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Abstract

Consumers differ in both their brand-dependent preferences (loyalty) and

the intensity of their brand-independent preferences (choosiness). Firms pro-

duce horizontally differentiated products and, depending on data availability or

competition policy, tailor their prices based on their learning about consumer

characteristics. With a fully covered market, either fully personalized pricing—

i.e., price discrimination based on both loyalty and choosiness—or loyalty-based

pricing—i.e., price discrimination based only on loyalty—maximizes consumer

welfare. The latter pricing regime is more likely to be optimal when the mar-

ket involves more firms. In contrast, partially personalized pricing based on

choosiness always maximizes industry profit.
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1 Introduction

The widespread use of commercial surveillance technology, data analytics, and AI-

enabled algorithmic tools has provided firms with unprecedented flexibility in drawing

precise inferences about consumer preferences and customizing their prices. Tra-

ditional second- and third-degree price discrimination—based on quantity or broad

market segmentation—has evolved into more granular pricing schedules tailored to in-

dividual consumer characteristics, which brings first-degree price discrimination much

closer to reality (Dubé and Misra, 2023; Spann et al., 2025).

Meanwhile, commercial surveillance and personalized pricing are often perceived

as unfair, opaque, or even intrusive, which has sparked controversy and provoked

backlash. Various regulatory responses have been triggered to limit firms’ ability

to process personal data and ensure consumers’ right to transparent pricing, such as

the European Union’s General Data Protection Regulation and the California Privacy

Rights Act. The U.S. Federal Trade Commission has also launched investigations into

firms that use artificial intelligence and data analytics to help clients implement per-

sonalized pricing, accusing them of “putting people’s privacy at risk” and “exploiting

vast troves of personal information to charge people higher prices.”1

The controversy calls for systematic research on the distributional effects of con-

sumer information disclosure and price personalization—specifically, how firms’ access

to consumer information and their ability to tailor prices influence economic efficiency,

consumer welfare, and firm profitability (Acquisti, Taylor, and Wagman, 2016; Baye

and Sappington, 2020; Ali, Lewis, and Vasserman, 2023; Anderson, Baik, and Larson,

2023; Rhodes and Zhou, 2024), which lie at the core of regulatory debates regarding

consumer privacy protection and competition policy (OECD, 2018; Rott, Strycharz,

and Alleweldt, 2022). This paper seeks to address these concerns.

The scope of our paper goes beyond the conventional binary debate over whether

access to consumer data should be allowed for pricing purposes or whether personal-

ized pricing harms consumers. We take a step further and examine the implications

of different pricing regimes that rely on inferences about different dimensions of con-

sumer preferences. This enables us to contribute to the broader question of which

types of consumer data should be subject to stricter trade regulations (Tucker, 2024).

1Source: https://www.reuters.com/world/us/us-ftc-looking-into-targeted-pricing-b
ased-personal-data-2024-07-23/.
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Consumer characteristics are arguably multidimensional, and different types of

consumer information could be more relevant for inferences about different dimen-

sions of consumer characteristics. For instance, a consumer may prefer one brand over

another due to taste, whether aesthetic or functional. Meanwhile, consumers may also

vary in their willingness to pay for products that better match their preferences. A

consumer’s socioeconomic status may strongly indicate how much they would pay

for a closer match, but reveal little about how they rank similar brands. Conversely,

browsing history or search queries may be predictive of a consumer’s brand-specific

preferences while providing less insight into the premium they are willing to pay for a

preferred brand.2 Due to regulatory constraints on data collection and pricing prac-

tices, firms may be unable to fully infer consumer characteristics, and prices may be

tailored along only certain dimensions rather than being fully personalized. We show

that such partially personalized pricing can benefit or harm consumers relative to fully

personalized and/or uniform pricing, depending on the nature of the available data

and the inferences it supports. The literature typically assumes unidimensional con-

sumer characteristics and compares two extremes: fully personalized versus uniform

pricing. We instead explore a setting with multidimensional consumer characteris-

tics, which opens a new avenue for understanding how consumer information along

different dimensions shapes pricing practices and market outcomes.

We construct a general discrete choice model à la Perloff and Salop (1985). Each

consumer purchases one unit of a differentiated good from one firm, and consumers

can be heterogeneous in two uncorrelated dimensions. One’s gross valuation for the

product offered by a firm i ∈ {1, 2} is given by vi = v + txi. The expression com-

prises (i) a “horizontal” element xi, which describes the consumer’s brand-specific

preferences—i.e., how well each product i matches her taste—and (ii) a “vertical”

element t, which measures her marginal valuation for consuming a product with a

closer match—i.e., the intensity of her brand-specific preferences—and indicates how

a consumer weighs price against a better fit.

Borrowing the terminology of Armstrong (2006), we call x = (x1, x2) one’s brand

loyalty and t her choosiness. Four pricing regimes are possible. Under uniform

pricing—in which price discrimination is banned or consumer data on neither x nor

2Shiller (2020) analyzes personalized pricing for Netflix’s movie rentals by mail. He distinguishes
between demographic and web-browsing data, and finds that price discrimination based on different
data sources has different profit implications for firms.
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t is available—firms set a single price for all consumers. Under fully personalized

pricing, firms perfectly observe both x and t for each consumer and tailor their prices

accordingly. Under loyalty-based pricing (pricing based on x but not t) or choosiness-

based pricing (pricing based on t but not x), firms use partial preference information.

We characterize the equilibrium under each regime and rank the resulting consumer

welfare and industry profit.

Under full market coverage, fully personalized pricing sharpens market compe-

tition and benefits consumers compared with uniform pricing: Each consumer is

rendered contestable under the former, which intensifies competition. This reaffirms

the wisdom of Thisse and Vives (1988) and Rhodes and Zhou (2024) established with

unidimensional consumer characteristics. Notably, we show that partially personal-

ized pricing may either outperform fully personalized pricing in terms of consumer

welfare or underperform relative to uniform pricing, depending on which dimension of

consumer characteristics—loyalty or choosiness—firms can infer and customize their

prices accordingly. Our key observations are as follows.

First, if firms learn loyalty x but not choosiness t, consumer welfare can exceed

that under fully personalized pricing. Firms’ inability to observe choosiness triggers

a subtle marginal-inframarginal trade-off. A firm would refrain from setting a high

price even if its product is most preferred by the consumers because some of them may

not be sufficiently choosy to justify a high willingness to pay for the better fit. This

uncertainty forces the price down, since the firm must avoid alienating less choosy

consumers. Put differently, less choosy consumers generate a positive externality

that benefits choosy consumers when t is unknown. The comparison between loyalty-

based pricing and fully personalized pricing ultimately depends on the distribution

of consumer types. We provide plausible conditions under which either maximizes

overall consumer welfare.

Second, if firms learn t but not x—i.e., under choosiness-based pricing—the ex-

pected consumer welfare falls below that of uniform pricing. Information about t

softens competition between firms for choosy consumers while intensifying it for less

choosy ones: A large t implies a greater advantage for the preferred firm, which ren-

ders undercutting less effective for poaching loyal consumers from competitors. Firms

can thus extract more surplus from choosy consumers—who are more willing to pay

for a better-matched product and generate greater value to firms—while losing out on

less choosy consumers, who are less valuable to firms regardless. Information about
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t hurts consumers but benefits firms.

Third, equilibrium industry profit can be unambiguously ranked: Choosiness-

based pricing always maximizes industry profit, while loyalty-based pricing minimizes

it. Furthermore, industry profit always gains from firms’ learning about choosiness.

This affirms the intuition we outlined above: The inability to observe choosiness en-

tails the marginal-inframarginal trade-off and prevents firms from extracting surplus.

Our paper presents the first comprehensive study of personalized pricing with mul-

tidimensional consumer characteristics, which broadens the scope of the literature on

competitive personalized pricing: The implications of consumer characteristics for dis-

tribution outcomes are not simply binary. Learning and inferring consumers’ brand

preferences (loyalty) versus their non-brand preferences (choosiness) yields qualita-

tively different effects. The former creates asymmetry among firms and renders each

individual consumer more contestable; in contrast, the latter dismisses the marginal-

inframarginal trade-off and enables more effective surplus extraction. These findings

call for a more thorough examination of data and privacy regulations—as well as

competition policies—in light of richer consumer preferences. A proper policy analy-

sis should move beyond the binary question of whether price personalization should

be allowed, and understand how different types of consumer information enable firms

to learn about consumer preferences, shape their pricing strategies, and distribute

surplus across different parties.

Section 2 sets up the model. Section 3 analyzes the duopoly case in detail and

highlights these mechanisms with fully fledged analytical results. Section 4 extends

the model to an oligopoly setting and shows that our key insights remain valid with

more firms in the market. Notably, loyalty-based pricing becomes even more likely to

emerge as the consumer-optimal regime. Our baseline model assumes small produc-

tion costs, which ensures full market coverage. Section 5 allows for larger production

costs, which cause some consumers to opt out.

Link to the Literature A vast amount of scholarly effort has been devoted to

the study of competitive price discrimination. One strand of the literature models

personalized pricing in the form of imperfect price discrimination, wherein firms set

different prices for different consumer segments (e.g., Shaffer and Zhang, 1995; Fu-

denberg and Tirole, 2000; Chen, Narasimhan, and Zhang, 2001; Iyer, Soberman, and

Villas-Boas, 2005; Esteves and Resende, 2016). The rapid development of information
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technology has sparked interest in more granular pricing strategies (see, e.g., Acquisti,

Taylor, and Wagman, 2016). The seminal study of Thisse and Vives (1988) compares

uniform pricing with fully personalized pricing in a spatial duopoly model, in which

each consumer’s location is either perfectly revealed to firms or entirely unknown. A

similar approach to modeling price personalization in duopoly is adopted by Chen

and Iyer (2002); Shaffer and Zhang (2002); and Chen, Choe, and Matsushima (2020).

Most studies on personalized pricing focus on duopolistic competition. In a gen-

eral discrete choice oligopoly model, Rhodes and Zhou (2024) show that personalized

pricing benefits consumers and harms firms under full market coverage—which gener-

alizes the insight of Thisse and Vives (1988)—while the comparison can be overturned

otherwise. Our paper is more closely related to Rhodes and Zhou (2024) in terms

of modeling approach. However, we aim to explore the ramifications of partially

personalized pricing when consumers are characterized along multiple dimensions.

Anderson, Baik, and Larson (2023) also adopt a general discrete choice model.

They let firms first set a listing price in the first stage and then send personalized

offers in the second stage, while assuming that targeting each individual consumer is

costly. Both Rhodes and Zhou (2024) and our paper assume costless targeting and a

single-stage structure for pricing.

The literature predominantly assumes that consumer heterogeneity can be ade-

quately captured through variations along a single dimension of consumer characteris-

tics. Each consumer’s type is defined solely by her location in the spatial competition

model of Thisse and Vives (1988). Anderson, Baik, and Larson (2023) and Rhodes and

Zhou (2024) assume that consumers differ only in v = (v1, . . . , vn), their respective

gross valuations for different firms’ products. As a result, these studies typically focus

on a binary comparison between uniform pricing and personalized pricing. A notable

exception is Armstrong (2006). In a Hotelling duopolistic setting, Armstrong (2006)

considers choosiness-based pricing and compares it with uniform pricing and fully

personalized pricing. We incorporate Armstrong’s conceptual notions of choosiness

versus loyalty and analyze all possible pricing regimes. Our study thereby highlights

the qualitatively contrasting roles played by information on different dimensions of

consumer characteristics.

Ali, Lewis, and Vasserman (2023) allow a consumer to voluntarily disclose infor-

mation about her preferences. This may lead to partial information disclosure and

coarse inference by firms, which could improve consumer welfare relative to both
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fully personalized pricing and uniform pricing. We also show that partial access to

consumer information can benefit consumers. Our setting and results differ subtly

from theirs. They assume that a consumer’s type is defined by her location and focus

on the precision of the information she voluntarily discloses, which may lead firms

to make coarse inferences. In contrast, we characterize a consumer’s type along two

dimensions, allowing for one or both to be unknown to firms.

2 Model and Preliminaries

Each of n ≥ 2 firms, indexed by i ∈ N ≡ {1, . . . , n}, offers a horizontally differ-

entiated product at a constant marginal cost c ≥ 0. The market involves a unit mass

of consumers. Each consumer wishes to buy one unit of the product, and her gross

valuation for the products supplied by these firms is given by v ≡ (v1, . . . , vn).

A consumer’s gross valuation for the product supplied by a firm i is determined by

vi = v + txi, where v is the base utility she derives from consumption of the product

and txi measures the additional utility she gains from the product supplied by firm

i ∈ N . The vector x ≡ (x1, . . . , xn) captures the consumer’s firm- or brand-specific

preferences, which measures each product i’s match to her taste. The parameter t,

which is common to all firms for a given consumer, indicates the intensity of her brand-

specific preferences and measures the marginal valuation for consuming a better-

matched product. This also reflects the relative importance she assigns to taste

vis-à-vis price in her purchasing decision. Alternatively, the parameter t can be

interpreted as an indicator for income, since a consumer with a larger t tends to be

less price sensitive.3 Following the literature (Armstrong, 2006), we call the former

brand-specific preferences loyalty and the latter choosiness.

Each consumer’s loyalty x ≡ (x1, · · · , xn) is distributed on [x, x], with 0 ≤ x <

x < ∞, according to a joint cumulative density function (CDF) G̃(x) with a prob-

ability density function (PDF) g̃(x). The CDF G̃(x) is exchangeable, such that the

joint CDF is independent of any permutation of (x1, . . . , xn). The exchangeability, as

in Rhodes and Zhou (2024), assumes away systematic quality differences across firms.

The marginal CDF and PDF of xi are denoted by G(·) and g(·), respectively. Further,
consumers’ choosiness t is distributed on [t, t], with 0 ≤ t < t < ∞, according to a

3To see this, note that a consumer’s utility of buying from firm i is proportional to v/t+xi−pi/t:
A larger t implies a lower price sensitivity.
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differentiable CDF F (·) with a PDF f(·). For simplicity, we assume that t and x

are independent: Firms cannot draw inferences about one dimension of a consumer’s

preferences from data regarding the other.4

We assume that the base utility v is commonly known, but firms may not observe

x and/or t.5 The availability of consumer information determines firms’ ability to

tailor their prices. We consider four pricing regimes. Under uniform pricing, each

firm, lacking access to consumer data, sets a single price pUi for all. Under loyalty-

based pricing (resp., choosiness-based pricing), each firm sets (partially) personalized

pricing pLi (x) (resp., p
C
i (t)) based on x (resp., t). Under fully personalized pricing, a

firm offers each consumer a price fully customized according to both x and t.6

A consumer (x, t) purchases the product provided by firm i if

v + txi − pi ≥ max
j ̸=i

{v + txj − pj}. (1)

In case a consumer is indifferent between multiple products, she chooses the one with

the highest gross valuation. We assume throughout the paper, except in Section 5,

that v is sufficiently large—more precisely, v ≥ c+2xt—such that the market is fully

covered.

We adopt Nash equilibrium as the solution concept for all our analyses of pricing

competition and focus on pure-strategy equilibrium.

2.1 Pricing Equilibrium

We now proceed to equilibrium analysis of each pricing regime. Under uniform

pricing, a symmetric pure-strategy equilibrium requires pj = pU for each j ̸= i and

4Miklós-Thal, Goldfarb, Haviv, and Tucker (2024) examine users’ data-sharing decisions in a
setting in which different dimensions of consumer data are correlated, which allows firms to infer one
aspect of a user’s type based on data from another. In contrast, we assume that different dimensions
of consumer preferences are independently distributed. They focus on users’ data-sharing choices,
while we investigate the implications of personalized pricing for market and distribution outcomes
under trade regulation rules.

5Allowing for heterogeneous base utility, v, has no effect in the presence of market competition
under the premise of full market coverage. See Section 3.1 in Armstrong (2006) for more discussion.

6We take a “third-party” rather than a “first-party” approach, in the sense that a third-party
data provider collects and provides information to firms. In practice, firms can learn about con-
sumers’ preferences based on their purchase history, from which they may be able to infer (partial)
information about both dimensions. We leave this extension for future research.
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(1) reduces to

pi − pU ≤ t

(
xi −max

j ̸=i
xj

)
.

