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Abstract

Heterogeneous players are matched into interconnected pairwise contests

across multiple battlefields. An organizer unilaterally sets her contest rules

to maximize effort provision on her respective battlefield. The conventional

wisdom of level the playing field may fail in this environment. However, an even-

odds equilibrium always exists, in which all contests are resolved with equal

winning probabilities. Further, we identify sufficient conditions—concerning

contest technologies and network structure—that mitigate network externalities

and restore the level-playing-field principle, such that each organizer prefers a

fully balanced contest regardless of others’ choices. We provide alternative

sufficient conditions under which the even-odds equilibrium remains unique,

even when an organizer does not necessarily prefer a fully balanced contest.
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1 Introduction

Economic agents often compete across multiple fronts and are connected—directly

or indirectly—through networks. One’s action on a battlefield not only influences local

outcomes but also generates spillover remotely and globally. Consider, for example,

an architectural firm bidding for multiple development projects. If the firm assigns its

top architect to a prioritized project, its competitor on a parallel project may face less

pressure and reallocate resources elsewhere; this potentially affects competitions for

projects in which the firm itself is not directly involved and firms it does not confront

head to head. A similar dynamic would arise, for instance, when professional athletes

plans their seasons, with each to conserve stamina for preferred tournaments. These

interactions—among multiple agents across multiple battlefields—form a network of

interconnected contests with complex externalities.

Significant scholarly efforts have been devoted to examining the strategic inter-

actions over networks and exploring how the nature of the underlying game—e.g.,

strategic substitutability or complementarity—determine the equilibrium and opti-

mal intervention (Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010; Galeotti,

Golub, and Goyal, 2020). The nonmonotone best responses inherent in many contest

games (Dixit, 1987) yield important implications for contest design, underpinning

the conventional wisdom of leveling the playing field:1 A more balanced contest—one

that encourages the underdog to challenge the favorite—incentivizes greater efforts,

which sheds light on a plethora of practices that aim to promote closer competitions.

Consider, for instance, the handicap systems in golf tournaments and horse racing, as

well as the various measures to support small and medium-sized enterprises (SME)

set by the U.S. Small Business Administration (SBA) in federal procurement.2 The

economics literature has formally established that, to incentivize effort, an optimally

designed contest should prevent the emergence of dominant players in equilibrium—

ensuring that no contender can win with a probability exceeding 1/2.3

1As Dixit (1987) demonstrates, players’ best responses are often nonmonotone in contest games:
In contrast to Cournot or Bertrand competitions, one’s effort choice is a strategic complement to
that of his opponent when he is in the lead, while it is a strategic substitute when he is behind.

2Many horse-racing tournaments—e.g., the Grand National or the Melbourne Cup—require that
horses with higher initial ratings carry heavier weight. A similar mechanism—aero handicap—is
implemented in Formula One (F1) championships, where teams that performed better in previous
seasons are allocated reduced aerodynamic testing time.

3See, e.g., Fu and Wu (2020), who show in a broad context that the optimal two-player contest
always yields equal winning probabilities in equilibrium; when the contest involves more than two
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However, this level-playing-field principle is established in settings of standalone

contests. Imagine instead an organizer who sets the contest rules on her own turf to at-

tract effort and attention from contenders facing competing opportunities elsewhere—

e.g., a project developer seeking to improve the quality of building designs when other

projects are available to a pool of overlapped bidders. She needs to account for con-

tenders’ strategic trade-offs across multiple contests, anticipate the choices of compet-

ing organizers, and understand how her choices of local contest rules is transmitted

through the network. This complexity casts doubt on the conventional wisdom of

leveling the playing field.

Consider a simple case with competing players each subject to a resource con-

straint. Suppose that an organizer handicaps the frontrunner. This generates a direct

local effect that intensifies competitions in her own contest. Meanwhile, a player’s in-

creased effort on her battlefield may come at the expense of reduced effort elsewhere.

This causes indirect network effects, as the local shift in efforts alters contenders’

marginal benefits and costs of efforts across all other contests. The global impact re-

quires that all contenders reset their effort choices everywhere. These spillovers may

feed back to the original battlefield through the network, and the overall impact is a

priori unclear. In Section 2.2, we provide an intuitive example in which the indirect

network effect prevails; an organizer may thus prefer an imbalanced contest over an

even race, which violates the level-playing-field principle.

To our knowledge, this paper presents the first formal analysis of decentralized

contest design in a networked contest game to explore the boundaries of the level-

playing-field principle and shed further light on its nature in a broader context.

Snapshot of the Model The interactions are modeled as a two-stage game. In the

first stage, multiple organizers simultaneously set the contest rules for their respective

battlefields. In the second stage, economic agents—whom we refer to as “players”—

are matched into pairwise contests, with each modeled as a two-player generalized

Tullock contest. Players simultaneously allocate efforts across the contests they par-

ticipate in. Each player either incurs a convex cost based on the aggregate effort

exerted across all contests he participates in (a “pure-cost” case) or is subject to

a budget constraint (a “pure-budget” case). As a result, increasing effort on one

battlefield limits the player’s ability to contribute to others.

players, the optimum requires each player’s equilibrium winning odds be strictly below 1/2.
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Players differ in their contest technologies on every battlefield, their cost func-

tions, or resource endowments. The asymmetry creates a room for each organizer to

structure her contest to manipulate the competitive balance. The organizer imposes

a multiplicative bias on each player’s impact function. This function translates effort

into output, and the choice of biases determines players’ relative competitiveness,

which effectively tilts the balance of the contest.

Such biases encapsulate diverse mechanisms observed in real-world competition.

It can be a weighted scoring rule, such as handicap systems in golf tournaments. It

can also reflect the various measures of actual productivity interventions, including

technical support (e.g., mentorship in Mozilla’s Open Innovation Challenge), resource

subsidies (e.g., the U.S. Department of Defense’s Small Business Innovation Research

program (Lichtenberg, 1990)), capacity-building for SMEs (e.g., counseling and train-

ing in federal procurement bids), and preferential industrial policies targeting specific

firms (Franke, Kanzow, Leininger, and Schwartz, 2013).

We characterize the subgame perfect Nash equilibrium (SPNE) of the two-stage

game. Specifically, this paper addresses: (i) whether and when an organizer prefers

to set biases to level her playing field in a networked environment; and (ii) whether

balanced competitions emerge in equilibrium, as they do in standalone contests.

Technical Nature of the Analysis Analyzing the SPNE of the resulting two-

stage networked contest game presents several technical challenges. Agents compete

in parallel contests, and organizers interact indirectly through the interconnected

competitions. Understanding these intertwined decisions requires a comprehensive

account of the network externalities and nuanced strategic interdependence at and

across two different levels of strategic interactions—i.e., the networked contests and

interaction among competing organizers who set rules for subsequent contests.

First, given a profile of biases set in the first stage, there is no closed-form solution

for the second-stage equilibrium of the networked contest. As a result, organizers’

objective functions are only implicitly characterized by equilibrium conditions and

cannot be directly used to construct explicit best-response mappings.

Second, to establish a given profile of contest rules as an SPNE, we have to

verify that each organizer’s choice constitutes a global best response to others’ chosen

biases. However, organizers’ payoff are generally non-explicit and non-concave due

to cross-battlefield externalities and strategic interdependencies. Standard first-order

conditions are thus insufficient for establishing global first-stage optimality.
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Third, even if equilibrium existence can be established by verifying that no orga-

nizer has no profitable deviation from a candidate profile, proving uniqueness presents

substantially greater analytical challenges. It requires ruling out all potential alter-

native equilibria across every subgame, which is analytically infeasible given the lack

of closed-form solutions and the complex interdependencies among battlefields.

Summary of Findings We develop novel methods to address these difficulties

and obtain clear results, which can be summarized as follows. First, we identify a

unique profile of contest rules under which all contests are resolved with equal winning

probabilities; we show that this profile constitutes an SPNE, which we term the even-

odds equilibrium (Theorem 1). This demonstrates that balanced competition remains

an equilibrium outcome despite the complexity introduced by the network structure.

Our approach to establishing equilibrium uniqueness resorts to a global deviation

argument: For any organizer, we consider a non-local deviation in her choice of biases

and compare the resulting second-stage equilibria before and after the deviation. This

approach allows us to verify global optimality without relying on closed-form solutions

or concavity in organizers’ payoff.

We then examine the uniqueness of the even-odds equilibrium. The analysis con-

sists of two layers. First, we ask whether the level-playing-field principle holds in a

network—i.e., whether an organizer would choose to level her battlefield regardless of

the contest rules elsewhere. We provide sufficient conditions for this to be the case,

which automatically guarantee uniqueness of the even-odds equilibrium (Theorem 2).

Specifically, this follows if either (i) each player’s impact function (i.e., the function

that maps effort into contest output) is sufficiently concave, or (ii) the network is

acyclic. These conditions mitigate the intricate indirect effects of a rule change on

a battlefield: The former limits spillovers across battlefields, while the latter shuts

down feedback loops.

However, even when these conditions are not satisfied, uniqueness may still hold.

We provide a set of weaker conditions under which equal winning probabilities odds

arise on all battlefields, even if an individual organizer does not unconditionally prefer

a level playing field (Theorem 3). The concavity of impact functions can be milder,

and the network may contain cycles. Since it is infeasible to examine all subgames

to rule out non-even-odds equilibria, we develop a targeted approach: For any given

bias profile, we identify the least balanced battlefield and assess whether the organizer

of that battlefield can profitably deviate. Though the second-stage equilibrium is
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implicit, we are able to compare outcomes before and after the deviation and show

that a profitable deviation always exists. This construction rules out all candidate

equilibria that do not induce even winning odds across all battlefields.

We also consider two extensions. First, we analyze a sequential-move version of

the game where organizers set contest rules in a predetermined order. Whenever the

sufficient conditions for the level-playing-field principle hold in the baseline model, the

equilibrium outcome remains invariant to the timing of moves: A unique SPNE exists,

replicating the equilibrium rule profile of the simultaneous-move game (Theorem 4).

Second, we consider a centralized organizer who sets contest rules for all battlefields

maximize an objective strictly increasing in each player’s total effort. Again , a unique

equilibrium emerges with equal winning rates across contests (Theorem 5). This

yields a useful policy insight: Decentralized rule-setting by self-interested organizers

can—under certain conditions—achieve the same outcome as centralized planning,

suggesting potential efficiency of delegation in contest design.

Link to Literature Our paper belongs to the extensive literature on strategic in-

teractions among economic agents within networks, such as Bramoullé, Kranton, and

D’amours (2014); Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010); Gale-

otti, Golub, and Goyal (2020). There is a growing body of literature focusing on

contests and conflicts within networks (Dziubinski, Goyal, and Vigier, 2016). These

studies vary significantly in their assumptions regarding the mechanisms linking play-

ers and structuring contests or conflicts.

Dziubiński, Goyal, and Minarsch (2021), for instance, examine a conflict network

where a ruler attacks connected “nodes” successively to acquire and accumulate re-

sources. Dziubiński, Goyal, and Zhou (2024) assume that each player’s efforts in one

battlefield comprising both local investments and spillovers from neighboring battle-

fields. Goyal and Vigier (2014) study an attacker-defender game, where the attacker

and defender allocates combative efforts across nodes. König, Rohner, Thoenig, and

Zilibotti (2017) assume that each player’s entry in his (single) contest is determined

by his own effort, positive spillovers from allies, and negative spillovers from enemies.

In contrast, Hiller (2017) allows players to form either positive links (alliances aiding

in conflict) or negative links (direct conflicts).

Our paper more closely relates to Franke and Öztürk (2015); Xu, Zenou, and

Zhou (2022); and Zhou and Li (2025), where multiple players are matched into con-

tests across a network and allocate efforts among battlefields. Franke and Öztürk
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(2015) assume bilateral contests on each battlefield, focusing on specific network

structures such as regular, complete bipartite, and star-shaped configurations. They

adopt convex cost functions, where increased effort on one battlefield raises effort

costs elsewhere. Xu et al. (2022) substantially generalize this framework by allowing

multilateral contests, budget constraints, and unrestricted network structures. They

employ variance inequalities to overcome technical challenges, establish equilibrium

existence, and provide conditions ensuring equilibrium uniqueness. Under quadratic

costs and bilateral contests on each battlefield, Zhou and Li (2025) examine com-

parative statics within acyclic networks, analyzing how shocks propagate throughout

the network. Despite the lack of closed-form solutions, they remarkably demonstrate

that comparative statics can be pinned down using sign functions.4

Our paper departs from this literature in two significant aspects. First, our model

incorporates strategic interactions across two layers: Players compete within a net-

work, while organizers indirectly interact through players’ strategic effort choices in

response to independently set contest rules. Second, we specifically focus on organiz-

ers’ strategic choices of contest rules. Contest design is not considered by Franke and

Öztürk (2015) or Xu et al. (2022). Although Zhou and Li (2025)’s comparative stat-

ics offer useful insights for contest design, their analysis concerns externalities arising

from interventions on an individual battlefield. Our analysis accommodates both

decentralized and centralized contest designs, enabling simultaneous and sequential

rule-setting across all battlefields.

Our paper thus naturally connects to the literature on multi-battle contests (e.g.,

Kovenock and Roberson, 2012; Snyder, 1989; Klumpp and Polborn, 2006; Konrad and

Kovenock, 2009; Fu, Lu, and Pan, 2015). In particular, this study is closely related

to the research stream that examines players’ allocation of scarce resources across

battlefields, a line of work dating back to Borel (1921) and Borel and Ville (1938).

