
headstarts are not used if the contest designer aims to induce a profile of expected winning probabilities in
which the highest equilibrium winning probability is equal to the second highest one.



players. Consider the following set of contest rules (af, 1) := ((al,... al), (81,...,8)):

(aT BT) :: (of{, 0), for v =1,
v (of, vy — avs), fori € {2,...,n}.

In words, we give the same headstarts to all players except for player 1. Compared with
the equilibrium constructed in Step I, contestant 1’s equilibrium effort distribution is
shifted upward by (ajv; — advy)/af, whereas all other players’ equilibrium strategies
remain unchanged. The additional effort supply from contestant 1 completely offsets
the preferential treatment awarded to other players through the headstart, and the
sizes of the headstarts are chosen to fully deplete the surplus left to contestant 1 in
the equilibrium, i.e., earning zero expected payoff in the contest. This, in turn, implies

that ¢ = pSu; for all i € N in equilibrium under the contest rule (af, 37).

Note that Lemma [2| requires p¢ # 1 for all i € A/. This requirement is caused by the
restriction of the symmetric tie-breaking rule and can be dropped if we allow the contest

designer to modify the prevailing tie-breaking rule, as in |Szech| (2015) and Franke, Leininger,
and Wasser| (2018).

Lemma 3 Consider all-pay auctions with a CSF as specified in and p¢ € A" ! such
that p¢ =1 for some s € N and p§ =0 for all i # s. The following statements hold:

(i) The effort profile ¢ = (x5, ...,25) =pov = (0,...,0,v,0,...,0) is feasible for p°.
Specifically, consider a contest rule with (as, Bs) = (1,0) and (ag, Br) = (0,vs) for all
k # s and the following tie-breaking rule that favors player s: He wins the contest with
certainty if s € M and the prize is distributed with equal probability among the highest
bidders if s ¢ M. There exist two equilibria in the contest game. In the first, player
s exerts effort vy and all other players remain inactive. In the second, all contestants
remain inactive. The first equilibrium results in the expected winning probability profile
with p¢ = 1 and p, = 0 for all k # s, whereas the second leads to pS = 0. The two
equilibria are not payoff equivalent for contestants: The latter Pareto-dominates the

former.

it) Fix an arbitrarily small € > 0. e effort profile ®¢ = (x5,...,2%) = pcowv =

i) Fi bitraril I 0. The eff file x¢ ¢ ¢ ¢
0,...,0,us —€,0,...,0) is feasible for p®. Specifically, consider a contest rule with
(s, Bs) = (1,0) and (ay, Br) = (0,vs — €) for all k # s and a tie-breaking rule that

favors player s, as outlined above in (i). Player s exerting effort vy — e and all others

remaining inactive constitutes the unique Nash equilibrium of the contest game.



By Lemma (i), when the designer can enforce the equilibrium she prefers, she can set
a contest rule and a tie-breaking rule such that player s wins the contest with probability
one and contestants’ surplus is fully extracted. If she cannot, Lemma [3{ii) shows that she is
able to induce a unique equilibrium in which player s wins with certainty and his payoff is
positive but arbitrarily close to zero.

Lemmas [2| and |3| enable us to reformulate the designer’s optimization problem. Under
Assumption [I} the designer’s objective is weakly increasing in contestants’ efforts. Therefore,
for any target probability profile p°, the designer strictly prefers the contest rule constructed
in the lemmas that induces the highest feasible effort profile ¢ = p® o v. Consequently,
x¢ can be replaced by p® o v, and she chooses the expected winning probability profile
p° = (p§,...,p%) as the design variable to maximize an objective function A(p® o v, p° v),
subject to the constraint p¢ € A"~!. The continuity of A imposed by Assumption [1] ensures

the existence of a maximum. The following result ensues.