Define x̂i := xi−maxj ̸=i xj and denote its CDF and PDF by Ĝ(·) and ĝ(·), respectively.
Further, define z := tx̂i and denote the CDF and PDF of z by H(·) and h(·). We

impose the following assumptions throughout the paper, except in Section 5:

Assumption 1 1− Ĝ(x̂i) is log-concave in x̂i.

Assumption 2 f(t)/t is log-concave in t.

Assumption 3 1−H(z) is log-concave in z.

Assumptions 1, 2, and 3 ensure the existence of pure-strategy equilibria in the

pricing game under C, L, and U , respectively. Two remarks are in order. First, in

principle, H(·) is known for given Ĝ(·) and f(·). For example, it can be verified

that Assumption 3 follows from Assumption 2 if x̂i is uniformly distributed (which

satisfies Assumption 1). However, to the best of our knowledge, the literature provides

no general conditions under which the survival function of two independent random

variables’ product—i.e., 1 − H(z) in our context—is log-concave. As a result, we

directly impose Assumption 3 in our analysis. Second and relatedly, cautious readers

may have noted that f(t)/t is required to be log-concave in Assumption 2, which is

not satisfied when t follows a uniform distribution. Relaxing this restriction—e.g.,

assuming f(t) or 1− F (t) to be log-concave—would render Assumption 3 less likely

to be satisfied. To see this, suppose that both x̂i and t follow uniform distributions.

It can be verified that Assumption 3 would be violated.

Lemma 1 (Equilibrium Characterization under U, C, and F) The following

statements hold:

(i) There exists a unique symmetric equilibrium under uniform pricing U , in which

each firm sets a price pU = c+ 1
nh(0)

= c+ 1
nĝ(0)E[ 1

t
]
.

(ii) Fix a realized choosiness level t. There exists a unique symmetric equilibrium

under choosiness-based pricing C, in which each firm sets a price pC(t) = c +
t

nĝ(0)
.
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(iii) Consider fully personalized pricing F . Without loss of generality, fix a realized

profile of consumer brand preferences x ≡ (x1, . . . , xn) with x1 > · · · > xn. The

pricing game yields a unique equilibrium outcome: The most preferred firm—

i.e., firm 1—charges an equilibrium price pF1 (x, t) = c + t(x1 − x2) and mo-

nopolizes the market; the second most preferred firm—i.e., firm 2—charges an

equilibrium price pF2 (x, t) = c.7

The equilibrium characterization for uniform pricing U and fully personalized

pricing F can be obtained by adapting Lemmas 1 and 2 in Rhodes and Zhou (2024),

respectively: Firms are uninformed under the former and perfectly informed in the

latter. Similarly, choosiness-based pricing C is equivalent to uniform pricing in Rhodes

and Zhou (2024) with a fixed t.

Firms remain symmetric under choosiness-based pricing C. In the symmetric

equilibrium, each firm ultimately matters to a consumer only if she ranks its product

in the first or second place. Recall that x̂i := xi − maxj ̸=i xj with a PDF ĝ(·). The

equilibrium price is thus determined by ĝ(0)—i.e., the density of consumers “neutral”

to the two most preferred firms. Loyalty-based pricing L, in contrast, renders firms

asymmetric once x ≡ (x1, . . . , xn) is realized. Fixing x, denote by k(x) the number

of firms with positive demand in the equilibrium. The following result ensues.

Lemma 2 (Equilibrium Characterization under L) Consider loyalty-based pric-

ing L. Without loss of generality, fix a realized profile of consumer brand preferences

x ≡ (x1, . . . , xn) with x1 > · · · > xn. The pricing game yields a unique equilibrium

outcome: If f(t) ≥ 1/t, then k(x) = 1 and the market is monopolized by consumers’

most preferred firm 1; otherwise, k(x) ≥ 2 and the market is segmented by a set of

consumers’ most preferred firms, i.e., {1, . . . , k(x)}.8 In particular, if t = 0, then

k(x) = n.

For a given realization of x ≡ (x1, . . . , xn), the interim equilibrium outcome for the

case of f(t) < 1/t can be intuitively described as follows. There exist a set of cutoffs(
α1(x), . . . , αk(x)−1(x)

)
, with α0(x) := t̄ > α1(x) > · · · > αk(x)−1(x) > αk(x)(x) := t.

A consumer purchases the product from her i-th most preferred firm—i.e., firm i in

7All other firms charge pFi (x, t) ≥ c for i ∈ {3, . . . , n}.
8The interim equilibrium characterization established in Lemma 2 resembles that in a vertical

differentiation model (e.g., Shaked and Sutton, 1982, 1983): xi can alternatively be interpreted as
firm i’s product quality, and t as consumers’ marginal valuation of quality.
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this context—if and only if her choosiness level t falls in the interval
[
αi(x), αi−1(x)

)
,

which represents the i-th choosiest consumer segment in the equilibrium. Details of

the equilibrium are provided in the proof of the lemma in the Appendix.

Without knowing t, a firm would be subject to the usual marginal-inframarginal

trade-off: A competitive price allows the firm to sell to less choosy consumers—i.e.,

those with low t—but prevents the firm from extracting surplus from their choosier

counterparts, who are more willing to pay for better-matched products. By Lemma 2,

the equilibrium outcome sensitively depends on the amount of the least choosy con-

sumers in the population—i.e., the value of f(t). Imagine that f(t) ≥ 1/t, which im-

plies significant presence of such consumers. It is too costly to lose these consumers,

which forces firm 1 to lower its price and induces more intense price competition. In

the Appendix, we show that firms 2 to n each charge their marginal cost c in the

most intuitive equilibrium, while the preferred firm 1 responds by charging a markup

t(x1 − x2) to remain competitive, even for the least choosy consumers. The resultant

equilibrium is efficient, since all consumers buy their favorite product.

However, retaining these consumers is costly to firm 1 because of this marginal-

inframarginal trade-off. When the density of the least choosy consumers is small—i.e.,

when f(t) < 1/t—firm 1 would instead raise its price to secure a premium from choosy

consumers, while leaving a positive residual demand to others. This softens the price

competition: As Lemma 2 and the Appendix show, at least two firms charge a price

above the marginal cost c. The segmented market causes inefficiency, because some

consumers are lured by lower prices and end up consuming less preferred products.

2.2 Preliminaries of Welfare and Profit Ranking

Next, we compare consumer welfare and industry profit across pricing regimes.

Denote, respectively, by W j, V j, and Πj the expected equilibrium total surplus,

consumer welfare, and industry profit under pricing regime j ∈ {U , C,L,F}. The

following ensues from Lemmas 1 and 2.

Lemma 3 (Potential Market Inefficiency with Full Market Coverage) The

following statements hold: W U = W C = WF = WL if f(t) ≥ 1/t, and W U = W C =

WF > WL if f(t) < 1/t.

With full market coverage, the equilibrium outcome is efficient as long as every

consumer buys from their preferred firm. All of these pricing regimes generate efficient
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outcomes except for the case of loyalty-based pricing L when f(t) < 1/t: As Lemma 2

shows, less choosy consumers—i.e., those with t < α1(x)—end up with a less preferred

product, which causes efficiency loss.

Lemma 4 (Armstrong, 2006; Rhodes and Zhou, 2024) The following state-

ments hold: V F > V U > V C and ΠC > ΠU > ΠF .

This setting is equivalent to that of Rhodes and Zhou (2024) when comparing

uniform pricing U with fully personalized pricing F : Firms are completely uninformed

in the former case and perfectly informed in the latter, which suggests V F > V U . This

affirms the conventional wisdom in the literature: Competitive personalized pricing

renders every consumer contestable, which enables firms to poach other firms’ loyal

consumers and thus intensifies market competition (see, e.g., Thisse and Vives, 1988;

Shaffer and Zhang, 2002; Chen and Iyer, 2002; Montes, Sand-Zantman, and Valletti,

2019; Chen, Choe, and Matsushima, 2020). Given WF = W U , we can conclude

ΠF < ΠU .

However, allowing firms to acquire information about choosiness t harms con-

sumers and renders them even worse off than under uniform pricing U .9 Without

knowing t, a firm prices by the average, which yields pU = c + 1/
[
nĝ(0)E[1/t]

]
.

Firms remain symmetric upon knowing t and continue to compete for “neutral” con-

sumers, but they customize their prices for every t, with pC(t) = c + t/
[
nĝ(0)

]
.

Choosy consumers—i.e., those with t > 1/E[1/t]—are charged a higher price under

choosiness-based pricing C, while the less choosy—i.e., those with t < 1/E[1/t]—pay

less. The conclusion is mathematically straightforward by Cauchy-Schwartz inequal-

ity; its economic rationale is also intuitive. Revealing t softens the price competition

for choosy consumers: A larger t amplifies the advantage of the more preferred prod-

uct and renders undercutting less effective when poaching others’ loyal customers. In

contrast, a smaller t limits the degree of perceived product differentiation and encour-

ages competition, since a lower price is more likely to lure a consumer away from her

most preferred product. Compared with uniform pricing U , firms gain by knowing

t from the more valuable consumers—i.e., those with larger t and higher willingness

to pay—while losing from the less valuable. The information thus benefits firms in

general, but harms consumers as a whole.

9This observation was first noted by Armstrong (2006) in a standard Hotelling duopoly model,
but extending it to a general discrete choice model is straightforward.
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Lemma 4 paves the way for our search for the consumer-optimal pricing regime.

It suffices to compare the case of fully personalized pricing F with that of loyalty-

based pricing L. In what follows, we first present a case of duopoly with n = 2, then

proceed to a case of oligopoly with n ≥ 3.

3 Case of Duopoly

With n = 2, the pricing equilibrium in Lemma 2 can be simplified as follows.

Corollary 1 Consider loyalty-based pricing L and fix x ≡ (x1, x2), with x1 > x2. If

f(t) ≥ 1/t, the equilibrium prices satisfy

pL1 (x) = c+ t(x1 − x2) and p
L
2 (x) = c. (2)

If f(t) < 1/t, the equilibrium prices satisfy

pL1 (x) = pL2 (x) + (x1 − x2)α
∗ and pL2 (x) = c+ (x1 − x2)

F (α∗)

f(α∗)
, (3)

where α∗ ∈ (t, t̄ ) uniquely solves

α∗f(α∗) = 1− 2F (α∗). (4)

Specifically, when f(t) < 1/t, firm 1 sells to consumers with a choosiness level

above the cutoff α∗ and leaves firm 2 to sell to the rest. By Corollary 1, x1 − x2

is a sufficient statistic for consumers’ brand preferences x ≡ (x1, x2) under duopoly.

Comparing V L with V F , together with Lemma 4, yields the following main result.

Proposition 1 (Consumer Welfare Comparison under Duopoly) Fix n = 2.

Either fully personalized pricing F or loyalty-based pricing L maximizes consumer

welfare. Comparing V L with V F yields the following:

(i) If f(t) ≥ 1/t or ∫ t

α∗
[1− F (t)]dt >

F (α∗)

f(α∗)
, (5)

then V L > V F , with loyalty-based pricing L maximizing consumer welfare.
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(ii) If f(t) < 1/t and ∫ t

α∗
[1− F (t)]dt <

F (α∗)

f(α∗)
, (6)

then V F > V L, with fully personalized pricing F maximizing consumer welfare.

Proposition 1 provides necessary and sufficient conditions for the consumer welfare

comparison between fully personalized pricing F and loyalty-based pricing L under

duopoly. As noted above, the literature on competitive personalized pricing suggests

that firms’ access to consumer information intensifies market competition and benefits

consumers (see, e.g., Thisse and Vives, 1988; Rhodes and Zhou, 2024). These studies

typically assume unidimensional consumer characteristics. Proposition 1 shows that

with multidimensional characteristics, consumer welfare can be maximized by partial

access to consumer data and limited inferences regarding consumer attributes.

We now elaborate on the underlying logic. Fixing (x, t), recall by Lemma 1 that

in the equilibrium under fully personalized pricing F , firms charge

pF1 (x, t) = c+ t(x1 − x2) and p
F
2 (x, t) = c,

with firm 1 monopolizing the market.

To compare this with loyalty-based pricing L, we begin with the case of f(t) < 1/t,

which implies limited presence of the least choosy consumers—i.e., those with t = t.

By (3), under loyalty-based pricing, firms charge

pL1 (x) = c+ (x1 − x2)

[
α∗ +

F (α∗)

f(α∗)

]
and pL2 (x) = c+ (x1 − x2)

F (α∗)

f(α∗)
.

By Lemma 2 and Corollary 1, the market is segmented in the equilibrium, and we

illustrate the market outcome in Figure 1(a). Without knowing t, a firm has to set

a flat price for all, which triggers the marginal-inframarginal trade-off: To capture a

larger market share, firm 1 has to forgo the surplus it could otherwise extract from

choosier consumers. As noted above, the firm surrenders the segment of less choosy

consumers—i.e., those with t ∈ [t, α∗)—to firm 2 and sells exclusively to those with

higher gross valuations, i.e., those with t ∈ [α∗, t̄ ].

Less choosy consumers are surely worse off under loyalty-based pricing L. Under
fully personalized pricing F , these consumers would be indifferent between purchasing

from firm 1 for a price pF1 (x, t) = c + t(x1 − x2) and firm 2 for a price pF2 (x, t) = c.
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Now, under loyalty-based pricing L, they have to purchase from the less preferred

firm 2, while paying more than c.

Choosy consumers—i.e., those with t ∈ [α∗, t̄ ]—purchase from their preferred

firm 1 under loyalty-based pricing L. The flat price they pay—pL1 (x) = c + (x1 −
x2)[α

∗ + F (α∗)/f(α∗)]—can be either higher or lower than pF1 (x, t) = c+ t(x1 − x2),

as illustrated in Figure 1(a). Moderately choosy consumers—i.e., t ∈ [α∗, t∗)—pay

more, i.e., pL1 (x) > pF1 (x, t); while very choosy consumers—i.e., t ∈ (t∗, t̄ ]—pay less,

i.e., pL1 (x) < pF1 (x, t), which reflects the marginal-inframarginal trade-off.

Very choosy consumers benefit from the presence of their moderately choosy coun-

terpart: Firm 1 must keep its flat price sufficiently low to retain those with t ∈ [α∗, t∗).

In contrast, moderately choosy consumers are caught in the middle: They end up pay-

ing more, because firm 1 is unwilling to forgo too much of the surplus it can extract

from the very choosy. At the same time, their valuations for the preferred product

are high enough such that they are unwilling to settle for their second choice.

In summary, consumers with t ∈ (t∗, t̄ ] benefit from loyalty-based pricing L com-

pared with fully personalized pricing F , while all others are worse off.10

Summing up the relative gains and losses leads to condition (5). Since only very

choosy consumers prefer loyalty-based pricing L, V L is more likely to exceed V F when

they make up a larger share of the population, such that more individuals benefit while

fewer suffer. This can be reflected by an upward shift in the probability mass for t

above the cutoff α∗ toward the upper end of its support. In that case, equilibrium

prices remain unchanged, while F (t) decreases for all t ∈ [α∗, t̄) and renders the

condition
∫ t
α∗ [1 − F (t)]dt > F (α∗)/f(α∗) more likely to hold. We construct the

following example to illustrate this logic.

Example 1 We set t = 1 and parameterize the CDF F (·) as follows:

F (t; t, r) =

(
t− t

1− t

)r
, with t ∈ (0, 1) and r ≥ 1.

It is straightforward to verify that f(t) = 0 < 1/t for all t ∈ (0, 1) and r ≥ 1. As t

or r increases, the probability densities would be concentrated more on large values of

10Recall that a larger t indicates a consumer with higher income and lower price sensitivity. These
observations point to a (less desirable) distributional outcome of loyalty-based pricing: Although it
can maximize aggregate consumer welfare, the gains relative to fully personalized pricing accrue to
high-income consumers, whereas the losses are borne by their low-income counterparts.
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(a) Equilibrium pricing schedules (b) Consumer welfare

Figure 1: Loyalty-based pricing vs. fully personalized pricing: f(t) < 1/t.

t, which implies that condition (5) is more likely to be satisfied. Figure 1(b) depicts

the pricing regime that maximizes consumers’ welfare. The horizontal axis represents

t and the vertical axis r, with the former ranging from 0 to 1 and the latter from 0

to 4. The solid curve is defined by the condition
∫ t
α∗ [1− F (t)]dt = F (α∗)/f(α∗); the

region to its right collects all (t, r) under which loyalty-based pricing outperforms fully

personalized pricing in terms of consumer welfare. That is, loyalty-based pricing L
tends to prevail for large t and r, which affirms the intuition laid out above.