The discrete version of the game is known as the Colonel Blotto game, with notable

contributions including Friedman (1958), Roberson (2006), Kvasov (2007), Kovenock

and Roberson (2012), Roberson and Kvasov (2012), and Fu and Iyer (2019).5

4Matros and Rietzke (2024) and Sun, Xu, and Zhou (2023) also contribute to this strand of the
literature. Unlike Franke and Öztürk (2015), Matros and Rietzke (2024) require each player commit
to a single effort level that applies identically across all contests they participate. Sun et al. (2023)
analyze both constrained (uniform effort) and unconstrained effort allocation regimes. They show
that, for Tullock contest success functions in semi-symmetric networks, the two regimes produce the
same total effort and equilibrium payoffs.

5Friedman (1958) analyzes two firms allocate fixed advertising budgets across multiple marketing
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Our paper distinguishes itself from these studies along three dimensions. First,

we allow for multiple players to be matched in contests across a network, whereas

the literature predominantly assumes that two players compete in every battlefield.

Second, our model accommodates both a pure-cost case with strictly convex cost

functions and a pure-budget case, as seen in most Colonel Blotto game studies. Third,

and most importantly, the networked contests in our model are subgames that follow

decentralized decisions by contest organizers—none of the aforementioned studies

consider contest rule setting.6

Finally, each organizer in our model competes for players’ effort investment on

her own battlefield. This renders our paper conceptually linked to the literature on

competing contests, with Azmat and Möller (2009, 2018) and Morgan, Sisak, and

Várdy (2018) as leading contributions. Unlike our setting, these studies typically

assume that each player chooses which contest to enter, so organizers compete for

contestants’ discrete entry decisions. Körpeoğlu, Korpeoglu, and Hafalır (2022) allow

solvers to participate in multiple contests, but their focus lies in comparing exclusivity

versus non-exclusivity in contest design.

2 Preliminaries

In this section, we first lay out the primitives of our model, then provide an

example to illustrate the nuances caused by network.

2.1 Model Setup

A finite set of risk-neutral players N ≡ {1, 2, . . . , N} are engaged in bilateral

contests within a connected network.7 Each player i ∈ N competes head-to-head with

another on at least one battlefield. Let E ≡ {a, b, . . .} denote the set of battlefields and
e ∈ E an indicative battlefield. The network can then be represented by Γ ⊂ N × E ,

areas. Roberson (2006) fully characterizes the equilibrium of Colonel Blotto game. Kovenock and
Roberson (2012) introduce asymmetric prize valuations. Kvasov (2007) and Roberson and Kvasov
(2012) relax the zero-sum assumption and allow for alternative uses of resources. Fu and Iyer (2019)
accommodate rent-augmenting investment other than rent-seeking efforts.

6Feng and Lu (2018) and Feng, Jiao, Kuang, and Lu (2024) also consider contest design. However,
they adopt team-based contest structures as in Fu, Lu, and Pan (2015). Their focus lies in the
decisions of a central planner who govern the entire contest architecture.

7For disconnected networks, we can always decompose them into several connected components
and our results remain intact.
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a1 2

(a) Standalone Contest

a

bc

1 2

3

(b) Triangular Contest

a

b

1 2

(c) Multi-battle Contest

Figure 1: Examples of Network Structures

where (i, e) ∈ Γ if and only if player i is involved in the contest on battlefield e.

Further, let Ei ≡ {e ∈ E : (i, e) ∈ Γ} denote the set of battlefields with player i’s

participation and N e ≡ {i ∈ N : (i, e) ∈ Γ} the set of players who compete on

battlefield e, with |N e| = 2 for all e ∈ E .
The bilateral contest network Γ described above can be adapted to model a rich

class of interconnected contest games. Figure 1 depicts three examples. In each

subfigure, the network is represented as a multigraph, whereby the vertices represent

players and the edges between vertices represent battlefields. Figure 1a represents

a stylized single-battle contest, in which players 1 and 2 fight on a battlefield a;

Figure 1b depicts a triangular network structure in which three players are matched

to three pairwise battles; Figure 1c represents a two-player multi-battle contest, in

which two players compete against each other simultaneously on battlefields a and b.

The game proceeds in two stages. Each battlefield e ∈ E is governed by an

organizer. In the first stage, organizers each set the rules for the contests on their

own battlefields. In the second stage, having observed the rule set for each contest,

players simultaneously exert their efforts to vie for wins.

Second Stage: Contests and Payoffs The contest between players i and j on

battlefield e is modeled as a generalized Tullock contest. Put it formally, fixing the

profile of efforts xe ≡ (xe
i , x

e
j) the players exert on battlefield e, player i wins with a

probability
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pei (x
e
i , x

e
j) =


αe
if

e
i (x

e
i )

αe
if

e
i (x

e
i ) + αe

jf
e
j (x

e
j)
, xe

i + xe
j > 0,

1

2
, xe

i + xe
j = 0,

(1)

and player j wins with the complementary probability, i.e., pej(x
e
i , x

e
j) = 1−pei (x

e
i , x

e
j).

Following the tradition of the contest literature, we call f e
i (·) player i’s impact

function on battlefield e, which indicates the player’s contest technology on this bat-

tlefield and satisfies f e
i (0) = 0, (f e

i )
′(·) > 0, and (f e

i )
′′(·) ≤ 0. Further, the parameters

αe
i and αe

j , with αe
i , α

e
j > 0 and αe

i +αe
j = 1, are the multiplicative biases the organizer

on battlefield e assigns to players i and j, respectively, which determine their relative

competitiveness in the contest.

Fixing player i’s effort profile xi ≡ (xe
i )e∈Ei across all battlefields that involve him,

letXi ≡
∑

e∈Ei x
e
i denote his total effort. The player bears a cost of ci(Xi). Players are

subject to either resource constraints or regular cost functions.8 In the former (pure

budget) case, each player i’s effort cost can technically take the form of ci(Xi) = 0 for

all Xi ∈ [0, X i] and ci(Xi) = +∞ for all Xi ∈ [X i,+∞), where X i ∈ (0,+∞) is the

maximum effort at his disposal. In the latter (pure cost) case, we set X i to +∞ and

let ci(·) be twice differentiable and satisfy ci(0) = 0, c′i(·) > 0, and c′′i (·) > 0.

A victory on battlefield e ∈ E yields a prize value of ve > 0 to the winner. A

player i’s expected payoff in the game is thus

πi(xi,x−i) =
∑
e∈Ei

vepei (x
e)− ci(Xi),

where x−i ≡ (x1, . . . ,xi−1,xi+1, . . . ,xN) is the profile of effort strategies of all players

other than i.

First Stage: Decentralized Contest Rule Setting in a Network In the begin-

ning of the game, the organizer of each battlefield sets the rules for her battle. More

formally, the organizer for each battlefield e ∈ E with N e = {i, j} imposes multiplica-

tive biases (αe
i , α

e
j) on players’ impact functions, with αe

i , α
e
j > 0 and αe

i + αe
j = 1;

they set the rules simultaneously, and all (αe
i , α

e
j) become commonly known prior to

the second stage of the game.

8This assumption is imposed for expositional convenience. Our analysis can be easily extended
to the case where some players are subject to a resource constraint while others have a regular effort
cost function.
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(a) Agent 1’s effort: xa1
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(c) Total effort: Λa

Figure 2: Equilibrium effort and organizer’s objective on battlefield a.

We assume that an organizer values the effort supplied by each player, so she

chooses (αe
i , α

e
j) to maximize an objective function Λe(xe), which strictly increases

with xe
i for each i ∈ N e.

Summary The two-stage game can be described by G ≡
〈
Γ,
(
f e
i (·)
)
(i,e)∈Γ,

(
ci(·)

)
i∈N ,(

Λe(·)
)
e∈E

〉
, where Γ represents the network structure,

(
f e
i (·)
)
(i,e)∈Γ the set of impact

functions,
(
ci(·)

)
i∈N the set of players’ effort cost functions, and

(
Λe(·)

)
e∈E the set of

organizers’ objective functions. Organizers each set (αe
i , α

e
j) in the first stage of the

game, and players simultaneously sink their efforts afterwards. We adopt subgame

perfect Nash equilibrium (SPNE) in pure strategies as the solution concept.

2.2 An Illustrative Example

The literature espouses the merit of level playing field in standalone contests

(Dixit, 1987). Fu and Wu (2020) establish in a broad context that the optimal

contest induces equal equilibrium winning odds in bilateral contests. We now provide

a simple example to show that this level-playing-field principle may lose its bite when

a contest is embedded in a network.

Example 1 (Optimality of Imbalanced Competitions in a Network) Sup-

pose that N = {1, 2, 3}, E = {a, b, c}, and Γ is a bilateral contest network with

triangle structure, as depicted in Figure 1b. Let f e
1 (x

e
1) = 0.02xe

1 for each e ∈ E1
and f e

i (x
e
i ) = xe

i for all i ∈ {2, 3} and e ∈ Ei. Consider a pure budget case with

(X1, X2, X3) = (2420, 62.4, 20). The prizes for winning the battles are respectively

(va, vb, vc) = (16.344, 17, 3). Fix the biases in battlefields b and c at αb = (αb
2, α

b
3) =

(0.1, 0.9) and αc = (αc
3, α

c
1) = (0.1, 0.9), respectively.
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A level playing field—i.e., with pa1 = pb2 = 1/2—requires setting αa
1 = αa

2 = 1/2.

Suppose that the organizer on battlefield a seeks to maximize total effort in the battle,

i.e., Λa = xa
1+xa

2. Figure 2c plots Λa as a function of αa
1. It shows that total effort is

minimized by setting αa
1 = αa

2 = 1/2, although the players win with equal probability.

In this context, leveling the playing field maximizes player 2’s effort (see Fig-

ure 2b), while minimizing player 1’s (see Figure 2a). Since player 1 is more critical to

the organizer due to his greater resource endowment, the total effort on this battlefield

primarily relies on player 1’s input and is minimized when pa1 = pb2 = 1/2.

As αa
1 increases and approaches 1/2, two effects are triggered. First, a more level

playing field intensifies competition on battlefield a, prompting both players to in-

crease their efforts—what we term the direct local effect, consistent with conventional

wisdom. Second, this direct effect induces an indirect network effect: It propagates

through the network, reshaping effort incentives on other battlefields. These shifts

then feed back into battlefield a, further influencing xa
1 and xa

2.

To illustrate these effects, consider the following thought experiment, focusing on

how variations in αa
1 affect player 1’s effort choice. Fix the biases on battlefields b and

c—(αb
2, α

b
3) = (αc

3, α
c
1) = (0.1, 0.9)—and consider an initial case with αa

1 < 1/2 < αa
2.

Figure 3a shows players’ relative standing on each battlefield under this set of biases.

In this setting, player 2 is the frontrunner on battlefield a, as his winning probability

exceeds 1/2. Now suppose that that αa
1 is increased toward 1/2. This change favors

the underdog, player 1. As predicted by the direct local effect, both players intensify

their efforts in response (see Figure 3b).

However, an increase in xa
2 would force player 2 to reduce his effort xb

2 on battlefield

b, due to his budget constraint. By Figure 3a, player 2 is initially the underdog on

battlefield b. A decrease in xb
2 gives initial frontrunner on battlefield b—player 3—

an easier win, which allows the player to scale back his effort xb
3 and redirect the

saved resources to battlefield c. In turn, player 1—the initial leader on battlefield

c—must respond to the more aggressive player 3 by raising his effort xc
1. Ultimately,

the increased demand on player 1’s resources devoted to battlefield c forces him to

reduce his effort xa
1 on battlefield a, as shown in Figure 3b.

The indirect network effect counteracts the direct local effect in shaping player

1’s effort choice. As αa
1 increases and approaches 1/2, the indirect effect dominates,

leading to a lower equilibrium effort xa
1 on battlefield a (see Figure 2a). In contrast,

the direct and indirect effects reinforce each other for player 2, resulting in an increase
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player 1 player 2 player 3
battlefield a weak strong -
battlefield b - weak strong
battlefield c strong - weak

(a) Relative strength between players

a

bc

1 2

3

xa1 ↑ local
effect

xa2 ↑

xb2 ↓

xb3 ↓xc3 ↑

xc1 ↑

xa1 ↓ network
effect

(b) Equilibrium effort incentives

Figure 3: Illustration of the direct local effect and the indirect network effect.

in his effort on battlefield a as αa
1 approaches 1/2 (Figure 2b).

3 Analysis

Assuming a nondegenerate conflict network—i.e., with |E| ≥ 2—we now solve the

game by backward induction.9 Section 3.1 characterizes and discusses the second-

stage equilibrium; Section 3.2 establishes an SPNE of the game in which all organizers

level their own playing field such that players win each contest with equal probability.

Section 3.3 examines uniqueness of the constructed equilibrium.

3.1 Second-stage Equilibrium

The second-stage game is a collection of bilateral contests interconnected through

a network. The equilibrium existence in this setting has been established in Xu,

Zenou, and Zhou (2022), and we restate their result in our context as follows.

Lemma 1 (Xu, Zenou, and Zhou, 2022) Fixing a profile of contest rules α =

{αe}e∈E , there exists a Nash equilibrium in the second-stage game. Specifically, the

equilibrium effort profile x∗(α) = {xe(α)}e∈E , together with a set of parameters

{λi}i∈N , satisfies the following first-order conditions:

vepei (x
e)
[
1− pei (x

e)
]
= λig

e
i (x

e
i ), (2)

9The analysis for the case of |E| = 1 is straightforward.
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and

ve × αe
i (f

e
i )

′(0)

αe
jf

e
j (x

e
j)

≤ λi, whenever xe
i = 0, (3)

where gei := f e
i /(f

e
i )

′. In the pure-cost case, λi = c′i(Xi); in the pure-budget case,

Xi = X i and λis are the Lagrangian multipliers for budget constraints.

Lemma 1 provide the necessary conditions that characterize equilibrium efforts.