Theorem 1 Suppose that Assumption [1] holds and the designer can select any equilibrium
she would like to induce whenever multiple equilibria exist. Then an optimal contest rule
(a*, B*) and tie-breaking rule w* exist. The equilibrium winning probability profile p* under
the optimal contest solves maxpeean—1 A(P® o v, p%,v) and the associated equilibrium effort

profile is x* = p* o w.

Next, we continue with Example [1| and characterize the optimal contest under the ob-
jective function (2)). By Lemmas [2 and , there exists a contest rule and an equilibrium for
this contest rule that leads to an arbitrary expected winning probability profile. However, as
noted in Step I in the proof of Lemma [2] a closed-form solution to the optimal contest rule
cannot be obtained in generalﬂ As a result, we focus on the expected winning probability
profile p* = (p§,...,p%) and expected effort profile ¢ = (xf,...,z%) when characterizing

the optimum.

Example 1 Suppose that the contest designer aims to mazimize the objective function as

given by . In the optimal contest, contestants’ equilibrium winning probabilities are given

by
14X\ 1 ZT 2y .
p‘? = 2y {vi % ( j=1 Uj) 1+)\:| } ) f01 1 < Ty

0, fori > T,

HDespite the lack of a closed-form solution, an algorithm that numerically searches for the optimal contest
rule can be developed from the proof of Lemma

10



where T indicates the number of contestants who submit a positive bid with positive probability

and is given by

1, if T < (v —v2),

T = " ‘
max{mzl,...,n ijl(vj—vm)<li—'y)\ s if T > (v — ).
The expected equilibrium effort profile in the optimal contest is €€ = (p§uvy, . .. ,pf;vn).m

3.2 Discussion

In what follows, we elaborate on the implications of the results established in Section |3.1}]

3.2.1 Multiplicative Biases vs. Additive Headstarts

The literature typically focuses on contest design with a single instrument, either mul-
tiplicative biases or headstarts. |Kirkegaard (2012); Franke, Leininger, and Wasser| (2018));
and [Zhu| (2021) show that in a revenue-maximizing all-pay auction, it is generally optimal

to employ both. The following can directly be inferred from Lemma [2| and its proof.

Remark 1 The two key steps in the proof of Lemma |3 imply that in general, the optimum
requires a combination of multiplicative biases (Step 1) and additive headstarts (Step 1) for

a general contest objective described by Assumption [1]

A proper combination of the two instruments allows the contest to achieve the frontier
of feasible expected effort profile. However, the same does not hold in generalized lottery
contests with ratio-form contest success functions. Consider a contest in which one’s winning

probability is given by

i f(x;) + B S o f(a '
prz ) = | Sl a1 Sl A= )

if >0 layfa) + 8] =0,

where f(-) is twice differentiable, with f(0) = 0, f'(x;) > 0, and f"(z;) < 0 for all z; > 0.
In the extreme case in which a; > 0 and f5; = 0 for some player ¢, while (o, 5;) = (0,0) for
all j € N'\ {i}, we assume that player ¢ wins automaticallyFu and Wu| (2020) establish the

following result.

12Note that the expression for p¢ is undefined when v = 0. In this case, the optimal solution is given by
p{ =1 and p§ =0 for all 4 > 1.
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Remark 2 (Fu and Wu, 2020, Theorem 2) Suppose that the CSF is given as in (3))
and that Assumption (1 is satisfied. Then the optimum can always be achieved by choosing

only multiplicative biases a and setting headstarts 3 to zem.ﬁ

The contrast between Remarks [I] and [2] demonstrates that headstarts play different roles
in all-pay auctions and generalized lottery contests. By Remark 2] headstarts are not required
to optimize generalized lottery contests. As shown by Fu and Wul (2020)), for any contest
rule that involves positive headstarts, one can always construct an alternative rule with
zero headstarts that induces the same equilibrium winning probability profile and higher
effort. However, an all-pay auction would invoke headstarts in the optimum. The two key
steps in the proof of Lemma [2| sketched in the main text reveal the logic: In the first step,
we resort to multiplicative biases & = (v, ..., ;) to induce a given equilibrium winning
probability profile. We then further incentivize the contestant with the highest winning
probability by giving additive headstarts to his opponents, as in the second step. This
occurs because of the perfectly discriminatory nature of all-pay auctions: The headstarts
awarded to underdogs simply force the favorite to shift up the distribution of his effort,
which perfectly offsets the headstarts and preserves all contestants’ winning odds. This is
impossible in a noisy contest that leads to a pure-strategy equilibrium, given the probabilistic

nature of the winner-selection mechanism .