Suppose instead that f(t) ≥ 1/t, which implies a substantial presence of the least

choosy consumers. In this scenario, forgoing these consumers becomes excessively

costly for firm 1 and prompts it to lower its price so that even the least choosy

consumer would prefer its product. As a result, consumers pay pL1 (x) = c+t(x1−x2),
which is lower than the price under fully personalized pricing F—i.e., pF1 (x, t) =

c+t(x1−x2)—for all t ∈ [t, t̄ ]. Without revealing t, the marginal-inframarginal trade-

off benefits every consumer: The significant presence of the least choosy consumers

generates a positive externality to the rest of the population.

Recall that the cutoff type α∗ in the case f(t) < 1/t is determined by α∗f(α∗) =

1 − 2F (α∗). If f(t) rises to 1/t—i.e., when the condition f(t) ≥ 1/t is met—then

F (α∗) must equal zero, and both α∗ and t∗ depicted in Figure 1(a) degenerate to

t. In other words, every consumer is sufficiently choosy (i.e., t ≥ t∗ = t) and pays

less under loyalty-based pricing L than fully personalized pricing F , which ensures

V L > V F .
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Although ranking consumer welfare across pricing regimes causes complications,

firms’ profits can be ranked unambiguously.

Proposition 2 (Industry Profit Comparison under Duopoly) Fix n = 2.

The equilibrium profits under the four pricing regimes can be ranked as follows: ΠC >

ΠU > ΠF > ΠL. That is, choosiness-based pricing maximizes industry profit, while

loyalty-based pricing minimizes it.

The first two inequalities follow directly from Lemmas 3 and 4. However, the

comparison between ΠF and ΠL is less explicit. Under the condition f(t) < 1/t,

loyalty-based pricing L generates lower total surplus than fully personalized pricing

F due to inefficient allocation—i.e., WL < WF ; it also generates less consumer

welfare—i.e., V L < V F—provided condition (6) holds.

We fix x ≡ (x1, x2) and compare industry profit under loyalty-based pricing L with

that under fully personalized pricing F . As discussed above, under loyalty-based

pricing L, firm 1 earns more from moderately choosy consumers—i.e., those with

t ∈ [α∗, t∗)—but loses on very choosy consumers—i.e., those with t ∈ [t∗, t̄ ]—relative

to fully personalized pricing F . Moreover, firm 1 gives up less choosy consumers—

i.e., those with t ∈ [t, α∗)—while firm 2 is now able to secure positive profit from this

consumer segment.

However, the industry’s relative gain under loyalty-based pricing L does not com-

pensate for its corresponding loss. Firm 1 surrenders surplus from its most valuable

consumers; its gain only comes from those with t ∈ [α∗, t∗)—a segment whose value is

constrained by their moderate willingness to pay and the competitive pressure from

firm 2. Meanwhile, firm 2 captures less choosy consumers but its profitability is also

limited: These consumers now end up with their less preferred product, which further

suppresses their willingness to pay. Proposition 2 verifies that these losses exceed the

industry’s gain in profit under loyalty-based pricing L, which leads to ΠL < ΠF .

It is worth noting that since ΠC > ΠU and ΠF > ΠL, the industry always benefits

from knowing consumers’ choosiness t, regardless of the availability of information

about x. Intuitively, knowing t alleviates each firm’s marginal-inframarginal trade-off,

which enables more flexible pricing strategies and more effective surplus extraction.
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4 Case of Oligopoly

We now extend our analysis to the case with n ≥ 3. As before, we focus on

the comparison between loyalty-based pricing L and fully personalized pricing F ,

since consumer welfare is maximized under either regime. We first outline the key

preliminaries, which set the stage for our main predictions.

4.1 Preliminaries: Interim Consumer Welfare

Fix a realized profile of consumer brand preferences x ≡ (x1, . . . , xn), with x1 >

· · · > xn. With slight abuse of notation, let V L(x) and V F(x) denote the interim con-

sumer welfare in the equilibrium under loyalty-based pricing L and fully personalized

pricing F , respectively. More formally, define

V L(x) :=

∫ t̄

t

max
{
v + tx1 − pL1 (x), . . . , v + txn − pLn(x)

}
dF (t), (7)

V F(x) :=

∫ t̄

t

(v + tx2 − c)dF (t). (8)

We begin with the following thought experiment. Suppose hypothetically that a least

preferred firm n+1, with xn+1 < xn, is introduced to the market. This addition leads

to the following.

Lemma 5 (Interim Consumer Welfare and Number of Firms) Fix n ≥ 2

and xn ≡ (x1, . . . , xn), with x1 > · · · > xn. For each realized profile of consumer

brand preferences xn+1 := (x1, . . . , xn, xn+1) with xn+1 < xn, the following holds:

V L(xn+1) ≥ V L(xn) and V
F(xn+1) = V F(xn).

With a realized xn, when the hypothetical least preferred firm is introduced to

the market, loyalty-based pricing L is more likely to prevail over fully personalized

pricing F in terms of interim equilibrium consumer welfare. Under fully personalized

pricing F , consumer welfare remains unchanged, whereas it weakly improves under

loyalty-based pricing L.
Recall from Lemma 1(iii) that firms engage in asymmetric Bertrand competition

under fully personalized pricing F ; so the interim equilibrium boils down to the

head-to-head competition between the two most preferred firms, which implies that
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the additional firm does not affect the market outcome. In contrast, as shown in

Lemma 2, under loyalty-based pricing L, the market can be split by three or more

firms when f(t) < 1/t. The additional firm could reshape the equilibrium, intensify

market competition, and ultimately benefit consumers at the cost of firms.

We continue our thought experiment to explore how this least preferred firm im-

proves consumer welfare under loyalty-based pricing L. Define

Ṽ L(xn+1) :=

∫ t̄

t

max
{
v + tx1 − pL1 (xn+1), . . . , v + txn − pLn(xn+1)

}
dF (t). (9)

This represents the hypothetical interim consumer welfare when consumers are re-

quired to purchase from the first n firms at prices determined by the equilibrium that

involves n+ 1 firms. The impact on consumer welfare can be decomposed as follows:

V L(xn+1)− V L(xn) =
[
Ṽ L(xn+1)− V L(xn)

]
︸ ︷︷ ︸

price effect

+
[
V L(xn+1)− Ṽ L(xn+1)

]
︸ ︷︷ ︸

choice effect

.

Two effects come into play when the least preferred firm enters the market under

loyalty-based pricing L. The first is a price effect : Consumers choose from the same

set of products (x1, . . . , xn) at the new equilibrium prices (pL1 (xn+1), . . . , p
L
n(xn+1)),

which are formed after the addition of firm n + 1. The second is a choice effect :

With equilibrium prices fixed at (pL1 (xn+1), . . . , p
L
n+1(xn+1)), consumers now have the

option of purchasing from firm n+ 1.

Lemma 6 (Price Effect and Choice Effect) Both the price effect and the choice

effect are nonnegative, i.e.,

Ṽ L(xn+1)− V L(xn) ≥ 0 and V L(xn+1)− Ṽ L(xn+1) ≥ 0.

Moreover, the price effect is weakly increasing in xn+1, while the choice effect is non-

monotone.

By Lemma 6, consumers benefit from both channels in the interim equilibrium.

The price effect is more pronounced when the newly added firm better matches con-

sumers’ taste—i.e., when its brand-specific value approaches xn. However, the choice

effect—i.e., the value of an additional option—is nonmonotone with respect to its

brand-specific value of the new firm: When xn+1 is much smaller than xn, the new
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option is largely irrelevant for consumers. Conversely, when xn+1 is very close to xn,

the additional choice provides little benefit, since purchasing from firm n+1 is almost

the same as purchasing from firm n.

4.2 Main Results

We now compare ex ante expected consumer welfare under loyalty-based pricing

L and fully personalized pricing F . The analysis extends from the case of duopoly

and examines how the comparison evolves as more firms are included.

For this purpose, we introduce two indices that are critical for our analysis. Denote

the j-th order statistics of x by x(j) , with j ∈ {1, . . . , n}, so that x(1) > · · · > x(n).

Fixing a constant κ ∈ (0, 1) and a joint distribution of consumers’ brand loyalty g̃(·),
we define

C1(g̃, κ) :=
Ex∼g̃(·)

[
1

(
x(2)−x(3)
x(1)−x(2) ≤ κ

)
×
(
x(1) − x(2)

)]
Ex∼g̃(·)

[
1

(
x(2)−x(3)
x(1)−x(2) ≥ κ

)
×
(
x(1) − x(2)

)] .
The index C1(g̃, κ) is an intuitive measure of the impact of the third most preferred

firm under loyalty-based pricing L. Ceteris paribus, a higher value of the index implies

a greater likelihood of the event [x(2) − x(3)]/[x(1) − x(2)] ≤ κ, given the distribution

g̃(·). A smaller numerator x(2) − x(3) indicates that the third most preferred firm is

closer to the second most preferred firm in terms of consumers’ loyalty; this implies a

stronger price effect, as shown in Lemma 6. Similarly, a large denominator x(1) − x(2)

implies a more lopsided and softer competition between the two most preferred firms,

which implies that an additional firm can play a more significant role in intensifying

competition. In short, a larger C1(g̃, κ) indicates greater likelihood of an impactful

third firm under loyalty-based pricing L in favor of consumers through the price effect,

given a constant κ and distribution g̃(·).
Next, fixing a distribution of consumer choosiness f(·), we define

C2(f, κ) :=
Ṽ L(κ+ 1, κ, 0)− V F(κ+ 1, κ, 0)

V F(κ+ 1, κ)− V L(κ+ 1, κ)
.

We now present the main result; the index C2(f, κ) will be interpreted later.

Proposition 3 (Consumer Welfare Comparison under Oligopoly) Either
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fully personalized pricing F or loyalty-based pricing L maximizes consumer welfare.

The following statements hold regarding the comparison between V L and V F :

(i) Suppose V L > V F for the case when n = 2; that is, f(t) ≥ 1/t or condition (5)

holds. Then V L > V F for all n ≥ 3.

(ii) Suppose V L < V F for the case when n = 2; that is, f(t) < 1/t and condition

(6) holds. If there exists κ ∈ (0, 1) such that

C1(g̃, κ)× C2(f, κ) > 1, (10)

then V L > V F for all n ≥ 3.

Proposition 3 establishes the conditions under which loyalty-based pricing L or

fully personalized pricing F maximizes consumer welfare in an oligopoly. Comparing

Proposition 3 with Proposition 1, we can conclude that increasing the number of firms

in the market strengthens the case for loyalty-based pricing L.11 By Proposition 3(i),

if loyalty-based pricing L maximizes consumer welfare under duopoly, this ranking

remains unchanged in an oligopoly. Moreover, Proposition 3(ii) further states that if

loyalty-based pricing underperforms under duopoly, the comparison can be reversed

in an oligopoly, provided condition (10) is satisfied. An example that illustrates this

possibility is provided in Section 4.3.

As in the duopoly case, equilibrium industry profit can again be unambiguously

ranked across the four pricing regimes.

Proposition 4 (Industry Profit Comparison under Oligopoly) Fix n ≥ 3.

The equilibrium profits under the four pricing regimes can be ranked as follows: ΠC >

ΠU > ΠF > ΠL. That is, choosiness-based pricing C maximizes industry profit, and

loyalty-based pricing L minimizes it.

4.3 Further Discussion

We now interpret our results. First, the comparison is relatively straightforward

when f(t) ≥ 1/t or when condition (5) holds. In this case, we have V L > V F for

11Interestingly, adopting an oligopoly framework, Zhou (2017) highlights the importance of market
structure within a context of product bundling. Specifically, Zhou finds that compared with separate
sales, bundling tends to raise market prices, thus benefiting firms while harming consumers as the
number of firms increases.
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duopoly. Lemma 5 further implies that this would persist for n ≥ 3, since additional

firms are more likely to affect the market outcome under loyalty-based pricing L,
which leads to greater improvement in V L compared with V F : Under fully person-

alized pricing F , additional firms affect the interim equilibrium only when they rank

among a consumer’s two most preferred firms.

A more nuanced discussion is required for the case in which f(t) < 1/t and con-

dition (6) holds. The comparison under duopoly can be reversed—i.e., loyalty-based

pricing L can surpass fully personalized pricing F—whenever condition (10) holds.

This occurs when there exists some constant κ ∈ (0, 1) that generates sufficiently

large C1(g̃, κ) and C2(f, κ).
To understand the index C2(f, κ), imagine the following: The market initially

consists of two firms with brand-specific values x1 = κ + 1 and x2 = κ; then a third

firm with x3 = 0 is introduced. This index measures the impact of the third most

preferred firm on consumer welfare under loyalty-based pricing L in this hypothetical

scenario, in which [x(2) − x(3)]/[x(1) − x(2)] = κ. If f(t) < 1/t and condition (6) holds,

the denominator of the index, V F(κ+1, κ)−V L(κ+1, κ), is positive for x = (κ+1, κ)

under duopoly. Meanwhile, the value of the numerator, Ṽ L(κ+1, κ, 0)−V F(κ+1, κ, 0),

is bounded from above by V L(κ+1, κ, 0)−V F(κ+1, κ, 0) because the addition of the

third firm also causes a nonnegative choice effect, i.e., V L(κ+1, κ, 0)− Ṽ L(κ+1, κ, 0):

Intuitively, a larger C2(f, κ) suggests a more significant improvement in consumer

welfare under loyalty-based pricing L relative to fully personalized pricing F through

the price effect in this hypothetical scenario.

The index C2(f, κ) thus provides a lower bound for the impact of additional firms

under loyalty-based pricing L on consumer welfare. First, it isolates the improvement

in consumer welfare due to the price effect while disregarding the choice effect. Second,

it assumes a third firm with x3 = 0 in a duopolistic market with (x1, x2) = (κ+1, κ).

By Lemma 6, the price effect is stronger when the third most preferred firm is a closer

substitute for the second. Thus, if C2(f, κ) is sufficiently large—which indicates a

strong price effect when [x(2) − x(3)]/[x(1) − x(2)] = κ—we can conclude that the price

effect is even more pronounced if a new added firm has a brand-specific value greater

than zero, which leads to the event [x(2) − x(3)]/[x(1) − x(2)] < κ.

Therefore, a large C1(g̃, κ)×C2(f, κ) indicates that for a given κ, having additional

firms is sufficiently likely to significantly improve consumer welfare under loyalty-

based pricing L through the price effect alone. This leads to Proposition 3(ii): When-
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ever certain κ ∈ (0, 1) exists that satisfies condition (10)—i.e., C1(g̃, κ)×C2(f, κ) > 1—

additional firms would cause V L to surpass V F .

We now impose additional structure on the distribution of brand loyalty x ≡
(x1, . . . , xn) to elucidate the role played by condition (10).

Corollary 2 Suppose that xi’s are independent and identically distributed with a

weakly decreasing PDF g(·). It can be shown that C1(g̃, 1/2) ≥ 5/4 for n ≥ 3 and

C2(f, 1/2) > 4/5 for all distributions that satisfy Assumption 2. By Proposition 1,

when f(t) < 1/t and condition (6) holds, V F > V L for n = 2. Moreover, by Propo-

sition 3, V L > V F whenever n ≥ 3, irrespective of the distribution f(·).

Setting κ = 1/2, Corollary 2 establishes that condition (10) is satisfied, which

ensures that loyalty-based pricing L maximizes consumer welfare broadly whenever

n ≥ 3. Intuitively, a weakly decreasing g(·) implies that when additional firms are

introduced to the market, their realized values are more likely to remain closer to that

of the second most preferred firm; consequently, the event [x(2)−x(3)]/[x(1)−x(2)] ≤ κ

is more likely.

Two remarks are in order. First, condition (10) is sufficient but not necessary.

As discussed above, the analysis focuses only on the price effect caused by additional

firms, without accounting for the choice effect. Second, the distribution of xi influ-

ences the comparison between V F and V L when n ≥ 3, as indicated by Proposition 3

and Corollary 2. This contrasts with the duopoly case: By Proposition 1, the com-

parison between V F and V L under duopoly holds pointwisely for every realization of

(x1, x2) and is thus independent of the (marginal) density function g(·): The condi-

tions in Proposition 1—which govern the consumer welfare comparison between V L

and V F in the duopoly case—depend solely on the distribution of consumers’ choosi-

ness f(t) and not on that of their brand loyalty g̃(x). In the duopoly case, the differ-

ence between firms’ equilibrium prices across the two pricing regimes is proportional

to |x1 − x2| (see Lemma 1(iii) and Corollary 1). However, this property no longer

holds when the market consists of three or more firms, in which case the consumer

welfare comparison may depend on the entire profile (x1, . . . , xn) (see Lemma 2).