Specifically, (2) must be satisfied in the equilibrium whenever a player exerts a pos-

itive effort xe
i . When a player exerts zero effort in a contest, condition (2) holds

automatically, and the equilibrium further requires condition (3), which is obtained

by substituting xe
i = 0 into the complementary slackness conditions.

By Xu et al. (2022), if the second-stage equilibrium is interior—i.e., when each

player exerts a positive effort in every contest he participate in—then the equilibrium

must be unique. As a result, a unique equilibrium always emerges in the pure-cost

case, since no player would completely forgo a contest. However, in the pure-budget

case, multiple equilibria may arise. We adapt Example 4 of Xu et al. (2022) to

illustrate this possibility in our context.

Example 2 (Multiple Equilibria in the Second-stage Game) Suppose that

N = {1, 2, 3}, E = {a, b, c}, and Γ is a triangular network as shown in Figure 1b.

Further, set f e
i (x

e
i ) = xe

i for each (i, e) ∈ Γ. Each player has a fixed budget, with

(X1, X2, X3) = (X1, 1, 1) and X1 > 8. The prize values are (va, vb, vc) = (1, 1, 1).

Fixing a set of neutral biases, with αa = αb = αc = (1/2, 1/2), there exists a

continuum of equilibria
{
(xa

1, x
c
1, x

a
2, x

b
2, x

b
3, x

c
3) = (z,X1−z, 0, 1, 1, 0)|4 ≤ z ≤ X1−4

}
in the second-stage contest game.

In this case, player 1 is endowed with an excessively large budget. His oppo-

nents simply forgo competing against him—i.e., player b on battlefield a and player 3

on battlefield c—and instead concentrate their limited resources on the competition

against each other—i.e., the contest on battlefield b. The possibility of multiple equi-

libria in the second-stage game complicates the overall equilibrium analysis, as the

organizers’ rule-setting decisions in the first stage may depend on which second-stage

equilibrium is selected. However, our next result eliminates this concern.

For notational efficiency, let X (α) denote the set of all second-stage equilibria

corresponding to a given α.
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Proposition 1 (Equilibrium Property) Let
(
α∗,x∗(·)

)
be an SPNE of the game

G. The following statements hold:

(i) The second-stage equilibrium x∗(α∗) on the equilibrium path is unique—i.e.,∣∣X (α∗)
∣∣ = 1. Moreover, (3) holds with equality at

(
α∗,x∗(α∗)

)
.

(ii) Fix any α′ ̸= α∗ off the equilibrium path and an arbitrary effort profile x(α′) ∈
X (α′). Then

(
α∗, {x∗(α∗),x(α′)}α′ ̸=α∗

)
also constitutes an SPNE of the whole

game G.

This result is nontrivial. Despite the possibility of multiple equilibria for the

second-stage contest game, Proposition 1(i) shows that such multiplicity does not arise

along the equilibrium path of any SPNE. It is worth noting that multiple equilibria are

unique to pure-budget cases and as illustrated in Example 2, some players exert zero

effort on certain battlefields in these equilibria. Multiple equilibria emerge when a

dominant player (e.g., player 1 in Example 2) has enough resources to deter opponents

across several battlefields, affording him flexibility in how he allocates effort among

them. However, this flexibility is at odds with the organizers’ objective of eliciting

effort. In the first stage of the game, an organizers will strategically adjust the

contest rules (i.e., by lowering the bias for the dominant player) to avoid completely

discouraging the weaker player and intensify the competition on her battlefield. This

ensures a unique second-stage outcome on the equilibrium path.

Proposition 1(ii) further shows that an equilibrium outcome
(
α∗,x∗(α∗)

)
is robust

even to equilibrium selection off the path: A profile
(
α∗,x∗(α∗)

)
can still be sustained

as the equilibrium outcome of an SPNE even if multiple equilibria arise off-path

and for a profile of contest rules α′ ̸= α∗, an alternative second-stage equilibrium

x(α′) ̸= x∗(α′) is selected. As a result, once we pin down an outcome
(
α∗,x∗(α∗)

)
,

we can construct an SPNE
(
α∗,x∗(·)

)
of the game by arbitrarily selecting a second-

stage equilibrium x ∈ X (α) for α ̸= α∗.

The reasoning is as follows. Suppose, to the contrary, that an equilibrium outcome(
α∗,x∗(α∗)

)
is sensitive to off-path equilibrium selection. Then there must exist some

battlefield e0 whose organizer can profitably deviate unilaterally to an alternative

contest rule (αe0)′; moreover, the bias profile α′ ≡
(
(αe0)′, (α−e0)∗

)
induces multiple

second-stage equilibria that differ in the effort profiles on battlefield e0. However,

this deviation is unlikely to be profitable for the organizer, since some player on the
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deviator’s battlefield exerts zero effort. This contradiction implies that the choice of

off-path equilibrium is irrelevant whenever an outcome can be sustained by an SPNE.

Proposition 1 paves the way for our equilibrium result. We can describe an SPNE

simply by its the equilibrium outcome
(
α∗,x∗(α∗)

)
without loss of generality.

3.2 Even-odds Equilibrium as SPNE

In this part, we construct an SPNE of the game. We call an SPNE an even-odds

equilibrium if players win each contest with equal probability, i.e., (pei )
∗ = 1/2 for all

(i, e) ∈ Γ. Our first main result ensues.

Theorem 1 (Existence of Even-odds Equilibrium) Fix a game G. An even-

odds equilibrium always exists. There is a unique profile of contest rules α∗∗ that leads

to the equilibrium outcome of equal winning odds on every battlefield. As a result, the

even-odds equilibrium can be described by a unique associated equilibrium outcome(
α∗∗,x∗∗(α∗∗)

)
.

Theorem 1 establishes that there always exists an SPNE in which the players in

each contest win with equal probability. Further, the profile of contest rules that

induces the even-odds outcome in the second-stage game is unique. Three remarks

are in order. First, the result differs subtly from the conventional wisdom of leveling

the playing field in the contest design literature. The literature typically considers a

centralized design problem in which an organizer manipulates the competitive balance

of a standalone contest (Lazear and Rosen, 1981; Dixit, 1987; Che and Gale, 1998). In

contrast, we consider a decentralized design problem where organizers independently

manage their own battlefields within a network. An organizer’s choice of biases factors

in (i) the biases to be set by others and (ii) its implications for all players’ second-

stage effort choices x(α) within the network—including those not involved in her

battle—as Example 1 illustrates. Second, in the even-odds equilibrium, no single

organizer is willing to unilaterally deviate from α∗∗; however, it is noteworthy that

leveling the playing field is not necessarily optimal for an organizer if others do not

level their playing fields. Third, Theorem 1 establishes that the even-odds outcome

can be sustained as a part of an SPNE and yet to verify its uniqueness. We discuss

the uniqueness of this equilibrium in Section 3.3.

Next, we delve in depth the fundamentals of the equilibrium and its analysis.

As explained above, solving for the equilibrium is technically challenging. First,

15



unlike a standalone contest, a closed-form solution to x(α), the equilibrium efforts

in the networked contest game, is unavailable. Second, the dynamic and reflexive

interactions across the network causes irregularity to organizers’ payoff functions, as

illustrated in Figure 2c. As a result, fixing a potential candidate equilibrium, although

the first-order conditions of players’ equilibrium efforts with respect to the biases can

be obtained by Lemma 1, it is almost impossible to verify the (local) second-order

condition and its global optimality.

We develop a novel approach that examines organizers’ nonlocal deviations to

verify the equilibrium instead of analyzing their best responses. We first establish the

existence of a unique profile of biases α∗∗ that yields the equal-odds outcome on every

battlefield in the second stage; it remains to verify that α∗∗ indeed constitutes a first-

stage equilibrium. In what follows, we provide a sketch of the proof. For expositional

efficiency, we focus on the pure-cost case. The proof for pure-budget case is similar,

except that the expression of λi may differ. We will highlight these distinctions when

necessary.

Suppose, to the contrary, that α∗∗ is not a part of an equilibrium. Then there

exists a battlefield e0 ∈ E whose organizer can set α̃e0 ̸= (αe0)∗∗ to induce greater

effort from at least one player on her battlefield. Let x̃, λ̃, and p̃ denote the second-

stage equilibrium efforts, marginal effort costs, and winning probabilities under the

bias profile α̃ ≡
(
α̃e0 , (α−e0)∗∗

)
, respectively. Similarly, we denote equilibrium vari-

ables under the bias profile α∗∗ with double asterisks. The following lemma helps us

predict how each player’ equilibrium total effort changes in response to the organizer

of battlefield e0’s deviation from (αe0)∗∗.

Lemma 2 (Individual Player’s Overall Effort Incentive) For each i ∈ N ,

λ̃i ≤ λ∗∗
i .

Under α∗∗, the competition on every battlefield is perfectly balanced. A deviation

on battlefield e0 disrupts not only the competitive balance of e0 itself but also that

of interconnected battlefields. Intuitively, this deviation generates negative overall

incentives for players across the network. Lemma 2 confirms and formalizes this

intuition: Every player’s equilibrium marginal effort cost λi weakly decrease following

the deviation. Given the strict convexity of the effort cost functions, their respective

equilibrium total efforts in the contest also weakly decrease after the organizer of

battlefield e0’s deviation.
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The next lemma concerns the spillover of the deviation to players’ efforts on other

individual battlefields.

Lemma 3 (Individual Player’s Incentive on A Battlefield) Fix an arbitrary

battlefield e ̸= e0 with N e = {i, j}, and suppose λ̃i/λ
∗∗
i ≤ λ̃j/λ

∗∗
j . Then x̃e

i ≥ (xe
i )

∗∗.

The deviation on battlefield e0 triggers complex spillovers to interconnected con-

tests, altering players’ marginal benefits and marginal costs of efforts on other bat-

tlefields. While each player’s total effort unambiguously decreases, it remains unclear

how an individual adjusts effort on a specific battlefield other than e0. Intuitively,

the universal decline in marginal cost induced by the spillover tends to encourage

players to increase effort on other battlefields. The ratio λ̃i/λ
∗∗
i captures the impact

on player i’s marginal cost: A lower ratio indicates a sharper decline in cost reduction

and therefore, a more significant increase in effort incentive from cost side. Lemma 3

confirms that the player experiencing the greater cost reduction will indeed increase

effort in response.

We are ready to prove Theorem 1. Let s denote the player with the lowest ra-

tio λ̃i/λ
∗∗
i among all i ∈ N . By Lemma 3, following the organizer’s deviation on

battlefield e0, the player exerts weakly greater effort on all other battlefields—i.e.,

x̃e
s ≥ (xe

s)
∗∗ for all e ∈ Es and e ̸= e0. Two possible cases arise: Player s is either

involved in the contest on battlefield e0, or not.

Case (a): s /∈ N e0. Lemma 3 implies that player s’s effort weakly increases in all

contests he participates in (he is not involved in the contest on battlefield e0).

Therefore, his total effort weakly increases following the deviation on battlefield

e0. Meanwhile, Lemma 2 predicts that his total effort would weakly decrease.

We can then conclude that his total effort remains unchanged, with λ̃s = λ∗∗
s .

By definition, player s has the lowest ratio λ̃s/λ
∗∗
s = 1; together with Lemma 2,

we can establish that the marginal effort costs of all players remain unchanged,

i.e., λ̃i/λ
∗∗
i = 1 for all i ∈ N .

Let i0 and j0 denote the players on battlefield e0. Recall that players win with

equality probability and thus exert positive effort in all their contests; therefore,

the first-order condition (2)—i.e., vepei (x
e)
[
1− pei (x

e)
]
= λig

e
i (x

e
i )—holds for

all i ∈ N and e ∈ E under the bias profile α∗∗. It follows that x̃e0
i0
≤ (xe0

i0
)∗∗ and

x̃e0
j0
≤ (xe0

j0
)∗∗, because p̃e0i0 (1− p̃e0i0 ) ≤ 1/4 = (pe0j0 )

∗∗(1− (pe0j0 )
∗∗). This contradicts
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the assumption that setting α̃e0 is a profitable deviation for the organizer on

battlefield e0.

Case (b): s ∈ N e0. Assume, for contradiction, that setting α̃e0 is a profitable de-

viation for the organizer on battlefield e0. If x̃e0
s > (xe0

s )∗∗, then we must have

X̃s > X∗∗
s by Lemma 3. Consequently, λ̃s = c′s(X̃s) > c′s(X

∗∗
s ) = λ∗∗

s , which

contradicts Lemma 2.

Alternatively, suppose x̃e0
s ≤ (xe0

s )∗∗. Then the other player on battlefield e0,

denoted by j0, must exert strictly more effort, i.e., x̃e0
j0
> (xe0

j0
)∗∗ > 0. Moreover,

since x̃e0
s ≤ (xe0

s )∗∗, we have

g̃e0s ≡
f e0
s

(
x̃e0
s

)
(f e0

s )′
(
x̃e0
s

) ≤
f e0
s

(
(xe0

s )∗∗
)

(f e0
s )′
(
(xe0

s )∗∗
) ≡ (ge0s )∗∗.

Similarly, we can obtain g̃e0j0 > (ge0j0 )
∗∗. Together, these imply

λ̃s

λ∗∗
s

≥ λ̃sg̃
e0
s

λ∗∗
s (ge0i0 )

∗∗ =
λ̃j0 g̃

e0
j0

λ∗∗
j0
(ge0j0 )

∗∗ >
λ̃j0

λ∗∗
j0

,

where the equality follows from the first-order condition (2). This contradicts

the definition that player s has the lowest λ̃i/λ
∗∗
i among all players.