3.2.2 Full Surplus Extraction in All-pay Auctions

Franke, Leininger, and Wasser| (2018) show that a proper combination of multiplicative
biases and additive headstarts can achieve a first-best result when the designer aims to
maximize expected total effortE Lemma , together with Lemma , implies that their
result extends to a large class of objective functions, as described by Assumption [T To see
this, note that a contestant i € N can always guarantee himself a payoff of at least zero
by investing zero effort. As a result, in every equilibrium of every contest (i.e., with an
arbitrary CSF), the expected payoff of contestant ¢ must be nonnegative, i.e., 5 < pfv;. By

Lemmas [2] and (3] with an appropriately designed contest rule and tie-breaking rule, every

131t should be noted that we do not allow for negative headstarts. [Drugov and Ryvkin! (2017) allow for
negative headstarts and show that a deviation from zero headstarts can locally improve the performance of
the contest, depending on the sign of the third derivative of the effort cost function.

4The first-best expected total effort is obviously max{vy,...,v,}. Attaining first best requires that the
strongest player win the contest with certainty. Similar to our Lemma |3| [Franke, Leininger, and Wasser
(2018) show in their Proposition 4.7 that first best can be achieved if the designer is able to manipulate the
tie-breaking in favor of the strongest player. In addition, Franke, Leininger, and Wasser| (2018]|) show in their
Proposition 4.8 that, with a symmetric tie-breaking rule, the contest designer can generate an amount of
expected total effort that is arbitrarily close to the first best.
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prize allocation that induces ¢ = pfv; for each contestant i € ' can be implemented. This
implies immediately that all-pay auctions dominate any other contest mechanism—e.g., the

generalized lottery contest specified in (3)—in terms of the resultant (expected) effort .

Remark 3 Suppose that Assumption (1] is satisfied. For any other form of contest that
induces a pure-strategy equilibrium (e.g., a generalized lottery contest), there exists an all-
pay auction with a CSF as specified in that generates a weakly higher payoff for the

contest designer.

A handful of studies examine the comparison between all-pay auctions and Tullock

contests—e.g., [Fang) (2002)); Epstein, Mealem, and Nitzan| (2011); Franke, Kanzow, Leininger,
and Schwartz (2014); and Franke, Leininger, and Wasser (2018)). Our analysis sheds light on

this literature: It accommodates a broader design objective and establishes the dominance

of all-pay auctions over a larger class of contest mechanisms, i.e., any contest that induces

pure-strategy bidding.

4 Concluding Remarks

In this paper, we consider the optimal design of complete-information all-pay auctions

with general contest objectives[l’] We apply the indirect approach suggested by
(2020) and Deng, Fu, and Wu| (2021) and characterize the general properties of the optimal

contest. In particular, we show that both instruments will be used in the optimum in general.
Further, an optimally designed all-pay auction can achieve full surplus extraction for a large
class of objectives.