As in the duopoly case, industry profit can be unambiguously ranked. The first

two inequalities are obvious and follow immediately from Lemmas 3 and 4. The last

inequality can again be understood in light of the rationale outlined above: Additional

firms influence market outcome under loyalty-based pricing L more significantly than
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fully personalized pricing F . An additional firm may step up competition under

loyalty-based pricing L even if it is least preferred by consumers. In contrast, under

fully personalized pricing F , it is irrelevant unless it is one of the two most preferred

firms. These forces favor consumers and harm firms more under loyalty-based pricing

L than under fully personalized pricing F , leading to ΠF > ΠL.

5 Partial Market Coverage

We now relax the assumption of full market coverage in equilibrium. A higher

marginal cost c raises equilibrium prices and potentially leads some consumers to

opt for their outside option with zero surplus. By varying the marginal cost, we can

adjust the degree of market coverage in equilibrium and examine its implications for

consumer welfare and industry profit across different pricing regimes.12

A consumer purchases from firm i if and only if

v + txi − pi ≥ max
j ̸=i

{
v + txj − pj, 0

}
.

A symmetric pure-strategy equilibrium under uniform pricing requires pj = pU for

each j ̸= i in equilibrium. This condition can be rewritten as

pi − pU ≤ t

[
xi −max

j ̸=i

{
xj,

pU − v

t

}]
.

With slight abuse of notation, we define x̂i(ŷ) := xi − maxj ̸=i{xj, ŷ} and z(y) :=

txi −maxj ̸=i{txj, y}. The CDF and PDF of x̂i(ŷ) are denoted by Ĝ(·; ŷ) and ĝ(·; ŷ),
respectively; those of z(y) are similarly denoted by H(·; y) and h(·; y). We impose

the following regularity conditions in parallel with Assumptions 1 and 3.

Assumption 1′ 1 − Ĝ(·; ŷ) is log-concave for each ŷ ∈ R. Moreover, 1−Ĝ(0,ŷ)
ĝ(0;ŷ)

is

weakly decreasing in ŷ.

Assumption 3′ 1 − H(·; y) is log-concave for each y ∈ R. Moreover, 1−H(0;y)
h(0;y)

is

weakly decreasing in y.

The following result can be obtained.

12Equivalently, we can vary the market coverage by changing the value of the base utility v.
Decreasing the base utility v and increasing the marginal cost c are isomorphic in our setting.
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Proposition 5 (Welfare Comparison under Partial Market Coverage) Sup-

pose that Assumptions 1′, 2, and 3′ hold. There exists a unique symmetric equilibrium

under U and C and a unique equilibrium outcome under F and L.13 Moreover, if

f(t) > 0 and g(x) > 0, there exist a threshold c < v + tx such that the following

results hold:

(i) Uniform pricing maximizes consumer welfare when c > c. Moreover,

lim
c↗v+tx

V U : V C : V L : V F = 32 : 27 : 27 : 0.

(ii) Fully personalized pricing maximizes industry profit when c > c. Moreover,

lim
c↗v+tx

ΠU : ΠC : ΠL : ΠF = 48 : 54 : 54 : 108.

With a large marginal cost c, Proposition 5 states that, in the limiting case,

uniform pricing U generates the highest consumer welfare, while fully personalized

F pricing yields the highest industry profit. These contrast with the rankings under

full market coverage. The intuition aligns with that of Rhodes and Zhou (2024). A

large c effectively filters out competition and renders each firm a local monopolist:

Conditional on a consumer whose value exceeds the large cost—i.e., v + txi > c for

some i ∈ N—it is highly unlikely that this consumer values another product more

than the cost threshold. Consequently, for each firm, competition with other products

is overshadowed by competition with the outside option. The conventional wisdom

of monopolistic first-degree price discrimination (Pigou, 1920) is reinstated in this

setting, which suggests that finer consumer information benefits firms while harming

consumers. In the absence of significant inter-firm competition, lacking either type

of information would prevent a firm from perfectly profiling its consumers and fully

extracting their surplus.

It is worth noting that when c is sufficiently large, information about consumers’

choosiness plays a role analogous to that of brand loyalty. By Proposition 5, consumer

welfare and industry profit under loyalty-based pricing L converge to those under

choosiness-based pricing C—i.e., limc↗v+tx V
C/V L = limc↗v+txΠ

C/ΠL = 1. To see

this, consider choosiness-based pricing C for a fixed t. Firms will not price below

13See the proof of Proposition 5 for detailed equilibrium characterization.
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c, and consumers with v + txi ≥ pi purchase from firm i. When c ↗ v + tx, only

consumers with xi close to x consider a purchase. This causes firm i to face a linear

demand in this limiting case, regardless of the marginal distribution g(xi). A similar

rationale applies to loyalty-based pricing L for a fixed xi. Each firm again faces linear

demand in the limit, independent of the distribution f(t). Consequently, both pricing

regimes yield the same level of consumer welfare and industry profit.

6 Concluding Remarks

We analyze a general oligopoly model in which firms produce horizontally dif-

ferentiated products, and consumers differ in two key dimensions: brand-dependent

preferences (loyalty) and brand-independent preferences (choosiness). Subject to pre-

vailing consumer privacy regulations and competition policies, firms can make either

perfect or imperfect inferences about consumer preferences and set their prices accord-

ingly. Four pricing regimes could emerge: (i) uniform pricing, (ii) choosiness-based

pricing, (iii) loyalty-based pricing, and (iv) fully personalized pricing.

We show that if the market is fully covered, consumer welfare is maximized under

either fully personalized pricing—in which firms set prices based on perfectly inferred

consumer preferences—or loyalty-based pricing—in which firms set prices based solely

on each consumer’s loyalty rather than their choosiness. The latter regime is more

likely to prevail in markets with a larger number of firms. In contrast, pricing based

on consumers’ choosiness always maximizes industry profit.

Our findings highlight the fundamentally different roles played by consumer in-

formation along different dimensions of preferences and the implications for pricing

strategies. Specifically, learning about consumers’ brand preferences (loyalty) ren-

ders individual consumers more contestable, whereas learning about their choosiness

mitigates the marginal-inframarginal trade-off and enables more effective surplus ex-

traction. This insight underscores the complexity of regulations regarding consumer

data protection and firms’ pricing behavior. Evaluating the implications of commer-

cial surveillance and personalized pricing requires moving beyond the binary question

of whether consumer information should be shared with firms. Instead, a more nu-

anced inquiry should focus on what types of data should be shared or subject to

stricter regulation. Our results call for further research in this direction.
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Appendix: Proofs

We first state several intermediate results (the proofs can be found in the Supple-

mental Appendix).

Lemma A1 Suppose that Assumption 2 holds. Then f(t), F (t), and 1−F (t) are all

log-concave in t. Moreover, both 1−F (t)
f(t)

− t and 1−F (t)
f(t)

− tF (t) are strictly decreasing.

Lemma A2 Suppose that Assumption 2 holds and f(t) < 1/t. There exists a unique

α∗ ∈ (t, t) that solves α∗f(α∗) = 1− 2F (α∗).

Lemma A3 Fix δ1, δ2 > 0 and t ≥ α > α′ ≥ t. The function

ψ
(
α, α′) := F (α)− F (α′)

f(α)/δ1 + f(α′)/δ2

is strictly increasing in α and is strictly decreasing in α′.

Proof of Lemma 1

Proof. We characterize firms’ equilibrium pricing strategies under U , C, and F ,

respectively.

Uniform pricing We focus on the symmetric equilibrium. Fixing i ∈ {1, . . . , n}
and pj = pU for each j ̸= i, firm i’s profit for charging price pi is

πi(pi;p−i)
∣∣
pj=pU ,∀j ̸=i

= (pi−c) Pr
(
pi − pU ≤ t

(
xi −max

j ̸=i
xj
))

= (pi−c)
[
1−H(pi − pU)

]
.

By Assumption 3, 1−H(pi−pU) is log-concave in pi. This implies that πi(pi;p−i)

is also log-concave in pi, holding fixed pj = pU for all j ̸= i. Therefore, the symmetric

equilibrium is uniquely determined by the following first-order condition at pi = pU :

0 =
∂πi(pi,p−i)

∂pi

∣∣∣∣
pj=pU ,∀j∈N

= 1−H(0)−
(
pU − c

)
h(0),

from which we can obtain that pU = c+ 1−H(0)
h(0)

= c+ 1
nh(0)

. The last equality follows

from the assumption that the distribution of x is exchangeable, which implies that

1−H(0) = Pr
(
xi = maxj∈N xj

)
= 1/n.

Recall that h(·) is the PDF of z = tx̂. It holds that h(0) =
∫ 1

0
f(t)
t
ĝ(0)dt =

ĝ(0)E
[
1
t

]
, which implies that pU = c+ 1

nh(0)
= c+ 1

nĝ(0)E[ 1
t
]
.
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Choosiness-based pricing Fix t and suppose pj = pC(t) for each j ̸= i. Similar

to the case of uniform pricing, firm i’s profit under Assumption 1 is log-concave. By

the first-order condition for firm i, the equilibrium price can be solved as pC(t) =

c+ t[1−Ĝ(0)]
ĝ(0)

= c+ t
nĝ(0)

.

Fully personalized pricing Fixing (x, t), with x1 > · · · > xn, the firms engage

in standard asymmetric Bertrand competition and the equilibrium pricing schedules

are pF1 (x, t) = c+ t(x1 − x2), p
F
2 (x, t) = c, and pFi (x, t) ≥ c for i ∈ {3, . . . , n}.

Proof of Lemma 2

Proof. We show that firms’ equilibrium strategies are as follows:

(i) When f(t) ≥ 1/t, it holds that k(x) = 1 and the equilibrium prices satisfy

pL1 (x) = c+ t(x1 − x2), p
L
2 (x) = c, and pLi (x) ≥ c for all i ∈ {3, . . . , n}. (11)

(ii) When f(t) < 1/t, it holds that k(x) ≥ 2. In equilibrium, firms 1 to k(x) have

positive demand, while firms k(x)+1 to n have zero demand and thus earn zero

profits. Without loss of generality, we set pLk(x)+1(x) = · · · = pLn(x) = c. By

arguments similar to the case of f(t) ≥ 1/t, there may exist other equilibria. For

example, when k(x) ≤ n− 2, firms k(x) + 2 to n can charge an arbitrary price

above their marginal cost c. Again, all these equilibria are outcome equivalent.

For firms with positive demand, there exist a set of cutoffs
(
α1(x), . . . , αk(x)−1(x)

)
,

with α0(x) := t̄ > α1(x) > · · · > αk(x)−1(x) > αk(x)(x) := t, such that a con-

sumer purchases from firm i if and only if her choosiness level t ∈
[
αi(x), αi−1(x)

)
.

Moreover, the equilibrium prices
(
pL1 (x), . . . , p

L
k(x)(x)

)
, the set of cutoffs

(
α1(x),

. . . , αk(x)−1(x)
)
, and the number of firms with positive demand k(x) are uniquely

pinned down by the following conditions:

(a) First-order conditions for profit maximization for the first k(x)− 1 firms:

pL1 (x) =c+
1− F

(
α1(x)

)
f(α1(x))
x2−x1

, and (12)

pLi (x) =c+
F
(
αi−1(x)

)
− F

(
αi(x)

)
f(αi−1(x))
xi−1−xi +

f(αi(x))
xi+1−xi

, i ∈
{
2, . . . , k(x)− 1

}
. (13)
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(b) Karush-Kuhn-Tucker (KKT) conditions for the k(x)-th firm:

pLk(x)(x) = c+
F
(
αk(x)−1(x)

)
f(αk(x)−1(x))
xk(x)−1−xk(x)

+ ξf(t)
, ξ ∈

[
0,

1

xk(x) − xk(x)+1

]
, (14)

pLk(x)(x) ≤ c+ t
(
xk(x) − xk(x)+1

)
, (15)

ξ ×
[
t
(
xk(x) − xk(x)+1

)
− c− pLk(x)(x)

]
= 0, (16)

where xn+1 := −∞ if k(x) = n.

(c) Indifference conditions of consumers with pivotal choosiness levels:

pLi (x) = pLi+1(x) + αi(x)(xi − xi+1), i ∈
{
1, . . . , k(x)− 1

}
. (17)

Fix x = (x1, . . . , xn) and suppose x1 > · · · > xn without loss of generality. The

proof consists of six steps. First, we show that the k(x) active firms are firms 1

through k(x). Second, we show that there exists a set of cutoffs
(
α1(x), . . . , αk(x)−1(x)

)
such that a consumer purchases from firm i if and only if their choosiness level

t ∈
[
αi(x), αi−1(x)

)
, and prove the indifference condition (17). Third, we show that

the profit function of each active firm is log-concave. Fourth, we derive the first-order

conditions (12) and (13) and the KKT conditions (14), (15), and (16). Fifth, we prove

the equilibrium existence and uniqueness and show that k(x) = 1 when f(t) ≥ 1/t.

Last, we prove the equilibrium existence and uniqueness when f(t) < 1/t.

Step I We show that the k(x) active firms are exactly firms 1 through firm k(x).

Suppose, to the contrary, that there exists an active firm i and an inactive j with

i > j. If firm j deviates to firm i’s price, it can attract all consumers of firm i and

earn positive profit. A contradiction.

Step II Fixing the number of active firms k(x) and a price profile (pL1 (x), . . . , p
L
k(x)(x)),

we show that there exists a set of cutoffs (α1(x), . . . , αk(x)−1(x)) such that a consumer

purchases from firm i if and only if her choosiness level t ∈
[
αi(x), αi−1(x)

)
.

Let αi(x) :=
pLi (x)−pLi+1(x)

xi−xi+1
, with i ∈ {1, . . . , k(x) − 1}. A consumer prefers firm

i over firm i + 1 if and only if v + txi − pLi (x) ≥ v + txi+1 − pLi+1(x), which is

equivalent to t ≥ αi(x). Similarly, the consumer prefers firm i over firm i − 1 if

and only if t < αi−1(x). Note that if αi−1(x) ≤ αi(x), no consumers purchase from
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firm i. Therefore, we must have that αi−1(x) > αi(x) and α0(x) := t̄ > α1(x) >

· · · > αk(x)−1(x) > αk(x)(x) := t. Moreover, it is straightforward to verify that if a

consumer’s choosiness level t ∈ [αi(x), αi−1(x)), she buys from firm i.

Step III Prove the log-concavity of profit functions. For i ≤ k(x), firm i’s profit is

πi(pi,p−i;x) = (pi − c)× Pr

(
min
j<i

{ pj − pi
xj − xi

, t
}
> t ≥ max

j>i

{ pi − pj
xi − xj

, t
})

.

We focus on the case in which minj<i
{ pj−pi
xj−xi , t

}
and maxj>i

{ pi−pj
xi−xj , t

}
are achieved by

some unique j1 < i and j2 > i, respectively. Firm i’s profit can then be expressed as

πi(pi,p−i;x) = (pi − c)×

[
F
( pj1 − pi
xj1 − xi

)
− F

( pi − pj2
xi − xj2

)]
︸ ︷︷ ︸

=:Di(pi,p−i;x)

,

which is twice differentiable at pi. The analysis for other cases is similar and omit-

ted for brevity. We state the following lemma (whose proof can be found in the

Supplemental Appendix):

Lemma A4 Under Assumption 2, Di(pi,p−i;x) is log-concave in pi.

By Lemma A4, πi(pi,p−i;x) = (pi − c)Di(pi,p−i;x) is log-concave in pi.

Step IV Derive the first-order conditions and KKT conditions. Recall from Step

II that α1(x) > · · · > αk(x)−1(x). Therefore, the profit for firm i ∈ {2, . . . , k(x)− 1}
is differentiable at pLi (x) and the corresponding first-order condition is

0 =
∂πi
(
pi,p

L
−i(x);x

)
∂pi

∣∣∣∣
pi=pLi (x)

=
[
F
(
αi−1(x)

)
− F

(
αi(x)

)]
−
(
pLi (x)− c

)
×

[
f
(
αi−1(x)

)
xi−1 − xi

+
f
(
αi(x)

)
xi − xi+1

]
,

which is equivalent to (13). Similarly, we can obtain (12) from the first-order condition

for firm 1.