This argument demonstrates that any unilateral deviation from α∗∗ would not

render an organizer better off. Hence, the bias profile α∗∗ constitutes a first-stage

equilibrium of the game G. We thus establish that leveling the playing field can

always be sustained as an SPNE, even in the networked environment. It remains

curious whether this is the unique outcome of the game, and to what extent the

leveling-playing-field principle can be preserved in a network.

3.3 Uniqueness of Even-odds Equilibrium

This section addresses the uniqueness of the even-odds equilibrium established in

Theorem 1. Our discussion unfolds on two levels. First, we investigate the boundary

of the level-playing-field principle within the network—i.e., we identify the conditions

under which an organizer always sets her contest rule to induce perfectly balanced

competition, regardless of the rules adopted in competing contests. The even-odds

equilibrium must be unique as long as the level-playing-field principle holds. Second,
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we explore whether, and under what conditions, this equilibrium remains unique

even when the principle fails—i.e., when perfectly balanced competition does not

automatically maximize an organizer’s payoff.

We present the following preliminaries which ease subsequent analysis and expo-

sition. Fixing e ∈ E , define we := vepei (1 − pei ) = vepej(1 − pej), with i, j ∈ N e. The

parameter we is an intuitive measure of the competitive balance on battlefield e: A

larger we implies a more balanced playing field; it is maximized when competition on

battlefield e is an perfectly even race, with pei = pej = 1/2 and we = ve/4. Given the

correspondence between we0 and (pei , p
e
j), we obtain the following.

Lemma 4 (Reformulating Organizers’ Design Problem) The tuple
(
α∗,x∗(·)

)
constitutes an SPNE if and only if for each battlefield e0 ∈ E, with N e0 = {i0, j0},
(we0)∗ solves the following maximization problem:

max
{we0 ,(x1,...,xN )}

Λe0(xe0
i0
, xe0

j0
)

s.t. (1) holds for α∗ in all e ̸= e0,

(2) holds for all (i, e) ∈ Γ,

pe0i0 (1− pe0i0 ) = we0/ve0 . (4)

Lemma 4 establishes an equivalence between the decision problem of an organizer

on battlefield e0 setting biases αe0 , and that of the organizer choosing we0 .10 It is

worth noting that when we0 < ve0/4, there exist two probabilities pe0i0 that satisfy

(4); so the mapping between αe0—which determine pe0i0—and we0 is not one-to-one.

However, this nuance does not affect our analysis, given its purpose: The even-odds

equilibrium requires we0 = ve0/4, which can only be attained when pe0i0 = 1/2. In

summary, to verify the uniqueness of the equilibrium, it suffices to establish we0 =

ve0/4 is an organizer’s unique best response for every battlefield e0 ∈ E .

3.3.1 Level-playing-field Principle in Conflict Network

Example 1 demonstrates the complications introduced by the indirect network

effect in an organizer contest-rule decision. Specifically, changes to the contest rules

on a single battlefield may affect the equilibrium behavior on others, which in turn

10The reformulation is firstly introduced by Fu and Wu (2020) to characterize optimal contest
under a centralized organizer, and can be naturally adapted to our setting.
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reflexively impact the original one. This feedback loop casts doubt on the level-

playing-field principle well established in standalone contests.

In what follows, we examine the extent to which the conventional wisdom holds in

a network. We begin by introducing two assumptions. The first concerns the impact

function f e
i (·), and the second the network topology Γ.

Assumption 1 For each (i, e) ∈ Γ, f e
i is 2-concave—i.e., (f e

i )
2 is concave.

Assumption 2 The multigraph Γ reduces to a tree after we replace any set of multiple

edges in Γ with a single edge.

Assumption 1 requires sufficient concavity on the impact functions, which corre-

sponds to a sufficiently noisy contest on each battlefield. Intuitively, greater concav-

ity implies that a player’s winning odds become less responsive to effort differentials.

That is, outcomes depend more on random factors than on players’ actions, so changes

in efforts have limited influence on winning probabilities. Assumption 2 requires that

the network be acyclic. This prevents recursive feedback loops and dampens indirect

network effects: While changes on one battlefield may spill over to others and vice

versa, the absence of cycles guarantees these effects cannot feed back to their origin.

We obtain the following.

Theorem 2 (Leveling-playing-field Principle in Conflict Network) Suppose

that Assumption 1 or 2 holds. Fix an arbitrary battlefield e ∈ E and a bias profile

α−e, it is optimal for the battlefield organizer to set αe that induce we = ve/4—i.e.,

a fully level playing field with players to win with equal probability—regardless of the

contest rules set for other contests. As a result,
(
α∗∗,x∗∗(·)

)
constitutes the unique

SPNE of game G.

Theorem 2 identifies sufficient conditions under which the level-playing-field prin-

ciple can be sustained in a conflict network, such that an organizer always sets her

rules to induce even winning odds, irrespective of others’ choices.

We now present a sketch proof of the theorem to illustrate the logic underlying our

result. For this purpose, we first introduce the term dλi

dwe0

dxe
i

dwe0
, which plays a critical

role in our analysis. We term it the ripple effect for a player i on a battlefield e.

Recall that we0 measures the degree of competitive balance on battlefield e0. The

two components, dλi

dwe0
and

dxe
i

dwe0
, respectively capture how a change in the competitive
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balance on e0 affects player i’s total effort and his effort on an arbitrary battlefield

e. When dλi

dwe0

dxe
i

dwe0
< 0, player i’s total effort (as indicated by λi) and his effort on

battlefield e move in opposite directions in response to a change in we0 . Conversely,

when dλi

dwe0

dxe
i

dwe0
> 0, the two effects are aligned.

We then present two lemmata about the general properties of ripple effects, with

neither of them requiring Assumption 1 or Assumption 2.

Lemma 5 (Ripple Effects on Competing Battlefields) Fix a battlefield e0 ∈ E,
with N e0 = {i0, j0}. The following holds when competition in battlefield e0 becomes

more balanced (as we0 increases):

(i) The ripple effect for each battlefield e ̸= e0 is non-positive, i.e.,

dλi

dwe0

dxe
i

dwe0
+

dλj

dwe0

dxe
j

dwe0
≤ 0, with N e = {i, j}. (5)

(ii) The ripple effect for each player i ∈ N is non-negative, i.e.,

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
≥ 0. (6)

Lemma 5(i) suggests that balancing the competition on battlefield e0—i.e., in-

creasing we0—induces a negative aggregate ripple effect for each of other contest.

In contrast, by Lemma 5(ii), the aggregate ripple effect for each player is positive.

The claim in Lemma 5(ii) follows directly from the definition. Recall that Ei denotes
the set of battles involving player i. The aggregate ripple effect for player i can be

expressed as ∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
=

dλi

dwe0

∑
e∈Ei

dxe
i

dwe0
=

dλi

dwe0

dXi

dwe0
,

where Xi denotes player i’s total effort across all contests. This expression must be

positive, because λi and Xi move in the same direction under convex cost functions.

We now develop a key thought experiment for our proof. Consider battlefield e0

where players i0 and j0 compete under rules initially yielding equal winning probabil-

ities. Recall that our goal is to establish Assumption 1 or 2 as the sufficient condition

under which the leveling-playing-field principle holds in a network. For this purpose,

we examine a hypothetical scenario in which the organizer could get better off by uni-

laterally tilting the competitive balance on battlefield e0. The next lemma presents
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properties of ripple effects under such a circumstance. Together with Lemma 5, it

leads to contradiction when either of the two assumptions is satisfied.

Lemma 6 (Ripple Effects in the Deviating Battlefield) Fix a battlefield e0 ∈
E, with N e0 = {i0, j0}, and a bias profile α that lead to we0 = ve/4. Suppose that

the organizer of battlefield e0 can benefit from resetting her current contest rule αe0,

given the bias profile α−e0 for others. There always exists a degree of competitive

balance w̃e0 < ve0/4, such that the following holds: Letting all derivatives be evaluated

at we0 = w̃e0 and assuming
dx

e0
i0

dwe0
≥ dx

e0
j0

dwe0
without loss of generality,

(i)
dx

e0
i0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0
;

(ii) w̃e0

λj0

dλj0

dwe0
≥ 1 ≥ we0

λi0

dλi0

dwe0
≥ 0;

(iii)
dx

e0
i0

dwe0

dλi0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0

dλj0

dwe0
;

(iv) for e′ ̸= e0, if N e′ = N e0 = {i0, j0},
dxe′

j0

dwe0
≤ 0 and

dxe′
j0

dwe0

dλj0

dwe0
≤ 0.

In summary, whenever the organizer of battlefield e0 can benefit from an imbal-

anced contest, we can identify some value w̃e0 for which the resulting ripple effects

satisfy the properties in Lemma 6. Crucially, w̃e0 does not have to be a profitable

deviation from we0 = ve0/4 for the given contest rules α−e0 on other battlefields.

Lemma 6(iii), which follows directly from (i) and (ii), establishes that the ripple

effects at w̃e0 diverge in sign between players i0 and j0: positive for i0 but negative for

j0. Moreover, Lemma 6(iv) demonstrates that when i0 and j0 compete on additional

battlefields, j0’s ripple effects remain negative on those battlefields as well.

We are now ready to prove Theorem 2. Suppose that the hypothetical scenario

described above does exist. We derive a contradiction through Lemmata 5 and 6

under either Assumption 1 or Assumption 2.

Case (a): Assumption 1 holds. The proof is similar to that of Theorem 1.

Let s denote the player with the highest value of
∣∣we0

λi

dλi

dwe0

∣∣, i.e., ∣∣we0

λs

dλs

dwe0

∣∣ =
maxi∈N

∣∣we0

λi

dλi

dwe0

∣∣. By Lemma 6(ii), we0

λj0

dλj0

dwe0
≥ we0

λi0

dλi0

dwe0
≥ 0. Therefore, either

s /∈ {i0, j0} or we can set s = j0 without loss of generality.

Next, fix a battlefield e ∈ Es and consider the associated ripple effect. The case

with e = e0 and s = j0 is straightforward. Lemma 6(iii) leads to
dλj0

dwe0

dx
e0
j0

dwe0
≤ 0.
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e0i0
dx

e0
i0

dwe0
≥ 0

j0
dx

e0
j0

dwe0
≤ 0

Γ−Γ+

Figure 4: Network Structure under Assumption 2

This, together with Lemma 6(iv), indicates that
∑

e∈Es
dλs

dwe0

dxe
s

dwe0
≤ 0, which

contradicts Lemma 5(ii).11

If e ̸= e0, we prove in the Appendix that the ripple effect for player s on

battlefield e is negative, i.e., dλs

dwe0

dxe
s

dwe0
< 0. It is worth noting that Assumption 1

plays a critical role in verifying this inequality. This, again, enables us to

conclude
∑

e∈Es
dλs

dwe0

dxe
s

dwe0
≤ 0.

Case (b): Assumption 2 holds. Under Assumption 2, the multigraph Γ decom-

poses into two connected components upon removal of all edges between i0 and

j0. For notational convenience, denote by Γ+ and Γ− the two connected com-

ponents containing i0 and j0 (see Figure 4 for a graphical illustration). Further,

let N− and E− represent the player and battlefield sets in Γ−, respectively. The

sets N+ and E+ can similarly be defined.

Following Lemma 6(i), we can assume
dx

e0
i0

dwe0
≥ 0 ≥ dx

e0
j0

dwe0
without loss of generality.

Next, consider the aggregate ripple effect in Γ−, i.e.,

I− :=
∑
i∈N−

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
.

By Lemma 5(ii), the ripple effect for each player across all battlefields he par-

ticipates in must be non-negative. Consequently,
∑

e∈Ei
dλi

dwe0

dxe
i

dwe0
≥ 0 for all

i ∈ N−, which in turn implies that I− ≥ 0. Meanwhile, I− can alternatively be

11It can be verified that
∑

e∈Es

dλs

dwe0

dxe
s

dwe0
= 0 is impossible.
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expressed as

I− =
∑
e∈E−

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
+

∑
e∈Ei0∩Ej0

dλj0

dwe0

dxe
j0

dwe0
.

From Lemma 5(i),
∑

i∈N e
dλi

dwe0

dxe
i

dwe0
≤ 0 for each battlefield e ∈ E−. By Lemma 6(iii)

and (iv),
dλj0

dwe0

dxe
j0

dwe0
≤ 0 for all e ∈ Ei0 ∩Ej0 . We can then conclude I− ≤ 0, which

is a contradiction.12

Theorem 2 establishes that when either Assumption 1 or Assumption 2 holds,

each organizer’s optimal strategy is to maintain equal winning probabilities on her

battlefield, independent of other battlefields’ contest rules. This revives the level-

playing-field principle in a networked contest setting. Both assumptions serve to

limit the indirect network effect caused by the change in the competitive balance on

one battlefield, so each organizer can focus on the direct local effect when setting her

contest rule. The sketch proof above largely reveals the roles they play.

First, Assumption 1 requires strongly concave impact functions f e
i (·). For sim-

plicity, our discussion focuses on the pure-cost case. The first-order conditions (2)

that determine the equilibrium can be written as

(f e
i )

′

f e
i

we = λi.

The left-hand side indicates the marginal benefit of a player i’s effort on battlefield

e, while the right-hand side gives the marginal cost. Suppose that the competitive

balance of a battlefield e0 varies. Its spillover alters players’ marginal benefits and

marginal costs of efforts on all other battlefields. This requires players adjust their

efforts everywhere to rebalance their costs and benefits. A strongly concave impact

function, as previously noted, limits the impact of a change in effort on winning

probability and therefore the impact on the marginal benefit of effort.