Our framework leaves room for future extensions. We focus on expected efforts as a

measure of contestants’ incentives. Maximizing the expected winner’s effort is common in

the auction literature (e.g., Moldovanu and Selal 2006) and has recently gained increasing
attention in studies of contests (e.g., Baye and Hoppe, 2003} [Serenal, 2017; Fu and Wu, 2020,
2022; [Wasser and Zhang| 2023)). Because contestants typically employ a mixed strategy in a

complete-information all-pay auction, incorporating the expected winner’s effort in the design
objective induces substantial nuances and is analytically challenging within our framework:
The expected winner’s effort is defined over the entire joint distribution of efforts based on

the whole profile of contestants’ mixed strategies. In contrast, each contestant’s expected

5For studies on the design of incomplete-information all-pay auctions, see, e.g.,|Gavious, Moldovanu, and|

[Selal (2002); Wasser and Zhang| (2023)); |[Antsygina and Teteryatnikoval (2023).
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effort depends on his own bidding strategy['¥ We leave exploration of this possibility to

future research.
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Appendix: Proofs
Proof of Lemma [2]

Proof. Denote the expected equilibrium winning probability profile we would like to induce
with a symmetric tie-breaking rule w/ by p* = (p,...,p%) € A"!. Without loss of gener-
ality, let us assume pj > --- > p;. We apply the equilibrium characterization in Theorem 2
in Baye, Kovenock, and De Vries (1996)) to prove the result for the case pj > py > -+ > pf.
The case pj = p5 > --- > p; can be proved in a similar way by invoking Theorem 1 in Baye,
Kovenock, and De Vries| (1996).

Step I (Introducing Multiplicative Biases): We show that, fixing an arbitrary p* =
(pi,...,p5) € A" such that pf # 1 for all i € N, we can construct a set of multiplicative
biases a* = (af, ..., «}) to induce p*. To proceed, we set 8 = 0 and choose a = (avq, . .., )
such that 97 > 0y = .-+ = 0, > 0, where 0; := «a,v; for all ¢ € N'. The prize valuation 0
can be an arbitrary positive real number and 0;—or equivalently, the ratio 0y/0;—will be
determined later in the proof.

Let @Z(xl) denote the CDF representing the equilibrium mixed-strategy of player i. By
Theorem 2 in Baye, Kovenock, and De Vries (1996), there exists a continuum of equilibria of
the unbiased all-pay auction with valuations v and & = (1, ..., 1), which is fully characterized
by a set of cutoffs (free parameters) b = (by, ..., b,) that satisfy 0 = by = by < --- < b, < 0s.
In equilibrium, player i stays inactive with some probability and bids continuously over (b;, 5]
with complementary probability. For notational convenience, let ¢; := % for alli € N.
Baye, Kovenock, and De Vries (1996) show that the following CDFs (Gi(x1),...,Gn(xy))

constitute a mixed-strategy equilibrium of the unbiased all-pay auction:

2—n
N ~ T (U — Oy +a |t
YV € [bn,UQ] D Gy(x) = — {#] :
(%) (%1
1
~ Dy — 1) =y
Gi(x):[—vl ?2+$} ,i€{2,3,...,n};
1
2] L
; A O K T OS]
YV € [bj,bj+1),j e{3,....n—1}: Gi(z)=— {#} Hck (=D &=2)
U2 U1 X
k>j
A~ _ Ul_v?"i_x Sy ) .
Gi(z) = H Ch. ,ZE{Z,...,j},
k>j

Gr(z) = clfll Hc;“*l)l(s*z), ke {j +1,... ,n};

s>k
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Vo € [O,bg] :

= 1)(k 2)
T k

2 k>2
A U — Uy X R CEI=
Cala) = [—@ | TLe
1 k>2
)= T[6 ™ ke {3.....n).
s>k

According to the above equilibrium characterization, we can calculate contestant i’s expected

effort, which we denote by z7.

For notational convenience, define p := 05/0; < 1 and let

b1 1= 2. The expected effort of player 1 can then be derived as

no [ b
j=2 L0
n [ bj+1 = 1
. J X V1 — U2 +x\Ii- )]
= Uy — ~— |\ — C dx
Z /b- (] ( U1 ) H k
Jj=2 i J k>j
N . o @2 *—Dk—2) k 2)
— iy — (y—1+uy“Hc dy
Jj=2 | Cj k>j
~9 n . .
L0 J—1/( 5 : .
:UQ_ﬁ_l [T (cjﬁ—cj 1)—(1—M)(J—1) (Cj+1 j )]H k(k L
2 Jj=2 k>j

Similarly, for contestant i € {2,...