Next, consider firm k(x) and prove the KKT conditions (14), (15), and (16). We

first consider (15). Suppose, to the contrary, that pLk(x)(x) > c+ t(xk(x) − xk(x)+1).
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Then firm k(x) + 1 can deviate to pk(x)+1 ∈
(
c, pLk(x)(x) − t(xk(x) − xk(x)+1)

)
and

obtain positive profit. A contradiction.

It remains to prove (14) and (16). We consider the following two cases:

Case I: pL
k(x)(x) = c+ t(xk(x)−xk(x)+1). That is, (15) holds with equality. This

implies (16) and it remains to prove (14). Firm k(x)’s profit is

πk(x)

(
p̃k(x),p

L
−k(x)(x);x

)

=


(
p̃k(x) − c

)
× F

(
pL
k(x)−1

(x)−p̃k(x)

xk(x)−1−xk(x)

)
, p̃k(x) ∈

(
pLk(x)(x)− δ, pLk(x)(x)

)
,

(
p̃k(x) − c

)
×

[
F

(
pL
k(x)−1

(x)−p̃k(x)

xk(x)−1−xk(x)

)
− F

(
p̃k(x)

xk(x)−xk(x)+1

)]
, p̃k(x) ∈

(
pLk(x)(x), p

L
k(x)(x) + δ

)
.

Note that pLk(x)(x) must satisfy

∂

∂p̃k(x)
πk(x)

(
p̃k(x),p

L
−k(x)(x);x

) ∣∣∣∣
p̃k(x)=p

L
k(x)

(x)−0

≥ 0, (18)

and

∂

∂p̃k(x)
πk(x)

(
p̃k(x),p

L
−k(x)(x);x

) ∣∣∣∣
p̃k(x)=p

L
k(x)

(x)+0

≤ 0. (19)

Simple algebra would verify that (18) and (19) are equivalent to (14).

Case II: pL
k(x)(x) < c + t(xk(x) − xk(x)+1). That is, strict inequality holds in

(15). Therefore, firm k’s profit is

πk(x)

(
p̃k(x),p

L
−k(x)(x);x

)
= (p̃k(x) − c)× F

(
pLk(x)−1(x)− p̃k(x)

xk(x)−1 − xk(x)

)
,

and the first-order condition with respect to p̃k(x) is

−
(
pLk(x)(x)− c

)
×
f
(
αk(x)−1(x)

)
xk(x)−1 − xk(x)

+ F
(
αk(x)−1(x)

)
= 0.

Note that setting ξ = 0 in (14)—which implies (16)—gives the above condition.
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Step V Suppose f(t) ≥ 1/t. It suffices to show that there exists no equilibrium

that satisfies k(x) ≥ 2. Suppose, to the contrary, that such an equilibrium exists.

Combining (12) and (17) yields that

c+
1− F (α1(x))

f(α1(x))
× (x1−x2) = pL1 (x) = pL2 (x)+α1(x)(x1−x2) ≥ c+α1(x)(x1−x2),

which implies that 1−F (α1(x))
f(α1(x))

−α1(x) ≥ 0. However, by Lemma A1 and the postulated

f(t) ≥ 1/t, we can conclude that 1−F (α1(x))
f(α1(x))

−α1(x) <
1−F (t)
f(t)

− t ≤ 0. A contradiction.

Step VI Suppose f(t) < 1/t. Fixing x, for each α1 ∈ [t, t], define the following

functions recursively:

ṕ1(α1) := c+
1− F (α1)

f(α1)
× (x1 − x2) and ά1(α1) := α1. (20)

Define

ṕj+1(α1) := ṕj(α1)− άj(α1)(xj − xj+1), (21)

and

άj+1(α1) :=


the unique solution to

ṕj+1(α1) = c+
F (άj(α1))−F (αj+1)
f(άj(α1))

xj−xj+1
+

f(αj+1)

xj+1−xj+2

, ṕj+1(α1) < c+
F (άj(α1))

f(άj(α1))

xj−xj+1
+

f(t)
xj+1−xj+2

,

t, otherwise.

(22)

By Lemma A3, άj+1(α1) is well defined. Recursion stops when either of the following

conditions is satisfied:

ṕj(α1)− άj(α1)(xj − xj+1) ≤ c, (23)

ṕj(α1) ≥ c+
F
(
άj−1(α1)

)
f(άj−1(α1))
xj−1−xj + f(t)

xj−xj+1

, (24)

in which case we define k(α1) := j ≥ 2.

Fixing α1 ∈ [t, t], it can be verified that the set of prices {ṕi(α1)}k(α1)
i=1 and the

set of cutoffs {άi(α1)}k(α1)−1
i=1 satisfy (12), (13), and (17). Therefore, {ṕi(α1)}k(α1)

i=1 and

{άi(α1)}k(α1)−1
i=1 constitute an equilibrium if and only if the KKT conditions (14), (15),

and (16) are satisfied. It suffices to show that there exists a unique α1 ∈ [t, t] such

that (14), (15) and (16) hold.
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We state the following lemma (whose proof can be found in the Supplemental

Appendix).

Lemma A5 Fixing i ∈ {1, . . . , k(α1)}, ṕi(α1) is decreasing in α1 and άi(α1) is in-

creasing in α1.

Let k∗ := maxα1∈[t,t] k(α1) and X := {α1| k(α1) = k∗}. It suffices to show that (i)

there exists a unique α1 ∈ X that constitutes an equilibrium; and (ii) every α1 /∈ X
cannot constitute an equilibrium.

We first show that X is an interval. Let α1 := inf X and α1 := supX . Suppose

k∗ = 2. Then k(α1) = 2 for all α1 ∈ [t, t], which implies that X is an interval and

X = [t, t]. Suppose k∗ ≥ 3. Because k(α1) = k(α1) = k∗, neither (23) nor (24) does

not hold for j = k∗ − 1. Therefore, for each α1 ∈ {α1, α1}, it holds that

ṕk∗−1(α1) ≥ c+ άk∗−1(α1)(xk∗−1 − xk∗), (25)

ṕk∗−1(α1) ≤ c+
F
(
άk∗−2(α1)

)
f(άk∗−2(α1))
xk∗−2−xk∗−1

+ f(t)
xk∗−1−xk∗

. (26)

By Lemma A5, (25) and (26) hold for each α1 ∈ [α1, α1], which implies that X is an

interval (i.e., X = [α1, α1]). Moreover, (25) holds with equality at α1 = α1, and (26)

holds with equality at α1 = α1.

By Lemma A5, άk∗ is increasing in α1. Therefore, there exists a unique threshold

α̂1 ∈ X such that άk∗(α1) = t if and only if α1 ∈ [α1, α̂1], where α̂1 solves (see (22))

ṕk∗(α̂1) = c+
F
(
άk∗−1(α̂1)

)
f(άk∗−1(α̂1))
xk∗−1−xk∗

+ f(t)
xk∗−xk∗+1

. (27)

Note that αk(x)(x) ≡ t in the equilibrium. Therefore, the equilibrium cutoff α1(x) /∈
(α̂1, α1]. In addition, α1(x) ∈ [α1, α̂1] if α1(x) ∈ X . Next, we show that there exists

a unique α1 to satisfy (14), (15), and (16). We consider the following two cases:

Case (a): ṕk∗(α1) < c+ t(xk∗ − xk∗+1). By Lemma A5, for each α1 ∈ [α1, α̂1],

ṕk∗(α1) < c + t(xk∗ − xk∗+1). Therefore, (15) is satisfied and ξ = 0 from (16).

Define the following auxiliary function

ψ2(α1) := ṕk∗(α1)−
F
(
άk∗−1(α1)

)
f(άk∗−1(α1))
xk∗−1−xk∗

− c, α1 ∈ [α1, α̂1].
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To show that there exists a unique solution to satisfy (14), it suffices to show

that there exists a unique solution to ψ2(α1) = 0. By Lemma A5, ψ2(α1)

is decreasing in α1. First, recall that (26) holds with equality at α1 = α1.

Therefore, άk∗−1(α1) = t and thus ψ2(α1) ≥ 0. Further, by (27), ψ2(α̂1) ≤ 0.

Therefore, there exists a unique α∗
1 ∈ [α1, α̂1] such that ψ2(α

∗
1) = 0.

Case (b): ṕk∗(α1) ≥ c+ t(xk∗ − xk∗+1). By Lemma A5, there exists a unique

α̃1 ∈ [α1, α̂1] such that ṕk∗(α̃1) = c + t(xk∗ − xk∗+1). If ψ2(α̃1) < 0, we set

α∗
1 = α̃1. Otherwise, let α∗

1 be the unique solution to ψ2(α
∗
1) = 0. It can be

verified that (14), (15), and (16) are satisfied uniquely at α1 = α∗
1.

Thus far, we have shown that there exists a unique α1 = α∗
1 ∈ X to satisfy (14),

(15), and (16). To prove equilibrium uniqueness, it remains to show that, for an

arbitrary α′
1 /∈ X = [α1, α1], the KKT conditions (14), (15), and (16) cannot be

satisfied simultaneously.

Suppose α′
1 < α1. By definition of X and k∗, k(α1) = k∗ > k(α′

1) =: k′.

Therefore, (23) does not hold for j = k′ at α1 = α1, which implies that ṕk′(α1) −
άk′(α1)(xk′ − xk′+1) > c. By Lemma A5, the left-hand side is decreasing in α1, and

thus ṕk′(α
′
1) − άk′(α

′
1)(xk′ − xk′+1) > c. Therefore, condition (15)—which must be

satisfied in equilibrium—does not hold at α1 = α′
1.

By similar arguments, we can show that condition (14) does not hold if α′
1 > α1.

This completes the whole proof.

Proof of Lemma 3

Proof. See main text.

Proof of Lemma 4

Proof. Applying Proposition 1 in Rhodes and Zhou (2024) yields V U < V F . It

remains to show V C < V U . By Lemma 3, W U = W C. Moreover, note that

pU = c+
1

nĝ(0)E[1
t
]
< c+

E(t)
nĝ(0)

= E
[
pC(t)

]
,

from which we can conclude that V C < V U .

Proof of Proposition 1
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Proof. Without loss of generality, consider the case of x1 > x2. Recall from (7) and

(8) that V L(x) and V F(x) are the interim consumer welfare. It suffices to show that

the comparison between V L(x) and V F(x) holds pointwisely. Consider the following

two cases:

Case (a): f(t) ≥ 1/t. By Lemma 1 and Corollary 1, fixing x1 > x2, consumers

with (x1, x2) always buy from firm 1; moreover, we have that

pF1 (x, t) = c+t(x1−x2) ≥ c+t(x1−x2) = pL1 (x) and p
F
2 (x, t) = pL2 (x) = c,∀ t ∈ [t, t].

Therefore, V L > V F .

Case (b): f(t) < 1/t. By Corollary 1, under loyalty-based pricing, the consumer

buys from firm 1 if and only if t ≥ α∗. The consumer welfare is

V L(x) =

∫ α∗

t

[
v + tx2 − pL2 (x)

]
f(t)dt+

∫ t

α∗

[
v + tx1 − pL1 (x)

]
f(t)dt. (28)

Similarly, consumers’ welfare at x under fully personalized pricing amounts to

V F(x) =

∫ t

t

[
v + tx1 − pF1 (x, t)

]
f(t)dt =

∫ t

t

[v + tx2 − c] f(t)dt. (29)

Subtracting (29) from (28) and carrying out the algebra, we can obtain that

V L(x)− V F(x) = (x1 − x2)

[∫ t

α∗

[
1− F (t)

]
dt− F (α∗)

f(α∗)

]
.

Recall the postulated x1 > x2. Therefore, V
L(x) > V F(x) is equivalent to (5). This

concludes the proof.

Proof of Proposition 2

Proof. By Lemma 3, WF = W U = W C. By Lemma 4, V F > V U > V C. Therefore,

ΠF < ΠU < ΠC and it suffices to show ΠF > ΠL.

Denote firms’ interim equilibrium profits at x under L and F by ΠL(x) and ΠF(x),

respectively. It suffices to show that the comparison between ΠL(x) and ΠF(x) holds
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pointwisely. The proof for the case of f(t) ≥ 1/t is obvious and we focus on the case

of f(t) < 1/t. ΠL(x) and ΠF(x) can be expressed as

ΠL(x) =|x1 − x2| ×
(
F (α∗)

f(α∗)
+ α∗ [1− F (α∗)

])
− c,

and

ΠF(x) = Et
[
t|x1 − x2|

]
− c = |x1 − x2| ×

∫ t

t

tf(t)dt− c.

Therefore, it suffices to show that∫ t

t

tf(t)dt ≥ F (α∗)

f(α∗)
+ α∗ [1− F (α∗)

]
. (30)

It is useful to state the following two lemmas (whose proofs can be found in the

Supplemental Appendix).

Lemma A6 Fixing f(·), there exists a distribution supported on [0, t
†
] with CDF

F †(·) and PDF f †(·), such that ln f†(t)
t

is linear on [0, t
†
] and satisfies

f †(α∗) = f(α∗), F †(α∗) = F (α∗), (31)

and ∫ t

t

tf(t)dt ≥
∫ t

†

0

tf †(t)dt. (32)

Lemma A7 Let F † be the distribution constructed in Lemma A6. Then∫ t
†

0

tf †(t)dt ≥ F †(α∗)

f †(α∗)
+ α∗

[
1− F †(α∗)

]
. (33)

By Lemma A6, the left-hand side of (30) decreases and the right-hand side re-

mains unchanged if we replace F (·) and f(·) with F †(·) and f †(·), respectively. By

Lemma A7, (30) holds for the constructed distribution F †(·). Therefore, (30) holds

for the distribution F (·). This completes the proof.

Proof of Lemmas 5 and 6

Proof. Fix xn ≡ (x1, . . . , xn), with x1 > · · · > xn. By Lemma 1, pF1 (xn, t) =

t(x1 − x2) = pF1 (xn+1, t) and consumers buy from firm 1 under fully personalized
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pricing, implying that WF(xn) = WF(xn+1). To prove Lemma 5, it remains to

show that V L(xn+1) ≥ V L(xn). Note that the inequality follows immediately from

Lemma 6 and it remains to prove the lemma.

First, consider the choice effect. By (7) and (9), we have that

V L(xn+1)− Ṽ L(xn+1)

=Et
[

max
i∈{1,...,n+1}

{
v + txi − pLi (xn+1)

}
− max

i∈{1,...,n}

{
v + txi − pLi (xn+1)

}]
≥ 0.

To see the nonmonotonicity of the choice effect, note that v+txn+1−pLn+1(xn+1) =

−∞ for xn+1 = −∞, which implies that V L(xn+1) − Ṽ L(xn+1) = 0. Further, v +

txn+1 − pLn+1(xn+1) = v + txn − pLn(xn+1) for xn+1 = xn, which also implies that

V L(xn+1) − Ṽ L(xn+1). In summary, V L(xn+1) − Ṽ L(xn+1) = 0 at xn+1 = −∞ and

at xn+1 = xn, which implies that V L(xn+1)− Ṽ L(xn+1) is nonmonotone with respect

to xn+1.

Second, consider the price effect. Combining (7) and (9) yields that

Ṽ L(xn+1)−V L(xn) = Et
[

max
i∈{1,...,n}

{
v + txi − pLi (xn+1)

}
− max

i∈{1,...,n}

{
v + txi − pLi (xn)

}]
.

Note that pLi (xn) = pLi (x1, . . . , xn,−∞). The monotonicity of price effect follows

immediately from the following lemma (whose proof can be found in the Supplemental

Appendix).

Lemma A8 pLi (xn+1) is weakly decreasing in xn+1 for each i ∈ {1, . . . , n}.

This completes the proof.

Proof of Proposition 3

Proof. We first prove part (i) of the proposition. Fix x ≡ (x1, . . . , xn) and assume

x1 > · · · > xn without loss of generality. By Lemma 5, we have that

V L(x) ≥ V L(xn−1) ≥ · · · ≥ V L(x1, x2) and V
F(x) = V F(xn−1) = · · · = V F(x1, x2).