In the proof for Case (a), we identify a player s with
∣∣we0

λs

dλs

dwe0

∣∣ = maxi∈N
∣∣we0

λi

dλi

dwe0

∣∣.
Note that the player, when being evaluated at we0 = w̃e0 , is the most significantly

affected by the change on battlefield e0 in terms of marginal effort cost, since
∣∣we0

λi

dλi

dwe0

∣∣
is the elasticity of λi with respect to we0 . Our analysis verifies that the rebalancing

is impossible for player s. The significant change in marginal effort cost cannot be

12It can be verified that I− = 0 is impossible.
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matched by the limited change in marginal benefit of player’s effort. Contradiction

with Lemma 5(ii) thus ensues, because the aggregate ripple effect is negative, i.e.,∑
e∈Es

dλs

dwe0

dxe
s

dwe0
≤ 0. This implies such a w̃e0 does not exist, and hence the abovemen-

tioned hypothetical scenario is unlikely. More intuitively, strongly concave impact

functions restrain the spillover caused by a change in the competitive balance on a

battlefield. This limits the indirect network effect that would feed back to the origin

and prevents it from reversing the direct local effect.

Second, Assumption 2 requires an acyclic network structure. As stated in the

sketch proof and illustrated in Figure 4, the multigraph Γ can be split into two

connected components if the edges between two vertices—i.e., players i0 and j0—

were removed. The decomposition enables us to separate the respective impact of a

change in the contest rule for battlefield e0 on players i0 and j0, which paves the way

for our analysis. Suppose that Assumption 2 is violated (see, e.g., Figure 1b). Their

effort choices would be entangled: They not only engage in the direct competition

on battlefield e0, but also are connected via various indirect paths traversing other

players and battlefields (see, e.g., Figure 3b). The direct local effect on xi0 and xj0

caused by a change in αe0 triggers indirect network effects that reflexively affect the

choices of xi0 and xj0 , which causes complications. An acyclic network severs the

linkages and keeps xi0 and xj0 immune to the shock of the indirect network effects.

3.3.2 Uniqueness of Even-odds Equilibrium when Leveling-playing-field

Principle Fails

Next, we examine to what extent the even-odds equilibrium remain unique when

Assumptions 1 and 2 are not satisfied, in which case the leveling-playing-field principle

may not hold. We present the following two assumptions.

Assumption 1′ For each (i, e) ∈ Γ, f e
i is ρ-concave with ρ = 1+

√
2

2
≈ 1.2—i.e., (f e

i )
ρ

is concave.

Assumption 2′ The simple graph, obtained by replacing all parallel edges in Γ with

single edges, has the following structure: each edge is contained in at most one cycle,

and all cycles in the simple graph have odd length.

Assumptions 1′ and 2′ impose weaker restrictions and can respectively be implied

by Assumptions 1 and 2. Specifically, Assumption 1′ demands a weaker notion of

concavity for impact functions, while Assumption 2′ allows for cycles in the network.
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Theorem 3 (Equilibrium Uniqueness when Leveling-playing-field Princi-

ple Fails) Suppose that Assumption 1′ or 2′ holds. Then
(
α∗∗,x∗∗(·)

)
constitutes

the unique SPNE of game G.

We outline the key logic of the proof. Assume, for contradiction, that an alterna-

tive equilibrium exists in which at least one battlefield e exhibits imbalance (pei ̸= pej).

Consider the battlefield with minimal we value and perturb the contest rule on this

battlefield. It can be verified in the proof that under either Assumption 1′ or 2′, the

direct local effect dominates the indirect network effects. This implies that the orga-

nizer on this battlefield can improve the performance of her contest by increasing the

value of we toward ve/4, i.e., leveling the playing field. The hypothetical equilibrium

thus dissolves.

Recall that we ≡ vepeip
e
j . A small we implies either a small prize value ve or a

lopsided competition. Both cases imply limited effort incentives. The former means a

small stake that discourages significant investment; the latter implies that one player

faces a slim chance of winning, while the other expects an easy win, which disin-

centivizes both. Consequently, a marginal change in contest rules would not trigger

substantial effort adjustments, thereby containing network spillovers and dampening

indirect effects.

Assumption 1′ fulfills a role comparable to that of Assumption 1: Strong con-

cavity attenuates equilibrium effort levels and weakens cross-battlefield spillovers.

Assumption 2′ plays a role analogous to Assumption 2: The simplified network ar-

chitecture constrains the channels through which indirect effects are transmitted and

compounded, allowing the local effect to prevail.

To further illustrate the result, we revisit Example 1. As previously noted, the

leveling-playing-field principle does not hold under this network structure: Given

(αb
2, α

b
3) = (0.1, 0.9), and (αc

3, α
c
1) = (0.1, 0.9), the organizer on battlefield a would

not fully level the playing field. However, the set of biases provided in Example 1—i.e.,

(αa
1, α

a
2) = (0.5, 0.5), (αb

2, α
b
3) = (0.1, 0.9), and (αc

3, α
c
1) = (0.1, 0.9)—cannot constitute

an equilibrium. The triangular network fails Assumption 2 but satisfies Assump-

tion 2′. By Theorem 3, the game possesses a unique SPNE, in which players in every

battlefield win with equal probabilities.

To close this section, it is useful to note that Assumption 1′ or 2′ is sufficient but

not necessary condition. The equilibrium uniqueness result established in Theorems 2

and 3 holds more broadly than the context defined by Assumption 1′ or 2′. Although
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an analytic result is difficult, our numerical exercises suggest that the even-odds

equilibrium can remain unique even with a less concave impact function or in a

network in which some edges are contained in multiple cycles of an arbitrary length.

4 Extensions

We now examine two extensions. Section 4.1 generalizes to model to incorporate

richer timing architectures of the battlefield organizers. Section 4.2 considers the

design problem from a centralized organizer’s perspective.

4.1 Sequential Move

In the baseline model, organizers set contest rules simultaneously. We now con-

sider an alternative setting in which organizers act sequentially. Specifically, orga-

nizers are partitioned into T groups, and the first stage of the game unfolds over

T ≥ 1 period(s) accordingly. In each period, one group of organizers choose their

contest rules simultaneously, with their choices of biases observable to those who act

in subsequent periods. Fix t ∈ {1, . . . , T}, and let E t denote the set of battlefields

whose organizers act in period t. Further, let α<t := (αe)e∈Eτ ,1≤τ≤t−1 denote the bias

profile chosen prior to period t. The following result ensues.

Theorem 4 (Equilibrium with Sequential Move) Suppose that Assumption 1

or 2 holds. Then there exists a unique SPNE, in which every organizer perfectly levels

the playing field. That is, for each t ∈ {1, . . . , T}, a biases profile α<t, and a battlefield

e ∈ E t, the organizer of battlefield e chooses αe(α<t) such that pei = pej = 1/2. As a

result, (α∗∗,x∗∗) is the unique equilibrium outcome.

By Theorem 4, the conditions that sustain the leveling-playing-field principle in

simultaneous-move setting ensure that (α∗∗,x∗∗) remains the unique equilibrium out-

come under sequential moves.

The proof and logic are straightforward. Consider a simple example with two bat-

tlefields, as illustrated in Figure 1c. Let the organizer of battlefield a move first. The

first-stage game can be solved by backward induction. The organizer on battlefield

b—the second mover—will fully balance the playing field regardless of the contest

rule for battlefield a, as implied by Theorem 2.
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Now consider the organizer of battlefield a, the first mover. She anticipates that

the late mover will fully level the playing field. In other words, the contest rule for

battlefield b is endogenously pegged to her choice for battlefield a to induce a fully

balanced competition on battlefield b. This dynamic strategic linkage neutralizes the

indirect network effect caused by her own choice, allowing her to focus on the direct

local effect. Thus, she would also set a contest rule to fully level the playing field on

her battlefield.

4.2 Centralized Contest Design

We now let a central organizer sets contest rules α = {αe}e∈E for all battlefields in

the first stage of the game. Upon observing the contest rules, players simultaneously

exert their efforts in the second stage.

We assume that the organizer maximizes an objective function determined by

the profile of players’ individual total effort profile, i.e., Λ(x) := Λ(X1, X2, . . . , XN).

It is noteworthy that the central organizer is concerned about only each player’s

individual total effortXi instead of his entire effort profile xi. This assumption ensures

the existence of an optimum.13 Clearly, varying contest rules has no effect on the

organizer’s payoff in the pure-budget case. We therefore focus on the pure-cost case.

Moreover, we assume that the objective function Λ(x) is strictly increasing inXi for all

i ∈ N . That is, the organizer strictly benefits from each player’s effort contribution.

A simple example is the aggregate effort over the network— i.e., Λ(x) =
∑

i∈N Xi.

The following result ensues.

Theorem 5 (Centralized Contest Design within A Network) Suppose that

the central organizer’s objective function Λ(x) = Λ(X1, . . . , XN) is strictly increasing

in Xi for all i ∈ N . The optimal contest is unique, in which the organizer sets

α = α∗∗ and players win with equal probability on every battlefield.

Theorem 5 shows that a central organizer always benefit from leveling the playing

fields. Her choices of α internalizes the externalities that each battlefield’s contest

13Otherwise, an optimummay not exist. To see this, consider a setting withN = {1, 2}, E = {a, b},
and Γ = {(1, a), (1, b), (2, a), (2, b)}, as in Figure 1c. Set fe

i (x
e
i ) = xe

i for all (i, e) ∈ Γ, ci(Xi) = (Xi)
2,

and (va, vb) = (1, 1). Suppose that the organizer’s objective is to maximize total effort on battlefield
a, i.e., Λ = xa

1 + xa
2 . We can verify that no optimal biases exist. The organizer can generate total

effort arbitrarily close to the supremum—equal to 1/4—by setting αa = (1, 1) and αb = (ε, 1− ε),
where ε is an infinitesimal positive parameter.
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rule imposes on the others. Leveling the playing field maximizes every player’s effort

incentives. Recall that α∗∗ is the unique bias profile that would induce even winning

odds on all battlefields. This leads to the following result.

Corollary 1 (Centralization versus Decentralization) The optimal contest rules

for the central designer, α∗∗, also constitute a first-stage equilibrium of the decen-

tralized contest design game in which the organizer on each battlefield unilaterally

maximizes total effort in her own battle.

Corollary 1 yields useful practical implications. Notably, the central organizer’s

interests are not aligned with the organizers in our original decentralized contest

design game. Nevertheless, Corollary 1 predicts that if the central organizer simply

delegates the task of setting contest rules to a set of self-interested agents—each

managing a single battlefield—the resulting equilibrium outcome may still replicate

the centrally determined optimum.

5 Conclusion

In this paper, we analyze a game of decentralized contest design in which multiple

players engage in pairwise contests within a network. Each battlefield is managed by

an organizer who sets contest rules to incentivize effort supply for her own contest.

We investigate the subgame perfect Nash equilibrium of the game and examine the

extent to which the well-known level-playing-field principle continues to hold in this

networked setting, given the complex externalities that arise when contest rules are

set independently for individual battlefields. We show that an even-odds equilibrium

always exists, in which the contest on every battlefield is resolved with equal proba-

bility. We further identify sufficient conditions under which the leveling-playing-field

principle remains valid—i.e., conditions under which each organizer prefers a fully

balanced contest regardless. We also demonstrate that the even-odds equilibrium

may remain unique even when these conditions are not satisfied and a fully balanced

contest is not necessarily an organizer’s unconditional best response.

Our paper is the first to analyze decentralized contest design in a networked

context. The analysis sheds new light on the game-theoretic structure of networked

contest games and contributes novel insights to the understanding of the conventional

wisdom of level playing field in the contest literature.
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Ample opportunities for future research remain. For instance, Section 3.3 identi-

fies sufficient conditions for the uniqueness of the even-odds equilibrium, even when

the level-playing-field principle does not hold. These conditions, however, are not

necessary: In all cases examined, our numerical exercises reveal that the equilibrium

remains unique even when the conditions are violated. This observation naturally

leads to the conjecture that uniqueness holds under a general network structure as

long as the impact functions are strictly concave. Although this conjecture is analyt-

ically difficult to establish, it warrants serious research attention going forward.

Our paper assumes bilateral contests on each battlefield. A natural extension

would be to allow multilateral competitions, which would introduce formidable tech-

nical challenges. First, in a battlefield e with ne players, the organizer’s choice of

contest rules becomes a vector of (ne− 1), rather than a single variable as in our cur-

rent setup. This greatly increases the dimensionality of the decision problem, with

the complications further compounded in a networked environment. Second, in a

multilateral setting, defining and measuring competitive balance on a battlefield can

be considerably more elusive.
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Appendix: Proofs

Proof of Proposition 1. By Xu, Zenou, and Zhou (2022), the second-stage equi-

librium is unique for an arbitrary first-stage biases profile for the pure-cost case, and

it suffices to consider the pure-budget case. We state several intermediate results.

Lemma A1 Fix α and e ∈ E, with N e = {i, j}. If there exists x ∈ X (α) such that

xe
j > 0, then (xe

i )
′ = xe

i for all x′ ∈ X (α). As a corollary, fixing x ∈ X (α), if xe
i = 0

for some (i, e)—which implies xe
j > 0—then (xe

i )
′ = 0 for all x′ ∈ X (α).

Lemma A2 Fix α, x′ ∈ X (α), and battlefield e1, with N e1 = {i0, j1}. If (xe1
j1
)′ = 0,

then for any x′′ ∈ X (α), we have (xeu
ju
)′′ = 0 for all eu ∈ Ei0, with N eu = {i0, ju}.

Moreover, λi0(x
′′) = 0.

Lemma A3 Fixing α, λi(x
′) = λi(x

′′) =: λi for all x′,x′′ ∈ X (α) and all i ∈ N .