~e

b;

- [ b1
— i -5 Gib) - > | [
j=i L7V

- n bjt1
— i -bGib) -y | |
j=i |7t

~~
=~
N—

,n}, we have that

1
i =)
Ilck(_)(_)dm

k>j

1
=7 H ¢ (k=1)(k—2) dy

k>j
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—~ n i1
= Uy — b;Gy(b;) — Z @1‘7—, ( ¢l - ) Hck (Gl
J=i J k>j
. ‘7_1( )H ~=DED
J+1 C

_U2_Ul( _1+’u 11Hkk1)(k2> Z o ; )
j=t k>j
(5)

k>i

By Theorem 2 in Baye, Kovenock, and De Vries (1996)), player 1 earns an expected payoff
of ©; — 19, while every other player receives an expected payoff of zero in the transformed
unbiased all-pay auction with valuations v = (01,...,0,), i.e.,

P — &7 = 01 — Oy, (6)
(7)

piv; = 25,1 € {2,...,n},

where pf is contestant ¢’s expected winning probability
Combining and ([]), we can obtain p{ as a function of p and ¢ = (cy, ..., ¢,):

pi(p, e) = o + o
IR J—1 (4 5 TDE
:1_;Z ] Cit1 — 6 —(1-w@G -1 ]+1 ' HC
Jj=2 k>j
(8)
Similarly, combining and (7)), for i € {2,...,n}, we have that
e
b; (Mac) - ,0_2
1 = s e |15 —1
_1__(Ci_1+M)C;71H6k<k71)<k72)_Z _] ' <]+1 )Hckkl(k 2)
= | e
(9)

p k>i

To prove the statement we made at the beginning of Step I, it suffices to construct
we (0,1)and ¢ = (c1,...,¢,), With 1l —p=c¢; =co < -+ < ¢, <1, such that p; = p§(u, c)
for all ¢ € V. To proceed, it is useful to prove an intermediate result

Lemma 4 For any i > 3, pS(u, c) is strictly decreasing in c;
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Proof. p¢(u,c) in (9) can be rewritten as

n

17—1 /(0 24 g SR — 19—1 4+ S N—
AE — Jj—1 j—1 (k—1)(k—2) i—1 (k—1)(k—2)
pi(p,c) =1~ E |\ Cj+1 — G | | Cg T Cit1 | | Ck

J=it+1 woJ k>3 H k>i
o Lo {ch"il — (=1 +mc;*] '
Hsi !
Therefore, it suffices to show that
1—1 2 1

h(c;) == .

is decreasing in ¢;. Simple algebra yields that

1 2o
i—1 ‘

h/(CZ') = —
where the inequality follows from ¢; > ¢ =1 — p for ¢ > 3. This concludes the proof. m

We are now ready to prove the statement we made at the beginning of Step I. Note that
(1, €) is a function of p and (¢, .. ., ¢,), and is independent of (¢y, ..., ¢;—q) for i > 3. With

slight abuse of notation, we write pf(u, ¢) in (9) as p(p, ¢, - - ., ¢,) in what follows.

Fix p* = (p7,...,p). We recursively define a set of functions {Ei(u)}?zl and a function

¥(p) as follows:

Step 0: Set ¥(u) = 1, and define ¢&,(u) as

N 1 —p, if p¢(p, 1 — p) < pi,
Cn(p) i= (10)

The unique solution to p¢ (i, c,) = pl, otherwise.

Lemma [4] together with the fact that p¢(u, 1) = 0, implies that ¢,(u) is well defined
and ¢é,(pn) € [1 — p, 1] If p¢(u, 1 — pu) < pk, define é;(u) = 1 — p for i > 3, update
(p) = n, and move to Step n — 2. Otherwise, we proceed to Step 1.