Recall from Proposition 1 that the consumer welfare comparison between L and

F holds pointwisely for the case of n = 2. Therefore, we have that V L(x1, x2) >

V F(x1, x2), which in turn implies that V L(x) > V F(x).
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Next, we prove part (ii) of the proposition. We first state the following interme-

diate result (whose proof is obvious and is omitted for brevity):

Lemma A9 The consumer welfare V L(x), Ṽ L(x), and V F(x) are homogeneous of

degree one and translation invariant—i.e., for each k > 0, we have that

V L(kx) = kV L(x), Ṽ L(kx) = kV F(x), V F(kx) = kV F(x),

V L(x+ k) = V L(x), Ṽ L(x+ k) = V F(x), and V F(x+ k) = V F(x).

For notational convenience, define x(3) := (x(1), x(2), x(3)), x(2) := (x(1), x(2)), and

r(x) := x(2)−x(3)
x(1)−x(2) . Carrying out the algebra, we have that

V L − V F =Ex∼g̃

[
V L(x)− V F(x)

]
≥Ex∼g̃

[
V L
(
x(3)

)
− V F

(
x(3)

)]
=Ex∼g̃

[
1
(
r(x) ≤ κ

)
×
[
V L
(
x(3)

)
− V F

(
x(3)

)]]

+ Ex∼g̃

[
1
(
r(x) ≥ κ

)
×
[
V L
(
x(3)

)
− V F

(
x(3)

)]]

≥Ex∼g̃

[
1
(
r(x) ≤ κ

)
×
[
Ṽ L
(
x(3)

)
− V F

(
x(3)

)]]

+ Ex∼g̃

[
1
(
r(x) ≥ κ

)
×
[
V L
(
x(3)

)
− V F

(
x(3)

)]]
, (34)

where the first inequality follows from Lemma 5 and the second inequality from

Lemma 6.

By Lemma A9, we have that

Ṽ L
(
x(3)

)
− V F

(
x(3)

)
=
(
x(1) − x(2)

)
×
[
Ṽ L (1, 0,−r(x))− V F (1, 0,−r(x))] .

(35)

By Lemmas 5 and 6, Ṽ L(x(3)) is increasing in x(3) and WF(x(3)) is independent of

x(3); together with the postulated r(x) ≤ κ, we have that

Ṽ L (1, 0,−r(x))− V F (1, 0,−r(x)) ≥ Ṽ L (1, 0,−κ)− V F (1, 0,−κ)
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= Ṽ L (κ+ 1, κ, 0)− V F (κ+ 1, κ, 0) , (36)

where the equality follows from Lemma A9. Further, note that

V L
(
x(3)

)
− V F

(
x(3)

)
≥V L

(
x(2)

)
− V F

(
x(2)

)
=
(
x(1) − x(2)

)
×
[
V L (κ+ 1, κ)− V F (κ+ 1, κ)

]
, (37)

where the equality follows from Lemma A9 and the inequality from Lemma 5.

Recall that f(t) < 1/t and (6) holds by assumption. Therefore, V F (κ+ 1, κ) −
V L (κ+ 1, κ) > 0; together with (34), (35), (36), and (37), we have that

V L − V F ≥Ex∼g̃

[
1
(
r(x) ≤ κ

)
× (x(1) − x(2))

]
×
[
Ṽ L (κ+ 1, κ, 0)− V F (κ+ 1, κ, 0)

]
+ Ex∼g̃

[
1
(
r(x) ≥ κ

)
× (x(1) − x(2))

]
×
[
V L (κ+ 1, κ)− V F (κ+ 1, κ)

]
=Ex∼g̃

[
1
(
r(x) ≥ κ

)
× (x(1) − x(2))

]
×
[
V F (κ+ 1, κ)− V L (κ+ 1, κ)

]
×
[
C1(g̃, κ)C2(f, κ)− 1

]
> 0,

which concludes the proof.

Proof of Proposition 4

Proof. Similar to the proof of Proposition 2, we focus on the case of f(t) < 1/t and

show that ΠF(x) > ΠL(x) holds pointwisely. Note that ΠL(x) and ΠF(x) can be

expressed as

ΠL(x) =

k(x)∑
i=1

(
pLi (x)− c

) [
F
(
αi−1(x)

)
− F

(
αi(x)

)]
, (38)

ΠF(x) = E [t] (x1 − x2) = (x1 − x2)

∫ t

t

tf(t)dt. (39)

Carrying out the algebra, we can obtain that

ΠL(x) = pL1 (x)− c−
k(x)−1∑
i=1

(xi − xi+1)αi(x)F
(
αi(x)

)
≤ pL1 (x)− c− (x1 − x2)α1(x)F

(
α1(x)

)
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= (x1 − x2)×

[
1− F

(
α1(x)

)
f
(
α1(x)

) − α1(x)F
(
α1(x)

)]
, (40)

where the first equality follows from (38) and (17); the inequality follows from the

fact that (xi − xi+1)αi(x)F (αi(x)) is nonnegative for each i ∈ {2, . . . , k(x)− 1}; and
the last equality follows from (12).

Recall that α∗ is the solution to (4). It is useful to state the following lemma

(whose proof can be found in the Supplemental Appendix):

Lemma A10 Suppose that f(t) < 1/t. Fixing x = (x1, . . . , xn) with x1 > · · · > xn,

it holds that α1(x) ≥ α∗ ≥ αk(x)−1(x). Moreover, both inequalities are strict if

k(x) = n.

By Lemma A10, we can obtain that

1− F
(
α1(x)

)
f
(
α1(x)

) −α1(x)F
(
α1(x)

)
≤ 1− F (α∗)

f(α∗)
−α∗F (α∗) =

F (α∗)

f(α∗)
+α∗ (1− F (α∗)

)
,

(41)

where the inequality follows from Lemmas A1 and A10, and the equality follows from

(4). Combining (40) and (41) yields that

ΠL(x) ≤ (x1 − x2)×
[
F (α∗)

f(α∗)
+ α∗ (1− F (α∗)

)]
≤ (x1 − x2)×

∫ t

t

tf(t)dt = ΠF(x),

where the second inequality follows from (30) and the equality from (39). This con-

cludes the proof.

Proof of Proposition 5

Proof. Firms’ equilibrium pricing schedules when the market can be partially covered

are characterized as follows:

(i) (Uniform pricing) The equilibrium price satisfies

pU = c+
1−H

(
0; pU − v

)
h (0; pU − v)

.
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(ii) (Choosiness-based pricing) The equilibrium price satisfies

pC(t) = c+
1− Ĝ

(
0; p

C(t)−v
t

)
ĝ
(
0; p

C(t)−v
t

) .

(iii) (Loyalty-based pricing) Fix x ≡ (x1, . . . , xn), with x1 > · · · > xn. Denote the

number of active firms by k(x). There exists a set of cutoffs α0(x) := t̄ ≥
α1(x) > · · · > αk(x)(x) ≥ αk(x)+1(x) := t, such that a consumer purchases from

firm i if and only if her choosiness level t ∈ [αi(x), αi−1(x)) and does not make

a purchase if t ∈ [t, αk(x)(x)). The details of each firm i’s equilibrium pricing

strategy can be found in Lemma B3 in the Supplemental Appendix.

(iv) (Fully personalized pricing) The equilibrium pricing schedules are

pF1 (x, t) = max
{
c,min

{
t(x1 − x2), v + tx1

}}
and pFi (x, t) = c, i ∈ {2, . . . , n}.

The equilibrium characterization under uniform pricing and that under choosiness

pricing follow from Lemma 1 in Rhodes and Zhou (2024). The characterization under

fully personalized pricing is obvious, and that under loyalty-based pricing can be found

in the Supplemental Appendix.

Consider the consumer welfare comparison as c ↗ v + tx. We first consider

uniform pricing. The equilibrium consumer welfare under uniform pricing amounts

to V U = E
[
maxi∈N

{
v + txi − pU , 0

} ]
. In what follows, we show that

V U =
4n

81
× f(t)g(x)

xt
×
(
xt+ v − c

)3 × (1 + o(1)
)
. (42)

For notational convenience, define

A1 :=
∑
i∈N

E
[
max

{
v + txi − pU , 0

}]
and

A2 :=
∑

i,j∈N ,i<j

E
[
max

{
v + txi − pU , v + txj − pU

}
1

(
v + txi − pU ≥ 0, v + txj − pU ≥ 0

)]
.
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By the inclusion-exclusion principle, we can conclude that

A1 −A2 ≤ V U ≤ A1. (43)

It can be verified that pU−c = xt+v−c
3

×(1+o(1)) (see Lemma B4 in the Supplemental

Appendix for more details). Therefore, A1 and A2 can be expressed as follows when

c approaches v + tx:

A1 =
4n

81
× f(t)g(x)

xt
×
(
xt+ v − c

)3 × (1 + o(1)
)
and A2 = o

(
(xt+ v − c)3

)
. (44)

Plugging (44) into (43) yields that (42). Similarly, the consumer welfare under the

other three pricing regimes when c approaches v + tx can be expressed as follows:

V L = V C =
n

24
× f(t)g(x)

xt
×
(
xt+ v − c

)3 × (1 + o(1)
)

(45)

and

V F = o
(
(v + xt− c)3

)
. (46)

Combining (42), (45), and (46) yields that

lim
c↗v+tx

V U : V C : V L : V F = 32 : 27 : 27 : 0.

The ratios between industry profits under different pricing regimes can be similarly

established. This concludes the proof.
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Supplemental Appendix: Omitted Proofs

Proof of Lemma A1

Proof. Clearly, ln f(t) = ln f(t)
t

+ ln t is concave. The log-concavity of F (t) and

1 − F (t) follows from the Prékopa-Borell theorem. Further, the log-concavity of

1 − F (t) implies that 1−F (t)
f(t)

is weakly decreasing. Therefore, both 1−F (t)
f(t)

− t and
1−F (t)
f(t)

− tF (t) are strictly decreasing.

Proof of Lemma A2

Proof. Let Q(α) := 1−F (α)
f(α)

− F (α)
f(α)

− α. By Lemma A1, both F (t) and 1 − F (t)

are log-concave, which implies that F (α)
f(α)

is increasing in α and 1−F (α)
f(α)

is decreasing

in α. Therefore, Q is strictly decreasing in α. It follows from f(t) < 1/t that

Q(t) = 1
f(t)

− t > 0; moreover, Q(t) = − 1
f(t)

− t < 0. Therefore, there exists a unique

α∗ ∈ (t, t) such that Q(α∗) = 0. This concludes the proof.

Proof of Lemma A3

Proof. Carrying out the algebra, we have that

∂ψ

∂α
= ψ(α, α′)×

 f(α)

F (α)− F (α′)
− f ′(α)

f(α) + f(α′)δ1
δ2


> ψ(α, α′)×

 f(α)
F (α)

− f ′(α)

f(α) + f(α′)δ1
δ2


=

ψ(α, α′)

F (α)×
[
f(α) + f(α′)δ1

δ2

] ×{f(α) [f(α) + f(α′)δ1
δ2

]
− f ′(α)F (α)

}

≥ ψ(α, α′)

F (α)×
[
f(α) + f(α′)δ1

δ2

] × {[f(α)]2 − f ′(α)F (α)
}
.

By Lemma A1, F (·) is log-concave, which implies that
[
f(α)

]2 − f ′(α)F (α) ≥ 0 and

thus ∂ψ
∂α
> 0. Similarly, we have that

∂ψ

∂α′ =− ψ(α, α′)×

 f(α′)

F (α)− F (α′)
+

f ′(α′)
f(α)δ2
δ1

+ f(α′)


A1



<− ψ(α, α′)×

 f(α′)

1− F (α′)
+

f ′(α′)
f(α)δ2
δ1

+ f(α′)


=− ψ(α, α′)[

1− F (α′)
]
×
[
f(α)δ2
δ1

+ f(α′)
] ×{f(α′)×

[
f(α)δ2
δ1

+ f(α′)

]
+ f ′(α′)×

[
1− F (α′)

]}

≤− ψ(α, α′)[
1− F (α′)

]
×
[
f(α)δ2
δ1

+ f(α′)
] × {f(α′)2 + f ′(α′)×

[
1− F (α′)

]}
.

By Lemma A1, 1−F (·) is log-concave, which implies that f(α′)2+f ′(α′)×
[
1− F (α′)

]
≥

0 and thus ∂ψ
∂α′ < 0. This concludes the proof.

Proof of Lemma A4

Proof. For notational convenience, denote α+ :=
pj1−pi
xj1−xi

and α− :=
pi−pj2
xi−xj2

. It suffices

to show that Di(pi,p−i;x)
∂Di(pi,p−i;x)/∂pi

is increasing in pi. Set δ1 = xj1 − xi and δ2 = xi − xj2 in

the function ψ (α, α′) defined in Lemma A3. Simple algebra would verify that

Di(pi,p−i;x)

∂Di(pi,p−i;x)/∂pi
= −ψ(α+, α−).

By Lemma A3, ψ(α+, α−) is increasing in α+ and decreasing in α−. This, together

with the fact that α+ is decreasing in pi and α− is increasing in pi, implies that
Di(pi,p−i;x)

∂Di(pi,p−i;x)/∂pi
increases with pi. This completes the proof.

Proof of Lemma A5

Proof. We prove the lemma by induction.

Base case: ά1(α1) is obviously increasing in α1. By Lemma A3, ṕ1(α1)—which we

define in (20)—is decreasing in α1.

Inductive step: Suppose that ṕi(α1) is decreasing in α1 and άi(α1) is increasing in

α1. By (21), ṕi+1(α1) is decreasing in α1. Set δ1 = xi−1 − xi and δ2 = xi− xi+1 in the

function ψ (α, α′) defined in Lemma A3. It follows from (22) that

ṕi+1(α1) = c+ ψ
(
άi(α1), άi+1(α1)

)
.
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Recall that ṕi+1(α1) is decreasing in α1 and άi(α1) is increasing in α1 by assumption.

Therefore,

0 >
dṕi+1(α1)

dα1

=
∂ψ

∂α︸︷︷︸
≥0

× dάi
dα1︸︷︷︸
>0

+
∂ψ

∂α′︸︷︷︸
≤0

×dάi+1

dα1

,

from which we can conclude that dάi+1

dα1
> 0.

Conclusion: By the principle of induction, ṕi(α1) is decreasing in α1 and άi(α1) is

increasing in α1 for all i ∈ {1, . . . , k(α1)}. This concludes the proof.

Proof of Lemma A6

Proof. The proof consists of two steps. In the first step, we construct the PDF

f † and the CDF F † such that (31) holds. In the second step, we prove that the

constructed f † satisfies (32).

Step I Define f †(t) := Mteβt and

F †(t) =

∫ t

0

f †(s)ds = Meβt(βt− 1) + 1

β2
, ∀ t ∈

[
0, t

†]
,

where the parameters (M, β, t
†
) are to be constructed to satisfy (31) and F †(t

†
) = 1.

We first construct (M, β). Note that

F †(α∗)

f †(α∗)
=
eβα

∗
(βα∗ − 1) + 1

β2α∗eβα∗ = α∗ × eu(u− 1) + 1

u2eu︸ ︷︷ ︸
=:ϕ(u)

,

where u := βα∗. Further, we have that ϕ(+∞) = 0, ϕ(−∞) = +∞, and ϕ′(·) < 0 on

R. Therefore, there exists a unique u to satisfy

ϕ(u) =
F †(α∗)

α∗f †(α∗)
.

It can be verified that (M, β) =
( f(α∗)
α∗eβα∗ , u

α∗

)
satisfies (31). By construction, β can be

positive or negative. Fixing M and β, it can be verified that M eu
′
(u′−1)+1
β2 is strictly

decreasing in u′ for u′ < 0 and increasing in u′ for u′ > 0, and thus there exist two

solutions to M eu
′
(u′−1)+1
β2 = 1. Pick the solution that has the same sign as β and
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denote it as u′ with slight abuse of notation. To complete the construction, we set

t
†
= u′/β.

Step II We prove (32). Let

β′ :=
d

dt

[
ln
f(t)

t

] ∣∣∣∣
t=α∗

.

We first show that β′ ≤ β. Suppose, to the contrary, that β′ > β. From the log-

concavity of f(t)/t, we have that

ln
f(t)

t
≤ ln

f(α∗)

α∗ + β′(t− α∗) < ln
f(α∗)

α∗ + β(t− α∗), ∀ t ∈ [t, α∗),

which in turn implies that

f(t) < t
f(α∗)

α∗ eβ(t−α
∗) = f †(t), ∀ t ∈ [t, α∗).