We first prove part (i) of the proposition. Let (α∗,x∗(·)) be an SPNE and let

x′ := x∗(α∗). Suppose, to the contrary, that there exists x′′ ̸= x′ such that x′′ ∈
X (α∗). Then there exists i0 ∈ N and e1 ∈ Ei0 such that (xe1

i0
)′ ̸= (xe1

i0
)′′. By

Lemma A1, (xe1
j1
)′ = 0 and (xe1

j1
)′′ = 0, where j1 ∈ N e1 and j1 ̸= i0; otherwise,

player i0 would choose the same effort in the battlefield across all equilibria, which

contradicts (xe1
i0
)′ ̸= (xe1

i0
)′′. Further, by Lemma A2, (xeu

ju
)′ = (xeu

ju
)′′ = 0 for all

eu ∈ Ei0 , with N eu = {i0, ju}, and λi0(x
′) = λi0(x

′′) = 0.

Consider an arbitrary battlefield eu ∈ Ei0 and player i0’s opponent, player ju.

By Lemma A3, λju is the same across all equilibria; together with the fact that

(xeu
ju
)′ = (xeu

ju
)′′ = 0, we can conclude that

λju ≥
(αeu

ju
)∗(f eu

ju
)′(0)

(αeu
i0
)∗f eu

i0
(xeu

i0
)
,

where xeu
i0

is player i0’s equilibrium effort in battlefield eu. By the monotonicity of

f eu
i0
(·), there exists a unique xeu

i0
such that the above inequality holds with equality,

and denote it by x̂eu
i0
. It follows immediately that x̂eu

i0
≤ (xeu

i0
)′ and x̂eu

i0
≤ (xeu

i0
)′′,

which in turn implies that∑
eu∈Ei0

x̂eu
i0

≤
∑

eu∈Ei0

(xeu
i0
)′ ≤ X i0 and

∑
eu∈Ei0

x̂eu
i0

≤
∑

eu∈Ei0

(xeu
i0
)′′ ≤ X i0 .
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If
∑

eu∈Ei0
x̂eu
i0

= X i0 , then all inequalities above hold with equality, which implies

that (xeu
i0
)′ = (xeu

i0
)′′ = x̂eu

i0
for all eu ∈ Ei0 . This contradicts the postulated (xe1

i0
)′ ̸=

(xe1
i0
)′′. If

∑
eu∈Ei0

x̂eu
i0

< X i0 , we consider the following alternative strategy for player

i0: xi0 =
(
xe1
i0
, (x̂eu

i0
)eu∈Ei0\{e1}

)
, where xe1

i0
= X i0 −

∑
eu∈Ei0\{e1}

x̂eu
i0

≥ 0. It follows

immediately that xe1
i0
≥ (xe1

i0
)′ and xe1

i0
≥ (xe1

i0
)′′. Recall the postulated (xe1

i0
)′ ̸= (xe1

i0
)′′.

We can thus assume xe1
i0
> (xe1

i0
)′ without loss.

Set αe1 = (αe1
i0
, αe1

j1
) such that λj1 =

α
e1
j1

(f
e1
j1

)′(0)

α
e1
i0

f
e1
i0

(x
e1
i0

)
. It is straightforward to verify

that (xi0 , (x−i0)
′) satisfies (2) and (3) in Lemma 1 under

(
αe1 , {(αe)∗}e∈E\{e1}

)
, and

thus constitutes a second-stage equilibrium. Following a similar argument as in the

previous analysis, we can conclude that for any second-stage equilibrium under this

biases profile, player i0’s equilibrium effort in battlefield e1 is xe1
i0
. Note that xe1

i0
>

(xe1
i0
)′. Therefore, fixing {(αe)∗}e∈E\{e1}, the organizer of battlefield e1 is better off by

deviating from (αe1)∗ to αe1 , which contradicts the postulate that α∗ constitutes a

first-stage equilibrium.

Next, we prove part (ii) of the proposition. Suppose, to the contrary, that there

exists x(·), with x(α) ∈ X (α), such that (α∗,x(·)) is not a SPNE. Therefore, fixing

x(·) and (α−e)∗, there exist a battlefield e such that setting (αe)∗ is suboptimal to

its organizer. Denote the most profitable deviation for the organizer by (αe)′ and let

α′ =
(
(αe)′, (α−e)∗

)
. By assumption, (α∗,x∗(·)) is a SPNE. Therefore, the organizer

of battlefield e is better off in x∗(α∗) than in x∗(α′). Thus, she is strictly better off

in x(α′) than in x∗(α′).

By Lemma A1, it is impossible that the two players in battlefield e are active.

Otherwise, the equilibrium efforts in battlefield e under x(α′) coincide with those

under x∗(α′). Meanwhile, it is evident that at least one player exerts positive effort

in each battlefield in the second stage. Therefore, it must be the case that one player

remains active and the other inactive in battlefield e, and the active player’s effort is

strictly higher in x(α′) than in x∗(α′). Following a similar argument as in the proof

of part (i), this is impossible given that (αe)′ is the most profitable deviation for the

organizer of battlefield e. This concludes the proof. □

Proof of Lemma 2. For the pure-cost case, similar to (8), we can obtain that

λ̃i = c′i

(∑
e∈Ei

(gei )
−1
(vep̃ei (1− p̃ei )

λ̃i

))
≤ c′i

(∑
e∈Ei

(gei )
−1
( ve

4λ̃i

))
,

34



where the inequality follows from the monotonicity of c′i and (gei )
−1 and p̃ei (1− p̃ei ) ≤

1/4. The above inequality, together with (8), implies λ̃i ≤ λ∗∗
i . The proof for the

pure-budget case is similar and omitted for brevity. □

Proof of Lemma 3. For notational convenience, define (f e
i )

∗∗ := f e
i ((x

e
i )

∗∗), (gei )
∗∗ :=

gei ((x
e
i )

∗∗), f̃ e
i := f e

i (x̃
e
i ), and g̃ei := gei (x̃

e
i ). Suppose, to the contrary, that x̃e

i < (xe
i )

∗∗.

By (2), we have

λ∗∗
i (gei )

∗∗ = λ∗∗
j (gej )

∗∗ =
ve

4
and λ̃ig̃

e
i = λ̃j g̃

e
j = vep̃ei (1− p̃ei ), (7)

Evidently, at least one player is active in battlefield e in the equilibrium. We

consider three cases:

(a) Suppose x̃e
i = 0 and x̃e

j > 0. The postulated λ̃i/λ
∗∗
i ≤ λ̃j/λ

∗∗
j implies that λ̃i = 0.

Meanwhile, it follows from (3) that λ̃i ≥ (αe
i )

∗∗(fe
i )

′(0)

(αe
j)

∗∗f̃e
j

> 0. A contraction.

(b) Suppose x̃e
j = 0 and x̃e

i > 0. From (3), we have λ̃j ≥ (αe
j)

∗∗(fe
j )

′(0)

(αe
i )

∗∗f̃e
i

. Further,

(xe
j)

∗∗ > 0 implies λ∗∗
j <

(αe
j)

∗∗(fe
j )

′(0)

(αe
i )

∗∗(fe
i )

∗∗ . Note that λ̃j ≤ λ∗∗
j by Lemma 2. These

altogether indicate that (f e
i )

∗∗ < f̃ e
i , which implies that (xe

i )
∗∗ < x̃e

i . A contra-

diction.

(c) Now suppose, x̃e
j > 0 and x̃e

i > 0. Let ai := f̃ e
i /(f

e
i )

∗∗ and aj := f̃ e
j /(f

e
j )

∗∗. Note

that gei (·) ≡ f e
i (·)/(f e

i (·))′ is strictly increasing; together with the postulated

x̃e
i < (xe

i )
∗∗, we have that g̃ei < (gei )

∗∗. Further, by (7), we have
λ̃ig̃

e
i

λ∗∗
i (gei )

∗∗ =

λ̃j g̃
e
j

λ∗∗
j (gej )

∗∗ ; together with g̃ei < (gei )
∗∗ and the postulated λ̃i/λ

∗∗
i ≤ λ̃j/λ

∗∗
j , we can

obtain that g̃ej < (gej )
∗∗ and x̃e

j < (xe
j)

∗∗, which implies that 0 < ai, aj < 1.

By (1), we have that 1 =
(pei )

∗∗

(pej)
∗∗ =

(αe
i )

∗∗(fe
i )

∗∗

(αe
j)

∗∗(fe
j )

∗∗ , which implies
p̃ei
p̃ej

=
(αe

i )
∗∗f̃e

i

(αe
j)

∗∗f̃e
j

=

f̃e
i /(f

e
i )

∗∗

f̃e
j /(f

e
j )

∗∗ = ai
aj

and thus (p̃ei , p̃
e
j) = ( ai

ai+aj
,

aj
ai+aj

); together with (7), we have that

g̃ei
(gei )

∗∗ = 4p̃ei (1− p̃ei )×
λ∗∗
i

λ̃i
≥ 4aiaj

(ai+aj)2
, where the inequality follows from Lemma 2.

Further, from the concavity of f e
i (·) and the postulated x̃e

i < (xe
i )

∗∗, we have

ai =
f̃ e
i

(f e
i )

∗∗ =
g̃ei

(gei )
∗∗ × (f e

i )
′(x̃e

i )

(f e
i )

′((xe
i )

∗∗)
≥ g̃ei

(gei )
∗∗ ≥ 4aiaj

(ai + aj)2
,
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which implies
4aj

(ai+aj)2
≤ 1. Similarly, we can obtain that 4ai

(ai+aj)2
≤ 1. Summing

the two inequalities yields ai + aj ≥ 2, which contradicts ai, aj < 1.

This completes the proof. □

Proof of Theorem 1. It suffices to show that there is a unique profile of contest

rules α∗∗ that leads to the equilibrium outcome of equal winning odds on every

battlefield. For the pure-cost case, we first solve for the second-stage equilibrium

profile x∗∗ that leads to equal winning odds in all battlefields. Plugging (pei )
∗∗ = 1/2

into (2) yields ve

4
= λ∗∗

i gei
(
(xe

i )
∗∗); together with the monotonicity of gei ≡ f e

i /(f
e
i )

′,

we have (xe
i )

∗∗ = (gei )
−1
(

ve

4λ∗∗
i

)
and

λ∗∗
i = c′i(X

∗∗
i ) = c′i

(∑
e∈Ei

(gei )
−1
( ve

4λ∗∗
i

))
, (8)

from which we can solve for λ∗∗
i and pin down x∗∗. The first-stage biases profile α∗∗

is uniquely determined by (1).

The proof of the pure-budget case closely follows that of the pure-cost case after

we replace (8) with X i =
∑

e∈Ei(g
e
i )

−1
(

ve

4λ∗∗
i

)
. The concludes the proof. □

Proof of Lemma 4. It suffices to show that for any αe0 , the organizer of battlefield

e0 can choose we0 to induce the same equilibrium effort profile x, and vice versa.

First, fix an arbitrary αe0 and a second-stage equilibrium x∗, which yields (we0)∗.

Evidently, the organizer can set we0 = (we0)∗ to induce x∗. Second, fixing an arbitrary

we0 ≤ ve0/4—which induces x∗—the winning probability in battlefield e0 can be

solved from (4). The corresponding biases αe0 can then be derived from (1). □

Proof of Lemma 5. We first state an intermediate result.

Lemma A4 Fix a battlefield e0 ∈ E, with N e0 = {i0, j0}. The following statements

hold in the second-stage equilibrium:

(i) Fix e ̸= e0, with N e = {i, j}. If xe
i , x

e
j > 0, then

dxe
i

dwe0
= −weme

i

λi

×

[
1− (2pei − 1)me

j

]
1
λi

dλi

dwe0
+ (2pei − 1)me

j
1
λj

dλj

dwe0

1 + (me
i −me

j)(p
e
i − pej)

, (9)
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where gei := gei (x
e
i ) and me

i :=
(fe

i )
′(xe

i )
2

(fe
i )

′(xe
i )

2−fe
i (x

e
i )(f

e
i )

′′(xe
i )
∈ [0, 1].

(ii) For battlefield e0, we have that

dxe0
i0

dwe0
= ge0i0 m

e0
i0

[
1

we0
− 1

λi0

dλi0

dwe0

]
and

dxe0
j0

dwe0
= ge0j0m

e0
j0

[
1

we0
− 1

λj0

dλj0

dwe0

]
. (10)

(iii) For each i ∈ N , we have that

δi
dλi

dwe0
=
∑
e∈Ei

dxe
i

dwe0
, (11)

where δi = 0 in the pure-budget case and δi =
1

c′′i (Xi)
in the pure-cost case.

We are ready to prove the lemma. For part (i), first consider the case of xe
i , x

e
j > 0.

By (9), we have that

dλi

dwe0

dxe
i

dwe0
+

dλj

dwe0

dxe
j

dwe0

=− we
me

i

[
1− (2pei − 1)me

j

](
1
λi

dλi

dwe0

)2
+me

j

[
1 + (2pei − 1)me

i

](
1
λj

dλj

dwe0

)2
1 + (me

i −me
j)(p

e
i − pej)

.

Note that me
i ∈ [0, 1]. Moreover, xe

i , x
e
j > 0 implies that pei ∈ (0, 1). Therefore,

1 − (2pei − 1)me
j > 0, 1 + (2pei − 1)me

i > 0, and 1 + (me
i − me

j)(p
e
i − pej) > 0, which

implies (5).

Next, suppose xe
i = 0 and xe

j > 0. If xe
i = 0 in a neighborhood of we0 , then by

Lemma A2, λj = 0 in this neighborhood. Therefore,
dxe

i

dwe0
=

dλj

dwe0
= 0, which also

implies (5). Otherwise, if xe
i > 0 in a neighborhood of we0 , then (5) holds in the

neighborhood and is satisfied at we0 by continuity.