Step j € {1,...,n — 3}: Define ¢,_;(p) as

: (,LL) . 1 — M if ﬁz—j (:ual - M En—j-ﬁ-l(ﬂ)?"'aén(ﬂ)) <p;—j7
n—7j T
The unique solution to py,_; (1, Cnejy Cnjrr (1), - - -, Cnlp)) = Py, otherwise.
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Lemma together with the fact that p;, (1t Cnjr1 (1), Cnmjyr (1), - - -, En(p)) = P <
py_j, implies that ¢, ;(p) is well defined and &, ;(u) € (1=, Gy ()] Ifp;,_; (1, 1—
thy Cnjir (1) - - - () < ph_j, define ¢(u) = 1 — p for i € {3,...,n — j}, update
() = n — 7, and move to Step n — 2. Otherwise, we proceed to Step j + 1.

Step n — 2: Set ¢1(p) = é2(p) =1 — p.

Let é(p) := (é1(p), ..., ¢ (p)). Fixing p, we can calculate é(p) and (u) through the
steps above. To complete the proof, it suffices to show that there exists p € (0, 1] such that

PS5 (14, €(p)) = pi and ¢(p) = 1.

We first show that there exists a solution to p(u, €(i)) = pj. It can be verified that é(s)
is continuous on the interval p € (0,1]. Moreover, it follows from Equation and the
construction in Step 0 that é(u) = (1 — p,...,1 — u) when pu is sufficiently small; together
with Equation , we have that lim,~ o p§ (1, (1)) = 1 > pj. Therefore, it suffices to show
that p$(1,¢(1)) < pj. We consider two cases:

Case (a): ¢(1) =1. Then & = 1 — pu = 0, and thus p§(1,é(1)) = p5(1, e (1), ..., e (1))
by and (9). Moreover, we have that ﬁj(l,éj(l),...,én(l)) = pj for all j > 3.

Therefore, we have that

*_'_*
_h p2<p*

p5(1,é(1)) = p5(1,E2(1),..., (1)) 5 iy

Case (b): ¥(1) # 1. For notational convenience, let x := (1) > 3. By (§), (9), and the
definition of ¢ (-), pS(1,¢(1),..., (1)) = p} for all j > k+1 and p§(1,é(1)) = --- =
pe(1,¢4(1),...,E,(1)). By the same argument used in Case (a), we have that

Z?:l p;

p5(1,é(1)) = —— <

Denote the solution to p{ (u, é(u)) = p} by p*. It remains to show that k* := ¢ (u*) = 1.
Suppose, to the contrary, that k* > 3. Then

5" (), s En(p”)) = pj forall j > k7 41,

and

ﬁ;(u*a 62(,“*)7 cee 7611(”*)) == pi* (/*6*7 6%* (M*>7 s 7671(/*4*)) < pZ*a
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by (9) and the definition of 1(-). Therefore, we have that
pi(p*,é(p*) =1 - sz pE(), () = Y Bt E (), (1))

>1— (K = 1)pp — Z v

1=Kk*+1

K* n
>1-> pi— > pi=0i
=2

i=k*+1

*

which contradicts p§(u*, é(u*)) = pj. Therefore, p¢(u*, é(n*)) = p; for all i € N and
Y(p') =1

Step IT (Introducing Additive Headstarts): Denote the set of multiplicative biases
we constructed in Step I that leads to p* = (p},...,p;) by o = (af,...,a}). Let
0F = ajvu; for all i € N and denote the corresponding equilibrium strategy profile un-

der (9%, 6) == ((07,...,92),(1,...,1)) and zero headstarts by (G%(z1), ..., G%(2,)). Denote
player i’s expected equilibrium effort by z¢*.