It follows from the above inequality that

F (α∗) =

∫ α∗

t

f(t)dt <

∫ α∗

0

f †(t)dt = F †(α∗) = F (α∗),

which is a contradiction. Therefore, we must have β′ ≤ β.

Next, recall that ln f(t)
t

is concave in t and ln f†(t)
t

is linear in t by construction.

Further, f(α∗) = f †(α∗) and β′ ≤ β. Therefore, there exists α† < α∗ such that

f(t) ≤ f †(t), ∀ t ∈ [0, α†], and f(t) ≥ f †(t), ∀ t ∈ [α†, α∗].

The above condition, together with F (α∗) = F †(α∗), implies that F (·|t ≤ α∗) first-

order stochastically dominates F †(·|t ≤ α∗)—i.e., F (·|t ≤ α∗) ≥FOSD F †(·|t ≤ α∗)—

from which we can conclude that∫ α∗

t

tf(t)dt ≥
∫ α∗

0

tf †(t)dt. (A1)

Similarly, it follows from β′ ≤ β that

ln
f(t)

t
≤ ln

f(α∗)

α∗ + β′(t− α∗) ≤ ln
f(α∗)

α∗ + β(t− α∗), ∀ t ∈
[
α∗, t

†]
,
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which implies that

f(t) < t
f(α∗)

α∗ eβ(t−α
∗) ≤ f †(t), ∀ t ∈

[
α∗, t

†]
.

Because F (α∗) = F †(α∗), we have that t
† ≤ t. Moreover, f(t) ≤ f †(t), ∀ t ∈

[
α∗, t

†]
and f(t) ≥ f †(t), ∀ t ∈

[
t
†
, t
]
. Therefore, F (·|t ≥ α∗) ≥FOSD F †(·|t ≥ α∗), which

implies that ∫ t

α∗
tf(t)dt ≥

∫ t
†

α∗
tf †(t)dt. (A2)

Summing (A1) and (A2) completes the proof.

Proof of Lemma A7

Proof. Recall from the construction in Lemma A6 that u′ = βt
†
and u = βα∗.

Further, we have that

∫ t
†

0

tf †(t)dt =

∫ t
†

0

Mt2eβtdt = M
eu

′ [
(u′)2 − 2u′ + 2

]
− 2

β3
, (A3)

F (α∗) = F †(α∗) = Meu(u− 1) + 1

β2
, and f(α∗) = f †(α∗) = Mueu

β
. (A4)

Substituting α∗ = u/β, (A3), and (A4) into (33), it remains to prove

M
eu

′ [
(u′)2 − 2u′ + 2

]
− 2

β2
≥ eu(u− 1) + 1

ueu
+ u

[
1−Meu(u− 1) + 1

β2

]
. (A5)

Further, from (4), we have that

1 = α∗f †(α∗) + 2F †(α∗) =
M
β2

[
u2eu + 2eu(u− 1) + 2

]
. (A6)

Therefore, (A5) can be rewritten as

eu
′ [
(u′)2 − 2u′ + 2

]
− 2

u2eu + 2eu(u− 1) + 2
≥ eu(u− 1) + 1

ueu
+ u

u2eu + eu(u− 1) + 1

u2eu + 2eu(u− 1) + 2
. (A7)

Recall that u′ is the solution to M eu
′
(u′−1)+1
β2 = 1; together with (A6), u and u′ must
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satisfy

u2eu + 2eu(u− 1) + 2 =
β2

M
= eu

′
(u′ − 1) + 1. (A8)

It can be verified that (A7) holds for all (u, u′) satisfying (A8). This completes the

proof.

Proof of Lemma A8

Proof. By Lemma 2, the equilibrium is independent of xn+1 when k(xn+1) ≤ n− 1.

Therefore, k(xn+1) ∈ {n, n+ 1}. We consider the following two cases.

Case I: k(xn+1) = n. If ξ = 0, then the equilibrium price pLi (xn+1) is independent

of xn+1 and is thus weakly decreasing in xn+1 for i ∈ {1, . . . , n}. If otherwise ξ > 0,

by (16), pLn(xn+1) = c + t(xn − xn+1). For each i, we slightly abuse notation and

denote the functions defined in (21) and (22) by ṕi+1(α1;xi+1) and άi+1(α1;xi+2),

respectively, where xi := (x1, . . . , xi). Similarly, denote ṕ1(α1) by ṕ1(α1;x2).

Note that ṕn(α1(xn+1);xn) = pLn(xn+1) = c+t(xn−xn+1). By the implicit function

theorem, we have that 0 > −t = dpLn (xn+1)
dxn+1

= ∂ṕn
∂α1

× dα1(xn+1)
dxn+1

. Recall from Lemma A5

that ∂ṕn
∂α1

< 0. We can conclude that

dα1(xn+1)

dxn+1

> 0. (A9)

Therefore, for each i ∈ {1, . . . , n− 1}, we have that

dpLi (xn+1)

dxn+1

=
∂ṕi
∂α1

∣∣∣∣
α1=α1(xn+1)

× dα1(xn+1)

dxn+1

. (A10)

By Lemma A5 and (A9), the right-hand side of (A10) is negative, which implies that

pLi (xn+1) is decreasing in xn+1.

Case II: k(xn+1) = n + 1. By Lemma A5 and (A10), it suffices to prove (A9).

The KKT condition (14) becomes

pLn+1(xn+1) = c+
F
(
αn(xn+1)

)
f(αn(xn+1))
xn−xn+1

= c+ (xn − xn+1)×
F
(
αn(xn+1)

)
f
(
αn(xn+1)

) . (A11)
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Setting i = n in (17), we can obtain that

pLn(xn+1) =p
L
n+1(xn+1) + αn(xn+1)(xn − xn+1). (A12)

Combining (A11) and (A12) yields that

pLn(xn+1) = c+

[
F
(
αn(xn+1)

)
f
(
αn(xn+1)

) + αn(xn+1)

]
× (xn − xn+1). (A13)

Setting j = n− 1 in (22) yields that

ṕn(α1,xn) = c+
F
(
άn−1(α1;xn)

)
− F

(
άn(α1;xn+1)

)
f(άn−1(α1;xn))

xn−1−xn +
f(άn(α1;xn+1))

xn−xn+1

.

Taking the derivative of ṕn(α1;xn) with respect to xn+1, we have that

∂

∂αn

F (άn−1(α1;xn)
)
− F (αn)

f(άn−1(α1;xn))
xn−1−xn + f(αn)

xn−xn+1


∣∣∣∣∣∣∣
αn=άn(α1;xn+1)︸ ︷︷ ︸

<0

× ∂άn
∂xn+1

+
∂

∂xn+1

F (άn−1(α1;xn)
)
− F (αn)

f(άn−1(α1;xn))
xn−1−xn + f(αn)

xn−xn+1


∣∣∣∣∣∣∣
αn=άn(α1;xn+1)︸ ︷︷ ︸

<0

= 0,

where the equality follows from the implicit function theorem. The above equation

implies that ∂άn

∂xn+1
< 0.

Recall that pLn(xn+1) = ṕn(α1(xn+1);xn) and αn(xn+1) = άn(α1(xn+1);xn+1); to-

gether with (A13), we have that

ṕn(α1(xn+1);xn) = c+

[
F
(
άn(α1(xn+1);xn+1)

)
f
(
άn(α1(xn+1);xn+1)

) + άn
(
α1(xn+1);xn+1

)]
×(xn−xn+1).
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Taking the derivative of ṕn(α1(xn+1);xn) with respect to xn+1, we can obtain that

∂ṕn
∂α1︸︷︷︸
<0

×dα1(xn+1)

dxn+1

=−

[
F
(
άn(α1(xn+1);xn+1)

)
f
(
άn(α1(xn+1);xn+1)

) + άn
(
α1(xn+1);xn+1

)]
︸ ︷︷ ︸

>0

+
∂

∂αn

[
F (αn)

f(αn)
+ αn

]∣∣∣∣∣
αn=άn(α1(xn+1);xn+1)︸ ︷︷ ︸

>0

×

∂άn∂α1︸︷︷︸
>0

×dα1(xn+1)

dxn+1

+
∂άn
∂xn+1︸ ︷︷ ︸
<0

 ,

where the equality again follows from the implicit function theorem. This implies

that dα1(xn+1)
dxn+1

> 0 and completes the proof.

Proof of Corollary 2

Proof. We first show that C1(g̃, κ) ≥ κ2 + 2κ. Note that the PDF of the conditional

distribution x(2)|(x(1), x(3)) is g(x(2))

G(x(1))−G(x(3))
and is weakly decreasing in x(2). Therefore,

Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≥ κ

)
× (x(1) − x(2))

∣∣∣∣∣ (x(1), x(3))


=
(
x(1) − x(3)

)
× Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≥ κ

)
× x(1) − x(2)

x(1) − x(3)

∣∣∣∣∣ (x(1), x(3))


=
(
x(1) − x(3)

)2
×
∫ 1

κ
κ+1

(1− s)
g
(
sx(1) + (1− s)x(3)

)
G(x(1))−G(x(3))

ds

≤
(
x(1) − x(3)

)2
×

g
(
κx(1)+x(3)

κ+1

)
G(x(1))−G(x(3))

×
∫ 1

κ
κ+1

(1− s)ds

=
(
x(1) − x(3)

)2
×

g
(
κx(1)+x(3)

κ+1

)
G(x(1))−G(x(3))

× 1

2(κ+ 1)2
. (A14)
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Similarly, we have that

Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≤ κ

)
×
(
x(1) − x(2)

) ∣∣∣∣∣ (x(1), x(3))


≥
(
x(1) − x(3)

)2
×

g
(
κx(1)+x(3)

κ+1

)
G(x(1))−G(x(3))

×
∫ κ

κ+1

0

(1− s)ds

=
(
x(1) − x(3)

)2
×

g
(
κx(1)+x(3)

κ+1

)
G(x(1))−G(x(3))

× κ2 + 2κ

2(κ+ 1)2
. (A15)

Combining (A14) and (A15) yields that

Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≤ κ

)
× (x(1) − x(2))

∣∣∣∣∣ (x(1), x(3))


≥ (κ2 + 2κ)× Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≥ κ

)
× (x(1) − x(2))

∣∣∣∣∣(x(1), x(3))
 .

By the law of iterated expectations, we can obtain that

Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≤ κ

)
× (x(1) − x(2))


≥ (κ2 + 2κ)× Ex∼g̃

1(x(2) − x(3)

x(1) − x(2)
≥ κ

)
× (x(1) − x(2))

 ,
which implies that C1(g̃, κ) ≥ κ2 + 2κ. Setting κ = 1

2
yields that C1(g̃, 12) ≥

5
4
.

Next, we show that minf C2(f, 12) >
4
5
. It is useful to state the following lemma:

Lemma B1 Fix κ and suppose that f ‡ minimizes C2(f, κ) among all density func-

tions f that satisfy Assumption 2, f(t) < 1/t, and (6). Then ln f‡(t)
t

is piecewise

linear with at most three segments.

Proof. Fix x = (κ + 1, κ, 0). For each PDF f(·) that satisfies Assumption 2,

f(t) < 1/t, and (6), we construct an auxiliary distribution with PDF f ‡(·) that
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takes the following form:

f ‡(t) :=



0, t < t‡0

M1te
β1(t−α1(x)), t‡0 ≤ t ≤ t‡1,

M2te
β2(t−α∗), t‡1 ≤ t ≤ t‡2,

M3te
β3(t−α2(x)), t‡2 ≤ t ≤ t‡3,

0, t > t‡3.

(A16)

Further, let F ‡(t) :=
∫ t
0
f ‡(s)ds.

The set of parameters (M1,M2,M3, β1, β2, β3, t
‡
0, t

‡
1, t

‡
2, t

‡
3) in (A16) are to be con-

structed to satisfy

f ‡(t) = f(t), t ∈
{
α∗, α1(x), α2(x)

}
, (A17)

F ‡(t) = F (t), t ∈
{
α∗, α1(x), α2(x)

}
, (A18)

f ‡′(α∗) = f ′(α∗), (A19)

F ‡(t‡3) = 1, (A20)

and ensure that f ‡(t) is continuous at t ∈ {t‡1, t
‡
2}. Moreover, we require that t‡0 ∈

[t, α2(x)], t
‡
1 ∈ [α2(x), α

∗], t‡2 ∈ [α∗, α1(x)], and t
‡
3 ∈ [α1(x), t ]. As will be clear later,

under loyalty-based pricing, the equilibrium pricing schedules—i.e.,
(
pLi (x)

)
i=1,2,3

and(
pLi (κ + 1, κ)

)
i=1,2

—and the equilibrium cutoffs—i.e.,
(
α1(x), α2(x)

)
under triopoly

and α∗ under duopoly with density f—are the same as those with the constructed

density f ‡(t). Moreover, C2(f ‡, κ) ≤ C2(f, κ).

Step I We first prove the existence of the set of parameters. First, fixing
(
α1(x), α

∗, α2(x)
)
,

we set M1 = f(α2(x))/α2(x), M2 = f(α∗)/α∗, and M3 = f(α1(x))/α1(x). It is

straightforward to verify that the constructed (M1,M2,M3) satisfies (A17).

Second, we construct β2 such that (A19) is satisfied. By (A16), we have that
d
dt
ln f‡(t)

t
= β2. Evidently, (A19) is satisfied when we set β2 =

d
dt
ln f(t)

t
|t=α∗ .

Third, we construct (t‡1, t
‡
2)—which depends on β1 and β3—such that f ‡ is contin-

uous at t‡1 and t‡2. Again, by (A16), the continuity of f ‡ at t ∈ {t‡1, t
‡
2} is equivalent

to

β1

(
t‡1 − α2(x)

)
+ lnM1 = β2

(
t‡1 − α∗

)
+ lnM2, and
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β2

(
t‡2 − α∗

)
+ lnM2 = β3

(
t‡2 − α1(x)

)
+ lnM3,

from which we can solve (t‡1, t
‡
2) as follows:

t‡1 =
1

β1 − β2
×
[
−β2α∗ + lnM2 + β1α2(x)− lnM1

]
, and

t‡2 =
1

β2 − β3
×
[
β2α

∗ − lnM2 − β3α1(x) + lnM3

]
.

Note that our construction requires that t‡1 ∈
[
α2(x), α

∗] and t‡2 ∈ [α∗, α1(x)
]
, which

will be verified after β1 and β3 are pinned down later.

From the above analysis, it remains to construct (β1, β3, t
‡
0, t

‡
3) to satisfy (A18)

and (A20), which are equivalent to the following equations:

F ‡(α∗)− F ‡ (α2(x)
)
=F (α∗)− F

(
α2(x)

)
, (A21)

F ‡ (α1(x)
)
− F ‡(α∗) =F

(
α1(x)

)
− F (α∗), (A22)

F
(
α2(x)

)
=F ‡ (α2(x)

)
, and (A23)

1− F
(
α1(x)

)
=F ‡(t‡3)− F ‡ (α1(x)

)
. (A24)

We first construct β1 and β3 to satisfy (A21) and (A22), respectively. By Lemma A10,

we have that α∗ > α2(x). Therefore, (A21) can be expressed as

∫ α∗

α2(x)

f(t)dt =

∫ α∗

α2(x)

f ‡(t)dt =

∫ t‡1

α2(x)

M1te
β1(t−α1(x))dt+

∫ α∗

t‡1

M2te
β2(t−α∗)dt =: ψ3(β1),

where the second equality follows from (A16). It suffices to show that there exists β1

such that ψ3(β1) =
∫ α∗

α2(x)
f(t)dt.