Next, we prove part (ii) of the lemma. By (11), we have that
∑

e∈Ei
dλi

dwe0

dxe
i

dwe0
=

δi
(

dλi

dwe0

)2 ≥ 0. This concludes the proof. □

Proof of Lemma 6. For part (i) of the lemma, we first show that there exists

w̃e0 < ve0/4 such that
dx

e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. By assumption, there exists ŵe0 < ve0/4

such that Λe0(xe0
i0
, xe0

j0
)
∣∣∣
we0=ŵe0

≥ Λe0(xe0
i0
, xe0

j0
)
∣∣∣
we0=ve0/4

. Recall that Λe0 is strictly

increasing in xe0
i0

and xe0
j0
. There exists w̃e0 ∈ (ŵe0 , ve0/4) to satisfy

dx
e0
i0

dwe0

∣∣∣
we0=w̃e0

≤ 0

37



or
dx

e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. Further,
dx

e0
i0

dwe0

∣∣∣
we0=w̃e0

≥ dx
e0
j0

dwe0

∣∣∣
we0=w̃e0

by assumption. Therefore,

dx
e0
j0

dwe0

∣∣∣
we0=w̃e0

≤ 0. In the rest of the proof, all derivatives are evaluated at we0 = w̃e0 .

Next, we show that
dx

e0
i0

dwe0
≥ 0. Suppose, to the contrary, that

dx
e0
i0

dwe0
< 0. By (10),

we have that
dλi0

dwe0
> 0 and

dλj0

dwe0
> 0. Therefore,

dλi0

dwe0

dxe0
i0

dwe0
+

dλj0

dwe0

dxe0
j0

dwe0
< 0. (12)

Note that

I =
∑
i∈N

∑
e∈Ei

dλi

dwe0

dxe
i

dwe0
≥ 0, (13)

where the inequality follows from Lemma 5(ii). However, (5) and (12) imply that

I =
∑
e̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
+

dλi0

dwe0

dxe0
i0

dwe0
+

dλj0

dwe0

dxe0
j0

dwe0
< 0,

which is a contradiction.

Next, we prove part (ii) of the lemma. The first two inequalities in part (ii) follow

immediately from part (i) and (10), and it remains to prove
dλi0

dwe0
> 0. Suppose, to the

contrary, that
dλi0

dwe0
< 0; together with

dx
e0
i0

dwe0
> 0 as shown in part (i), we can obtain

(12). From (12) and Lemma 5(ii), we have that I < 0, which contradicts (13).

Part (iii) of the lemma follows immediately from parts (i) and (ii), and it remains

to prove part (iv). It suffices to show
dxe′

j0

dwe0
≤ 0;

dxe′
j0

dwe0

dλj0

dwe0
≤ 0 can be implied by

dxe′
j0

dwe0
≤ 0 and (ii).

Fix e′ ̸= e0, with N e′ = {i0, j0}. By (9), we have that

dxe′
j0

dwe0
= −

we′me′
j0

λj0

×

[
1− (2pe

′
j0
− 1)me′

i0

]
1

λj0

dλj0

dwe0
+ (2pe

′
j0
− 1)me′

i0
1

λi0

dλi0

dwe0

1 + (me′
i0
−me′

j0
)(pe

′
i0
− pe

′
j0
)

.

Recall that we have shown 1+(me′
i0
−me′

j0
)(pe

′
i0
−pe

′
j0
) > 0 in Lemma 5. Further, simple

algebra would verify that[
1− (2pe

′

j0
− 1)me′

i0

] 1

λj0

dλj0

dwe0
+ (2pe

′

j0
− 1)me′

i0

1

λi0

dλi0

dwe0
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=
1

λj0

dλj0

dwe0
− (2pe

′

j0
− 1)me′

i0

[
1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0

]

≥ 1

λj0

dλj0

dwe0
−

[
1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0

]
≥ 0,

where the first inequality follows from pe
′
j0
∈ [0, 1], me′

i0
∈ [0, 1], and 1

λj0

dλj0

dwe0
− 1

λi0

dλi0

dwe0
≥

0; and the second inequality follows from part (ii) of the lemma. Therefore,
dxe′

j0

dwe0
≤ 0,

which concludes the proof. □

Proof of Theorem 2. It remains to show that under Assumption 1, dλs

dwe0

dxe
s

dwe0
< 0

for each e ∈ Es, with e ̸= e0. We first show that dλs

dwe0
̸= 0. Suppose, to the contrary,

that dλs

dwe0
= 0. By the definition of s, dλi

dwe0
= 0 for each i ∈ N ; together with (10), we

have that
dx

e0
i0

dwe0
< 0 and

dx
e0
j0

dwe0
< 0, which contradicts Lemma 6(i).

Next, suppose dλs

dwe0
> 0 (the analysis for the case with dλs

dwe0
< 0 follows analo-

gously). Fix e ∈ Es, with e ̸= e0 and N e = {s, j}. By (9), we have that

dxe
s

dwe0
= −weme

s

λs

×

[
1− (2pes − 1)me

j

]
1
λs

dλs

dwe0
+ (2pes − 1)me

j
1
λj

dλj

dwe0

1 + (me
s −me

j)(p
e
s − pej)

.

Assumption 1 implies that (f e
j )

′(0) = (f e
s )

′(0) = +∞ and thus pes ∈ (0, 1). Further,

the assumption implies me
j ∈ [0, 1/2]. Carrying out the algebra, we can obtain that

[
1− (2pes − 1)me

j

] 1

λs

dλs

dwe0
+ (2pes − 1)me

j

1

λj

dλj

dwe0

=
1

λs

dλs

dwe0
− (2pes − 1)me

j

[
1

λs

dλs

dwe0
− 1

λj

dλj

dwe0

]

>
1

λs

dλs

dwe0
− 1

2
×

[
1

λs

dλs

dwe0
− 1

λj

dλj

dwe0

]
≥ 0,

where the first inequality follows from me
j ∈ [0, 1/2] and pes ∈ (0, 1); and the last

inequality follows from 1
λs

dλs

dwe0
≥
∣∣∣ 1
λj

dλj

dwe0

∣∣∣. This concludes the proof. □

Proof of Theorem 3 Consider the following two cases depending on whether As-

sumption 1′ or 2′ is satisfied.
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Case (a): Assumption 1′ holds. Note that Assumption 1′ implies that (f e
i )

′(0) =

∞ and thus xe
i > 0 for all (i, e) ∈ Γ. Suppose, to the contrary, that there exists an

alternative equilibrium
(
α†,x†(·)

)
̸=
(
α∗∗,x∗∗(·)

)
. Then there exists (i, e) such that

(pei )
† ̸= 1/2, which implies that (we)† < ve/4. Let e0 be the battlefield with mini-

mal we among all battlefields that satisfy (we)† < ve/4—i.e., (we0)† = min
{
(we)† :

(we)† < ve/4
}
—and N e0 = {i0, j0}. By (13), we have that

I ≡
∑

(i,e)∈Γ

dλi

dwe0

dxe
i

dwe0
≥ 0. (14)

Note that I can be divided into three parts:

I =
dλi0

dwe0

dxe0
i0

dwe0︸ ︷︷ ︸
I1

+
dλj0

dwe0

dxe0
j0

dwe0︸ ︷︷ ︸
I2

+
∑
e̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0︸ ︷︷ ︸
I3

. (15)

Let s ∈ N such that
∣∣∣ 1

λ†
s

dλs

dwe0

∣∣∣ = maxi∈N

∣∣∣ 1

λ†
i

dλi

dwe0

∣∣∣. By Lemma 6, s ̸= i0. Suppose

1

λ†
s

dλs

dwe0
> 0 (the analysis for the case with 1

λ†
s

dλs

dwe0
< 0 follows analogously). By (6),

there exists e† ∈ Es such that dxe†
s

dwe0
≥ 0. Denote player s’s opponent in battlefield

e† by j†. Evidently, e† ̸= e0. Otherwise, if e† = e0, then s = j0, which contradicts

Lemma 6(iii).

Lemma A5 The following statements hold:

I1 ≤
(we0)†

4ρ
×

(
1

λ†
j0

dλj0

dwe0

)2

, (16)

I2 ≤ 0, (17)

I3 ≤ −(we0)†
1−

(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

(
1

λ†
j0

dλj0

dwe0

)2

. (18)

Plugging (16), (17), and (18) into (15), we can obtain that

I ≤ (we0)† ×
(

1

λ†
j0

dλj0

dwe0

)2

×

 1

4ρ
−

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

 < 0,
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where the last inequality follows from 2(pe
†
s )

† − 1 ∈ (0, 1), (me†

j†)
† ∈ [0, 1/ρ], and

ρ = 1+
√
2

2
. This contradicts (14).

Case (b): Assumption 2′ holds. Recall e0 as defined in Case (a). The proof

is the same as that of Theorem 2 if e0 is not in a cycle, and it suffices to consider

the case where e0 is contained in a unique cycle with odd length. Denote the set of

players on the cycle by {i0, . . . , i2ℓ}—where 2ℓ+ 1 gives the length of the cycle—and

let N e0 = {i0, i1}.
By Assumption 2′, if we remove all edges on this cycle—i.e., all battlefields e

with N e = {ik, ik+1} for some k ∈ {0, . . . , 2ℓ}—the network is divided into 2ℓ + 1

connected components, each contains exactly one player on the cycle. Denote the

connected component that contains player ik by Γ(k). Further, denote the players

and battlefields in Γ(k) by N (k) and E(k), respectively. For each k ∈ {0, . . . , 2ℓ},
define

I+
k :=

∑
e∈E:N e={ik,ik+1}

dxe
ik

dwe0

dλik

dwe0
and I−

k :=
∑

e∈E:N e={ik,ik−1}

dxe
ik

dwe0

dλik

dwe0
.

The following intermediate result ensues.

Lemma A6 The following holds:

(i) For each k ∈ {0, . . . , 2ℓ}, I+
k + I−

k ≥ 0.

(ii) For each k ∈ {1, . . . , 2ℓ}, I+
k + I−

k+1 < 0.

(iii) The signs of I+
0 and I−

1 are different.

(iv) The signs of I+
k are the same among all k ∈ {0, . . . , 2ℓ} and those of I−

k are the

same among all k ∈ {0, . . . , 2ℓ}.

By Lemma A6, there are two cases: (i) I+
k > 0 and I−

k < 0 for all k ∈ {0, . . . , 2ℓ};
and (ii) I+

k < 0 and I−
k > 0 for all k ∈ {0, . . . , 2ℓ}. In what follows, we focus on the

former (the analysis for the latter case is similar).

For notational convenience, define µk :=
∣∣∣ 1
λik

dλik

dwe0

∣∣∣ and the following:

M+
k,k :=

∑
e∈E:N e={ik,ik+1}

−weme
ik

1− (2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
, (19)
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M−
k+1,k+1 :=

∑
e∈E:N e={ik,ik+1}

−weme
ik+1

1− (2peik+1
− 1)me

ik

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
, (20)

Mk,k+1 :=
∑

e∈E:N e={ik,ik+1}

−weme
ik

(2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
. (21)

We state several intermediate results.

Lemma A7 The signs of Mk,k+1 are the same among all k ∈ {0, . . . , 2ℓ}.

Lemma A8 Suppose that I+
k > 0 for all k ∈ {0, . . . , 2ℓ}. Fixing k ∈ {1, . . . , 2ℓ}, the

following holds:

(i) If Mk,k+1 > 0, then 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have the same sign. Moreover,

µk+1 > 2µk. (22)

(ii) If Mk,k+1 < 0, then 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have different signs. Moreover,

I+
k ≤ (−I−

k+1)×
µk

µk + 2µk+1

, (23)

and

−I−
k+1 ≥

2µk+1

µk

I+
k + we0µkµk+1. (24)

Now we can prove the equilibrium uniqueness. By Lemma A7, for all k ∈
{0, . . . , 2ℓ}, either Mk,k+1 > 0 or Mk,k+1 < 0. In the former case, from (22) in

Lemma A8(i), we have that µ0 = µ2ℓ+1 > 2µ2ℓ > · · · > 22ℓµ1. Meanwhile, by

Lemma 6(ii), we have that 1
λi1

dλi1

dwe0
≥ 1

λi0

dλi0

dwe0
≥ 0, which implies that µ1 ≥ µ0. A

contradiction.

In the latter case, it follows from (23) and Lemma A6(i) that

I+
k ≤ (−I−

k+1)×
µk

µk + 2µk+1

≤ I+
k+1 ×

µk

µk + 2µk+1

, ∀ k ∈ {1, . . . , 2ℓ},

which implies that

I+
2 ≤ I+

0 ×
2ℓ∏
k=2

µk

µk + 2µk+1

. (25)
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Next, combining Lemma A6(ii) and (24) in Lemma A8(ii) yields that

I+
2 ≥ 2µ2

µ1

I+
1 +max

{
I+
1 , w

e0µ1µ2

}
. (26)

Moreover, we have that

I+
0 − I+

1 ≤ I+
0 + I−

1 =
dxe0

i0

dwe0

dλi0

dwe0
+

dxe0
i1

dwe0

dλi1

dwe0
+

∑
e:N e={i0,i1},e̸=e0

∑
i∈N e

dxe
i

dwe0

dλi

dwe0

≤
dxe0

i0

dwe0

dλi0

dwe0
= we0me0

i0
µ0

(
1

we0
− µ0

)
≤ we0µ0(µ1 − µ0), (27)

where the first inequality follows from Lemma A6(i); the second inequality follows

from (5) and Lemma 6(iii); the second equality follows from (10); and the last in-

equality follows from Lemma 6(ii) and me0
i0
≤ 1.

Combining (25), (26) and (27) yields that

H(I+
1 ) :=

2µ2

µ1

I+
1 +max

{
I+
1 , w

e0µ1µ2

}
−
[
I+
1 + we0µ0(µ1 − µ0)

]
×

2ℓ∏
k=2

µk

µk + 2µk+1

≤ 0.