By Lemma |1, there exists an equilibrium strategy profile under (v, a*) and zero head-
starts, which we denote by (Gi(z1),...,G(z,)), that leads to the profile of the expected
winning probabilities p* = (p}, ..., p}); moreover, contestant i’s expected effort in the equi-

librium, which we denote by x{*, satisfies

~ex ~x * *
iy of 0 — 03 vy — A
er _ 1T _ 4 U1 1~ Y 101 — QU
Ty = —(w=P1 5 — —p1 1 — " < p1v1,
a o a7 a
Aex A~
z§ 0;
ex __ i % % .
o = — =D = P forie {2,...,n}.
i i

In fact, (Gi(z1),...,Gy(xn)) = (Gi(afm),..., Gilahan)).
Next, we introduce additive headstarts to the contest rule. To be more specific, consider

the following contest rule (af, 37):

(af,0), for i =1,

(aF, vy — ajug), fori e {2,... n}.

(af, B := (11)

It can be verified that a mixed-strategy equilibrium exists in the all-pay auction under the
contest rule (af, @), in which player 1 randomizes according to CDF G* (a1 — (v — ajo))

and player i € {2,...,n} randomizes according to CDF G (az;). It is straightforward to
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verify that this equilibrium strategy profile again leads to the expected equilibrium winning
probability profile p* = (p},...,p}) and contestant i’s expected effort is pjv;, which in turn

implies that each contestant earns an expected payoff of zero.

Step III (Proving Payoff Equivalence): We show that all equilibria under the contest
rule (af, B) outlined in Step II are payoff equivalent—i.e., each contestant’s expected payoff
is zero in every equilibrium. The result for the case of n = 2 follows immediately from Lemma
1in |Li and Yu (2012)) and we focus on the case of n > 3 in what follows.

Let (G%(x1),...,G%(x,)) denote an equilibrium strategy profile under prize valuations
v and the contest rule (af, 8) under symmetric tie-breaking, as defined in (11). It can be
verified that the strategy profile (G3(z1), ..., Gu(xy)) := (Gi(x1/al), ... G (xn/al)) consti-
tutes an equilibrium of the contest game with prize valuations v* = (07, ...,0}) and contest
rule (d,,é) = ((1,1,...,1),(0,07 —03,...,0f — 03)). Further, player i’s equilibrium payoff
under (Gi(z1), ..., Gn(x,)) equals o times that under (Gi(z1),...,Gx%(x,)). Therefore, it
suffices to show that in a contest with prize valuations ©* and contest rule (&, B) under sym-
metric tie-breaking, an arbitrary equilibrium strategy profile (G (z1), ..., Gn(2,)) generates
zero expected equilibrium payoff for all contestants.

Clearly, for player 1, choosing x; € (0,07 — 03) is strictly dominated by choosing x; = 0.
If player 1 chooses positive effort with probability one, the game is isomorphic to one in
which headstarts are set to zero and multiplicative biases remain unchanged for all players,
and the payoff equivalence result follows immediately from Theorem 2 in |Baye, Kovenock,
and De Vries| (1996). In what follows, we restrict attention to the equilibrium in which
player 1 chooses 1 = 0 with a strictly positive probability, which implies that player 1’s
expected payoff is zero. It suffices to show that players 2 through n receive zero payoff in
the equilibrium.

Denote the upper bound and lower bound of the support of G; by 5; and s;, respectively.
By an argument similar to the proof of Lemma 2 in Baye, Kovenock, and De Vries| (1996)),
we can show that s; = 0 for all 7 > 2. Consider the following three cases depending on the
number of players (including player 1) who choose z; = 0 with a strictly positive probability,

which we denote by n,:

Case (a): n, = n. We show that this case is impossible. Note that (&, 3;) = (1,07 — ©3) >
(1,0) = (&1,31) for all i € {2,...,n}; together with the postulated n, = n > 3, we
can conclude that player i € {2,...,n} wins with a positive probability when he bids
zero. This implies that he can strictly increase his expected payoff by exerting an

infinitesimal effort—a contradiction.
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Case (b): n, <n —2. Denote the set of players whose equilibrium bidding strategy does
not have an atom at 0 by Ny. We have that [Ny| = n—n, > 2. Note that player 1 bids
zero with a positive probability and thus 1 ¢ ANj. Fix an arbitrary player i € A\ {1}
and a player j € Ny, with j # i. We have that (&, 3;) = (1,07 —103) = (&5, f;). Further,
player i’s winning probability approaches zero as his effort x; approaches zero, because
player j will outbid him with probability one; together with the fact that s, = 0, we
can conclude that player i’s expected equilibrium payoff is zero for all i € N\ {1}.

Case (c): n, =n — 1. There exists exactly one player whose strategy does not have an atom
at 0. Suppose it is player 2 without loss of generality. By an argument similar to
that laid out in Case (b), we can verify that the winning probability of player i > 3
approaches zero as his bid approaches zero, because player 2 will outbid him with prob-
ability one; together with the fact fact s; = 0, we can conclude that player i’s expected
equilibrium payoff is zero. It remains to show that player 2’s expected equilibrium

payoff, denoted by s, is also zero.

By an argument similar to the proof of Lemma 5 in |Baye, Kovenock, and De Vries
(1996)), we can deduce that G;(z) and G (x — 0% 4 03) are all continuous on (0, 03]. Let
A(z) = Gy(w — 0F +03) x [, Gi(z) and A;(z) := A(x)/Gi(z) for each i € N\ {1}.
By the continuity of G;(z) and Gy (x — o} + o), As(x) gives the probability that player

1 wins the prize when his effort is z.

Suppose, to the contrary, that @y > 0. Then we have that
0 < iy = 05 A5(S2) — 59 < V5 — So,
from which we can conclude that 5, < 0. Moreover, we have that
Uiy = 03 A(5y) — 5y = 03 A(52)/G2(52) — 5y = 05 A(52) — 5y,
or equivalently,

So + Us
Nk
Uy

A(8y) = (12)

Recall that the expected equilibrium payoff of player ¢ > 3 is zero. Therefore, bidding
x; = S cannot generate a strictly positive expected payoff for player i—i.e.,
So + Us

0> 054;(52) — 89 = 05A(52)/Gi(82) — 8a = =——— — 5o, (13)
Gi(SQ)

where the last equality follows from ([12)). Rearranging yields that G;(5,) >
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1+ 19/55 > 1, a contradiction.
This concludes the proof. m
Proof of Lemma (3]

Proof. For notational convenience, we assume s = 1 without loss of generality. Let
(a*,B8%) = ((1,0,...,0),(0,v7 —&,...,v1 —¢)) with 0 < ¢ < v; and consider the follow-
ing tie-breaking rule:
1, ¢=1land1e M,
wiM)=< 0, i#1land1le M,
ﬁ, otherwise.
Evidently, for each player ¢ with ¢ > 2, x; > 0 is strictly dominated by x; = 0. Therefore,
they choose zero effort in the equilibrium.
Next, consider player 1. When ¢ = 0, player 1 is indifferent between choosing 0 and vy,
and there exist two equilibria of the contest game: = (0,...,0) and © = (v1,0,...,0).
When ¢ € (0,v1), player 1 would optimally choose x; = v; — ¢, and ¢ = (v; — €,0,...,0)

constitutes the unique equilibrium of the contest game. m
Proof of Theorem [

Proof. By Lemmas [2| and 3] for any p°, the effort profile ¢ = p°® o v is feasible. Since
any feasible effort must satisfy xf < pfv;, this profile yields the highest expected effort for
a given p°. By Assumption |1} the objective function A is weakly increasing in z{ for all
i € N, implying that the designer optimally chooses ¢ = p®ow. Consequently, the problem
reduces to maxpecan-1 A(p® o v,p°, v). The existence of an optimal solution then follows
directly from the continuity of A (as imposed by Assumption [I) and the compactness of
A"l m
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