Define β
1
:=

ln
f(α∗)
α∗ −ln

f(α2(x))
α2(x)

α∗−α2(x)
and β1 := d

dt
ln f(t)

t

∣∣∣
t=α2(x)

. Fix β1 = β
1
. By the

concavity of the function ln f(t)
t

and the constructed (M1,M2, t
‡
1, β2), we can verify

that f ‡(t) ≤ f(t) for all t ∈ [α2(x), α
∗], which implies that ψ3(β1

) =
∫ α∗

α2(x)
f ‡(t)dt ≤∫ α∗

α2(x)
f(t)dt. Similarly, fixing β1 = β1, we can verify that f ‡(t) ≥ f(t) for t ∈

[α2(x), α
∗], which implies that ψ3(β1) ≥

∫ α∗

α2(x)
f(t)dt. Therefore, there exists β1 with

ln f(α∗)
α∗ − ln

f(α2(x))
α2(x)

α∗ − α2(x)
≡ β1 ≤ β1 ≤ β1 ≡

d

dt
ln
f(t)

t

∣∣∣∣
t=α2(x)

, (A25)
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such that (A21) is satisfied. From (A25) and the construction of t‡1, it can be verified

that t‡1 ∈ [α2(x), α
∗]. Similarly, we can show that there exists β3 such that (A22) is

satisfied; moreover, t‡2 ∈ [α∗, α1(x)].

Next, we construct t‡0 and t‡3 to satisfy (A23) and (A24), respectively. By (A16),

we have that

F ‡ (α2(x)
)
=

∫ α2(x)

t‡0

f ‡(t)dt =

∫ α2(x)

t‡0

M1te
β1(t−α2(x))dt.

Clearly, F ‡(α2(x)) is decreasing in t‡0 and F ‡(α2(x)) = 0 < F (α2(x)) at t
‡
0 = α2(x).

Therefore, it suffices to show that F ‡ (α2(x)
)
≥ F

(
α2(x)

)
at t‡0 = t, which is equiv-

alent to ∫ α2(x)

t

M1te
β1(t−α2(x))dt ≥

∫ α2(x)

t

f(t)dt. (A26)

In fact, from the concavity of ln f(t)
t
, f
(
α2(x)

)
= f ‡ (α2(x)

)
, and (A25), we can

conclude that

M1te
β1(t−α2(x)) ≥ f(t), ∀ t ∈

[
t, α2(x)

]
, (A27)

which implies (A26). Therefore, there exists t‡0 ∈ [t, α∗
2(x)] to satisfy (A23). Similarly,

we can show that there exists t‡3 ∈ [α∗
1(x), t ] to satisfy (A24). This completes the

construction.

Step II We show that C2(f ‡, κ) ≤ C2(f, κ). It is useful to prove the following lemma:

Lemma B2 Suppose that f ‡ is defined in (A16) such that (A17)-(A20) hold. The

following statements hold:

(i) f‡(t)
t

is piecewise linear with at most three segments.

(ii) F ‡(·|t ∈ [t, α2(x)]) ≥FOSD F (·|t ∈ [t, α2(x)]) and F (·|t ∈ [α1(x), t]) ≥FOSD

F ‡(·|t ∈ [α1(x), t]).

(iii) F ‡(·|t ∈ [t, α∗]) ≥FOSD F (·|t ∈ [t, α∗]) and F (·|t ∈ [α∗, t]) ≥FOSD F ‡(·|t ∈
[α∗, t]).

Proof. Part (i) is obvious. For part (ii), F ‡(·|t ∈ [t, α2(x)]) ≥FOSD F (·|t ∈
[t, α2(x)]) follows immediately from (A27). Similarly, we can show that F (·|t ∈
[α1(x), t ]) ≥FOSD F ‡(·|t ∈ [α1(x), t ]). It remains to prove part (iii). Next, we prove
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F ‡(·|t ∈ [t, α∗]) ≥FOSD F (·|t ∈ [t, α∗]). The proof of F (·|t ∈ [α∗, t ]) ≥FOSD F ‡(·|t ∈
[α∗, t ]) is similar.

Note that F ‡(α2(x)) = F (α2(x)), F
‡(α∗) = F (α∗), and F ‡(·|t ∈ [t, α2(x)]) ≥FOSD

F (·|t ∈ [t, α2(x)]). It suffices to show that F ‡(·|t ∈ [α2(x), α
∗]) ≥FOSD F (·|t ∈

[α2(x), α
∗]), which holds if we can show that there exists ξ ∈ [α2(x), α

∗] such that

f ‡(t) ≤ f(t) for t ∈ [α2(x), ξ] and f
‡(t) ≥ f(t) for t ∈ [ξ, α∗].

Recall t‡1 ∈ [α2(x), α
∗]. By (A19) and the concavity of ln f(t)

t
, we have that

f ‡(t) = M2te
β2(t−α∗) ≥ f(t), ∀ t ∈ [t‡1, α

∗].

Therefore, it suffices to show that there exists ξ ∈ [α2(x), t
‡
1] such that f ‡(t) ≤ f(t)

for t ∈ [α2(x), ξ] and f
‡(t) ≥ f(t) for t ∈ [ξ, t‡1].

Note that ψ4(t) := ln f(t)
t

− ln f‡(t)
t

is concave in t for t ∈ [α2(x), t
‡
1]. Moreover,

by (A17) and (A25), we have that ψ4(α2(x)) = 0 and ψ′
4(α2(x)) > 0. Therefore,

there exists ξ ∈ [α2(x), t
‡
1] such that ψ4(t) ≥ 0—or equivalently, f ‡(t) ≤ f(t)—for

t ∈ [α2(x), ξ] and ψ4(t) ≤ 0—or equivalently, f ‡(t) ≥ f(t)—for t ∈ [ξ, t‡1]. This

concludes the proof.

Recall C2(f, κ). It suffices to show that

[
Ṽ L(x)− V F(x)

]∣∣∣∣
t∼F ‡

≤
[
Ṽ L(x)− V F(x)

]∣∣∣∣
t∼F

and (A28)[
V F(κ+ 1, κ)− Ṽ L(κ+ 1, κ)

]∣∣∣∣
t∼F ‡

≥
[
V F(κ+ 1, κ)− Ṽ L(κ+ 1, κ)

]∣∣∣∣
t∼F

. (A29)

We first prove (A28). Carrying out the algebra, we have that

[
Ṽ L(x)− V F(x)

]∣∣∣∣
t∼F

=

∫ t

α1(x)

[
v + tx1 − pL1 (x)

]
f(t)dt+

∫ α1(x)

t

[
v + tx2 − pL2 (x)

]
f(t)dt

−
∫ t

t

[
v + tx1 − t(x1 − x2)

]
f(t)dt

=(x1 − x2)

∫ t

α1(x)

tf(t)dt− pL1 (x)
[
1− F (α1(x))

]
− pL2 (x)F

(
α1(x)

)
. (A30)

By (A17) and (A18), under loyalty-based pricing, the equilibrium pricing schedules
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(
pLi (x)

)
i=1,2,3

and the cutoffs
(
α1(x), α2(x)

)
with density f are the same as those

with density f ‡. Therefore, we have that

[
Ṽ L(x)− V F(x)

]∣∣∣∣
t∼F ‡

= (x1−x2)
∫ t

α1(x)

tf ‡(t)dt−pL1 (x)
[
1− F (α1(x))

]
−pL2 (x)F

(
α1(x)

)
.

(A31)

By (A30) and (A31), it suffices to show that
∫ t
α1(x)

tf(t)dt ≥
∫ t
α1(x)

tf ‡(t)dt, which

follows immediately from F (·|t ∈ [α1(x), t]) ≥FOSD F ‡(·|t ∈ [α1(x), t]), as shown in

Lemma B2.

Next, we prove (A29). Fix (x1, x2) = (κ+ 1, κ). Note that

[
V F(κ+ 1, κ)− Ṽ L(κ+ 1, κ)

]∣∣∣∣
t∼F

=−
∫ t

α∗

[
v + t(κ+ 1)− pL1 (κ+ 1, κ)

]
f(t)dt

−
∫ α∗

t

[
v + tκ− pL2 (κ+ 1, κ)

]
f(t)dt+

∫ t

t

[v + tκ] f(t)dt

=−
∫ t

α∗
tf(t)dt+ pL1 (κ+ 1, κ)

[
1− F (α∗)

]
+ pL2 (κ+ 1, κ)F (α∗). (A32)

By (A17) and (A18), under loyalty-based pricing, the equilibrium pricing schedules(
pLi (κ+1, κ)

)
i=1,2

and the cutoff α∗ with density f are the same as those with density

f ‡. Therefore,[
V F(κ+ 1, κ)− Ṽ L(κ+ 1, κ)

]∣∣∣∣
t∼F ‡

=−
∫ t

α∗
tf ‡(t)dt+ pL1 (κ+ 1, κ)

[
1− F (α∗)

]
+ pL2 (κ+ 1, κ)F (α∗). (A33)

By (A32) and (A33), it suffices to show that
∫ t
α∗ tf(t)dt ≥

∫ t
α∗ tf

‡(t)dt, which follows

immediately from F (·|t ∈ [α∗, t ]) ≥FOSD F ‡(·|t ∈ [α∗, t ]), as shown in Lemma B2.

This completes the proof of Lemma B1.

By Lemma B1, to search for f that minimizes C2(f, κ), it suffices to look over

density functions that satisfy Assumption 2 and are piecewise linear with at most

three segments. Note that these functions can be parameterized by seven parameters

and it can be verified that minf C2(f, 12) >
4
5
. This completes the whole proof of
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Corollary 2.

Proof of Lemma A10

Proof. By f(t) < 1/t, we have that k(x) ≥ 2. If k(x) = 2, then we have that

α1(x) = α∗ > α2(x) = t. It remains to consider the case of k(x) ≥ 3.

From the proof of Lemma A2, we can conclude that tf(t) + 2F (t) > 1 if and only

if t > α∗. Therefore, it suffices to show that

α1(x)f
(
α1(x)

)
+ 2F

(
α1(x)

)
> 1, (A34)

and

αk(x)−1(x)f
(
αk(x)−1(x)

)
+ 2F

(
αk(x)−1(x)

)
< 1. (A35)

In what follows, we prove (A34). The proof of (A35) is similar and omitted for

brevity. Carrying out the algebra, we can obtain that

1− F
(
α1(x)

)
f(α1(x))
x1−x2

= pL1 (x)− c = pL2 (x) + α1(x)(x1 − x2)− c

=
F
(
α1(x)

)
− F

(
α2(x)

)
f(α1(x))
x1−x2 +

f(α2(x))
x2−x3

+ α1(x)(x1 − x2)

<
F
(
α1(x)

)
f(α1(x))
x1−x2

+ α1(x)(x1 − x2),

where the first equality follows from (12); the second equality follows from (17);

the third equality follows from (13); and the inequality follows from the fact that

F (α2(x)) ≥ 0 and f(α2(x)) > 0. Simplifying the above condition gives (A34). This

concludes the proof.

Lemma B3 When the market is partially covered, the equilibrium pricing strategies(
pL1 (x), . . . , p

L
n(x)

)
under loyalty-based pricing can be characterized as follows:

(a) If v + txk(x)+1 > 0, then αk(x)(x) = 0, and the equilibrium pricing schedule(
pL1 (x), . . . , p

L
n(x)

)
, the set of cutoffs

(
α1(x), . . . , αk(x)(x)

)
, and the number of

active firms k(x) can be uniquely pinned down by the same conditions (12)-(17)

as provided in Lemma 2.
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(b) Otherwise, the KKT conditions (14), (15), and (16) are replaced by the following

conditions:

pLk(x)(x) = c+
F
(
αk(x)−1(x)

)
− F

(
αk(x)(x)

)
f(αk(x)−1(x))
xk(x)−1−xk(x)

+ ξf
(
αk(x)(x)

) , ξ ∈
[
0,

1

xk(x)

]
, (A36)

pLk(x)(x) ≤ αk(x)xk(x) + v, (A37)

ξ ×
(
αk(x)xk(x) + v − pLk(x)(x)

)
= 0, (A38)(

1

xk(x)
− ξ

)
×
(
αk(x)(x)− t

)
= 0. (A39)

Proof. We characterize the equilibrium under loyalty-based pricing when the mar-

ket can be partially covered. Suppose v + txk(x)+1 > 0. Then for each consumer,

making no purchase is strictly dominated by buying from firm k(x)+1, and thus the

equilibrium is the same as that characterized in Lemma 2.

Now suppose v + txk(x)+1 ≤ 0. If αk(x)(x) > t, the marginal consumer with

t = αk(x)(x) is indifferent between buying from firm k and making no purchase,

which implies that pLk(x)(x) = v+ αk(x)(x)xk(x) (this condition is equivalent to (A37)

holding with equality). Moreover, the first-order condition for firm k(x) is

pLk(x)(x) = c+
F
(
αk(x)−1(x)

)
− F

(
αk(x)(x)

)
f(αk(x)−1(x))
xk(x)−1−xk(x)

+
f(αk(x)(x))

xk(x)

,

which is equivalent to (A36) at ξ = 1
xk(x)

. Note that ξ = 1
xk(x)

implies the following:

(i) (A39) is satisfied and (ii) (A38) is satisfied if and only if (A37) holds with equality.

Similarly, if αk(x)(x) = t, then (A39) is satisfied. A consumer with t = t buys

from firm k(x), which implies (A37). If (A37) holds with strict inequality, then firm

k(x)’s price is pinned down by the following first-order condition:

pLk(x)(x) = c+
F
(
αk(x)−1(x)

)
− F

(
αk(x)(x)

)
f(αk(x)−1(x))
xk(x)−1−xk(x)

,

which is equivalent to (A36) at ξ = 0. Note that ξ = 0 implies that (A38) holds.

Otherwise, if (A37) holds with equality, then (A38) holds and the first-order condition

for firm k(x) is (A36).
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From the above analysis, we can conclude that the KKT conditions (14)-(16) are

replaced by (A36)-(A39) if the market is partially covered. Proofs of equilibrium

existence and uniqueness are analogous to Lemma 2, and omitted for brevity.

Lemma B4 Suppose that Assumptions 1′, 2, and 3′ hold. Moreover, f(t) > 0 and

g(x) > 0. Then we have that

lim
c↗v+tx

pU − c

v + tx− c
=
1

3
, (A40)

lim
c↗v+tx,t↗t,v+tx>c

pC(t)− c

v + tx− c
=
1

2
, (A41)

lim
c↗v+tx,x(1)↗x,v+tx(1)>c>v+tx(2)

pL(x)− c

v + tx− c
=
1

2
. (A42)

Proof. In what follows, we prove (A40). The proofs of (A41) and (A42) are similar

and omitted for brevity. Under uniform pricing, a firm’s expected profit is

πU(pi)
∣∣∣
pj=pU

= (pi − c)× Pr

[
v + txi − pi ≥ 0, v + txi − pi ≥ max

j ̸=i

{
v + txj − pU

}]
.

(A43)

First, note that

Pr

[
v + txi − pi ≥ 0, v + txi − pi ≥ max

j ̸=i

{
v + txj − pU

}]
≤ Pr [v + txi − pi ≥ 0] ,

(A44)

and

Pr

[
v + txi − pi ≥ 0, v + txi − pi ≥ max

j ̸=i

{
v + txj − pU

}]
≥Pr

[
v + txi − pi ≥ 0, 0 ≥ max

j ̸=i
{v + txj}

]
=Pr [v + txi − pi ≥ 0]× Pr

[
max
j ̸=i

{v + txj} ≤ 0

∣∣∣∣ v + txi − pi ≥ 0

]
=Pr [v + txi − pi ≥ 0]×

(
1 + o(1)

)
. (A45)
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Combining (A44) and (A45), we can conclude that

Pr

[
v + txi − pi ≥ 0, v + txi − pi ≥ max

j ̸=i

{
v + txj − pU

}]
= Pr [v + txi − pi ≥ 0]×

(
1 + o(1)

)
.

(A46)

Second, note that t and xi are independent. Therefore, we have that

Pr [v + txi − pi ≥ 0] =

∫ t

t=− v−pi
x

∫ x

xi=− v−pi
t

f(t)g(xi)dxidt

= f(t)g(x)

∫ t

t=− v−pi
x

∫ x

xi=− v−pi
t

1dxidt×
(
1 + o(1)

)
= f(t)g(x)×

xt+ (v − pi) + (v − pi) ln

(
− xt

v − pi

)×
(
1 + o(1)

)
= f(t)g(x)× (v + xt− pi)

2

2xt
×
(
1 + o(1)

)
. (A47)

Combining (A43), (A46), and (A47) yields that

πU(pi)
∣∣∣
pj=pU

= (pi − c)×
(
v + xt− pi

)2 × f(t)g(x)

2xt
×
(
1 + o(1)

)
.

The above equation, together with equilibrium existence and uniqueness, implies that

pU = c+ v+tx−c
3

×
(
1 + o(1)

)
. This concludes the proof.
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