Note that H(·) is linear in I+
1 on

[
0, we0µ1µ2

]
and

[
we0µ1µ2,+∞

)
. Simple algebra

would verify that H(0) > 0, H(we0µ1µ2) > 0, and H(∞) > 0. Therefore, H(I+
1 ) > 0,

and we arrive at the contradiction. This completes the proof. □

Proof of Theorem 4. We prove Theorem 4 by induction on t.

Base case: Consider the last period t = T . Fixing e ∈ ET , the organizer chooses αe

to maximize Λe(xe), holding fixed α−e. By Theorem 2, the organizer chooses

αe to induce pei = pej = 1/2, with N e = {i, j}, in the equilibrium.

Inductive step: For each t ∈ {1, . . . , T−1}, suppose that the statement holds for each

τ > t. We show that for each battlefield e0 ∈ E t and each α<t, the battlefield

organizer chooses αe to induce pe0i0 = pe0j0 = 1/2, with N e0 = {i0, j0}.

First, following a similar argument as in the proof of Lemma A4, we can show

that (9) holds for each e ∈ ∪τ≤tEτ and e ̸= e0. Second, by the induction

hypothesis, for each e ∈ ∪τ>tEτ and each i ∈ N e, we have that pei ≡ 1/2 and

thus
dpei
dwe0

= 0. This implies that
dxe

i

dwe0
= −geim

e
i

λi

dλi

dwe0
and thus

dxe
i

dwe0

dλi

dwe0
≤ 0.
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Fixing the biases profile up to period t − 1—i.e., fixing α<t—the battlefield

organizers in period t choose their biases, anticipating the biases set by their

followers. Note that the condition
dxe

i

dwe0

dλi

dwe0
≤ 0 we prove above ensures that

Lemmata 5 and 6 continue to hold. Following a similar argument as in the

proof of Theorem 2, we can show that all battlefield organizers in period t will

again choose biases to induce equal winning probabilities in their battlefields.

This completes the inductive step.

Conclusion: By the principle of induction, for each t ∈ {1, . . . , T}, a biases profile

α<t, and a battlefield e ∈ E t, the organizer chooses αe(α<t) such that pei =

pej = 1/2. This completes the proof. □

Proof of Theorem 5. Fix an arbitrary biases profile α and x ∈ X (α). It follows

from (2) that

Xi =
∑
e∈Ei

xe
i =

∑
e∈Ei

(gei )
−1

(
vepei (1− pei )

λi

)
≤
∑
e∈Ei

(gei )
−1

(
ve

4c′i(Xi)

)
. (28)

Further, by the definition of α∗∗, we have that (pei )
∗∗ = 1/2 for all (i, e) ∈ Γ. Similar

to (28), we have that

X∗∗
i =

∑
e∈Ei

(gei )
−1

(
ve(pei )

∗∗(1− (pei )
∗∗)

(λi)∗∗

)
=
∑
e∈Ei

(gei )
−1

(
ve

4c′i(X
∗∗
i )

)
. (29)

A closer look at (28) and (29) reveals that Xi ≤ X∗∗
i , where the inequality holds with

equality if and only if pei = 1/2 for all (i, e) ∈ Γ. Further, by Theorem 1, we must

have α = α∗∗. This completes the proof. □
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Supplemental Appendix: Omitted Proofs

Proof of Lemma A1

Proof. Suppose, to the contrary, that there exists e0 ∈ E , with N e0 = {i0, j0}, and
two second-stage equilibria x′,x′′ ∈ X (α), with (xe0

i0
)′ ̸= (xe0

i0
)′′ and (xe0

j0
)′ > 0.

Note that equilibrium requires that ∂πi(x
′)

∂xe
i

≤ λi(x
′), where the inequality holds

with equality if (xe
i )

′ > 0. Similarly, ∂πi(x
′′)

∂xe
i

≤ λi(x
′′), where the inequality holds with

equality if (xe
i )

′′ > 0. These altogether indicate that

∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi(x

′)

∂xe
i

≥ 0,

and ∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi(x

′′)

∂xe
i

≤ 0.

Combining the above two inequalities yields that

∑
(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× [∂πi(x

′)

∂xe
i

− ∂πi(x
′′)

∂xe
i

]
≥ 0. (A1)

Define x(z) := zx′ + (1− z)x′′, with z ∈ [0, 1], and

ω(z) :=
∑

(i,e)∈Γ

(
(xe

i )
′ − (xe

i )
′′)× ∂πi

(
x(z)

)
∂xe

i

.

Evidently, (A1) is equivalent to ω(1) ≥ ω(0). Meanwhile, ω(z) can be rewritten as

ω(z) =
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)× ∂pei

(
x(z)

)
∂xe

i

+
(
(xe

j)
′ − (xe

j)
′′)× ∂pej

(
x(z)

)
∂xe

j

]

=
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)× ∂pei

(
x(z)

)
∂xe

i

−
(
(xe

j)
′ − (xe

j)
′′)× ∂pei

(
x(z)

)
∂xe

j

]
,

which yields that

ω′(z) =
∑

e∈E,N e={i,j}

ve ×

[(
(xe

i )
′ − (xe

i )
′′)2 × ∂2pei

(
x(z)

)
(∂xe

i )
2

+
(
(xe

j)
′ − (xe

j)
′′)2 × ∂2pej

(
x(z)

)
(∂xe

j)
2

]
.
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Recall that
∂pei
∂xe

i
= pei (1− pei )

(fe
i )

′

fe
i
, which in turn implies that

∂2pei
(∂xe

i )
2
= (1− 2pei )p

e
i (1− pei )

[
(f e

i )
′

f e
i

]2
+ pei (1− pei )

(f e
i )

′′f e
i − (f e

i )
′(f e

i )
′

(f e
i )

2

=
pei (1− pei )

(f e
i )

2
×
[
(1− 2pei )(f

e
i )

′(f e
i )

′ + (f e
i )

′′f e
i − (f e

i )
′(f e

i )
′
]

=
αe
iα

e
jf

e
j

(αe
if

e
i + αe

jf
e
j )

3
×
[
(f e

i )
′′(αe

if
e
i + αe

jf
e
j )− 2αe

i (f
e
i )

′(f e
i )

′
]
≤ 0,

where the equality holds if and only if f e
j = 0, or equivalently, xe

j = 0. Similarly,

we have that
∂2pej
(∂xe

j)
2 ≤ 0. These altogether indicate that ω′(z) ≤ 0. Moreover, from

(xe0
i0
)′ ̸= (xe0

i0
)′′ and the postulated (xe0

j0
)′ > 0, we have that

(
(xe0

i0
)′ − (xe0

i0
)′′
)2 × ∂2pe0i0

(
x(z)

)
(∂xe0

i0
)2

< 0.

Therefore, ω′(z) < 0 for all z ∈ (0, 1), which implies that ω(1) < ω(0). This contra-

dicts (A1).

Proof of Lemma A2

Proof. Suppose (xe1
j1
)′ = 0. By Lemma A1, (xe1

j1
)′′ = 0 for all x′′ ∈ X (α). Evidently,

each battlefield has at least one active player in the second-stage equilibrium, which

implies that (xe1
i0
)′′ > 0.

Suppose, to the contrary, that (xeu
ju
)′′ > 0 for some eu ∈ Ei0 , with N eu = {i0, ju}.

Then player i0 has a profitable deviation. Specifically, suppose that he slightly reduces

(xe1
i0
)′′ and increase (xeu

i0
)′′ by the same amount. This does not change his winning odds

in battlefield e1 but strictly increases his winning odds in battlefield eu. Therefore,

for all x′′ ∈ X (α), (xeu
ju
)′′ = 0 for all eu ∈ Ei0 .

It remains to show λi0(x
′′) = 0. Thus far, we have shown that (xe1

j1
)′′ = 0 and

(xe1
i0
)′′ > 0; together with (1) and (2), we can conclude λi0(x

′′) = 0.

Proof of Lemma A3

Proof. Evidently, each battlefield has at least one active player in the second-stage

equilibrium. There are two cases:
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(a) player i has an inactive opponent in some battlefield in one equilibrium. In this

case, by Lemma A2, we have that λi = 0 across all equilibria.

(b) player i has an active opponent in all his battlefields in all equilibria. Note that,

for the pure-budget case, it is impossible that player i remains inactive in all

his battlefields in any equilibrium. This implies that in any equilibrium, player

i must be active in at lease one battlefield. Fix an equilibrium and consider one

such battlefield, say battlefield e, with N e = {i, j}. It follows immediately that

xe
i , x

e
j > 0. By Lemma A1, both players i and j exert the same effort—i.e., xe

i

and xe
j—in all equilibria. Note that λi is uniquely determined by (2) once we

know xe
i and xe

j . This implies that λi must be the same across all equilibria.

This concludes proof of the lemma.

Proof of Lemma A4

Proof. We first prove part (i) of the lemma. Fixing e ̸= e0, with N e = {i, j}, (1)
can be rewritten as

pei =
αe
if

e
i

αe
if

e
i + αe

jf
e
j

and pej = 1− pei =
αe
jf

e
j

αe
if

e
i + αe

jf
e
j

,

from which we can conclude that

pei
1− pei

=
αe
if

e
i

αe
jf

e
j

.

Taking the logarithm of both sides of the above equation and differentiating it with

respect to we0 gives

1

pei (1− pei )

dpei
dwe0

=
1

gei

dxe
i

dwe0
− 1

gej

dxe
j

dwe0
. (A2)

Suppose xe
i , x

e
j > 0 at we0 . Then, by continuity, xe

i , x
e
j > 0 in a neighborhood of

we0 . Therefore, the first-order condition (2) holds in the neighborhood, which gives

vepei (1− pei ) = λig
e
i = λjg

e
j .

Again, taking the logarithm of both sides of the above equation and differentiating it

A3



with respect to we0 gives

1− 2pei
pei (1− pei )

dpei
dwe0

=
1

λi

dλi

dwe0
+

1

geim
e
i

dxe
i

dwe0
=

1

λj

dλj

dwe0
+

1

gejm
e
j

dxe
j

dwe0
. (A3)

Combining (A2) and (A3), we have that

1

λi

dλi

dwe0
=

1− 2pei
pei (1− pei )

dpei
dwe0

− 1

geim
e
i

dxe
i

dwe0

=−
[
1− (1− 2pei )m

e
i

] 1

geim
e
i

dxe
i

dwe0
− (1− 2pei )m

e
j

1

gejm
e
j

dxe
j

dwe0
. (A4)

Similarly, we have that

1

λj

dλj

dwe0
= −

[
1 + (1− 2pei )m

e
j

] 1

gejm
e
j

dxe
j

dwe0
+ (1− 2pei )m

e
i

1

geim
e
i

dxe
i

dwe0
. (A5)

Combining (A4) and (A5) yields that

dxe
i

dwe0
= −geim

e
i

[
1− (2pei − 1)me

j

]
1
λi

dλi

dwe0
+ (2pei − 1)me

j
1
λj

dλj

dwe0

1 + (me
i −me

j)(p
e
i − pej)

.

Substituting (2) into the above equation gives (9).

Next, we prove part (ii) of the lemma. The first-order condition (2) in battlefield

e0 becomes

we0 = λi0g
e0
i0

= λj0g
e0
j0
.

Note that this condition holds in a neighborhood of we0 . Taking the logarithm of

both sides of the above condition and differentiating it with respect to we0 gives (10).

Last, we prove part (iii) of the lemma. For the pure-budget case, it is evident

that the left-hand side of (11) is zero because δi = 0. Further,
∑

e∈Ni
xe
i = X

i
implies

that the right-hand side—i.e.,
∑

e∈Ei
dxe

i

dwe0
—is also zero, and thus (11) holds. For the

pure-cost case, we have that λi = c′i(Xi) = c′i
(∑

e∈Ni
xe
i

)
. Differentiating both sides

with respect to we0 gives (11). This completes the proof.

Proof of Lemma A5

Proof. First, consider I1. It is straightforward to verify that all inequalities in

Lemma 6(i)-(iii) are strict under Assumption 1′; together with (10), I1 can bounded
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from above by

I1 =
dλi0

dwe0

dxe0
i0

dwe0
= λ†

i0
(ge0i0 )

†(me0
i0
)†

[
1

(we0)†
− 1

λ†
i0

dλi0

dwe0

]
× 1

λ†
i0

dλi0

dwe0

≤
λ†
i0
(ge0i0 )

†(me0
i0
)†

4
×
(

1

(we0)†

)2

=
(we0)†(me0

i0
)†

4
×
(

1

(we0)†

)2

≤
(we0)†(me0

i0
)†

4
×

(
1

λ†
j0

dλj0

dwe0

)2

≤ (we0)†

4ρ
×

(
1

λ†
j0

dλj0

dwe0

)2

,

where the first inequality follows from the AM-GM inequality; the third equality fol-

lows from (2); the second inequality follows from Lemma 6(ii); and the last inequality

follows from Assumption 1′. This gives (16).

Next, consider I2. By Lemma 6(iii), we have that I2 ≤ 0. This gives (17).

Last, consider I3. By (5), I3 can be bounded from above by

I3 =
∑
e̸=e0

∑
i∈N e

dλi

dwe0

dxe
i

dwe0
≤
∑
i∈N e†

dλi

dwe0

dxe†
i

dwe0
=

dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0
;

together with (9), we can obtain that

I3 ≤
dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0

= −
(we†)†(me†

s )
†
[
1−

(
2(pe

†
s )

† − 1
)
(me†

j†)
†
] (

1

λ†
s

dλs

dwe0

)2
1 +

[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
]

−
(we†)†(me†

j†)
†
[
1−

(
2(pe

†

j†)
† − 1

)
(me†

s )
†
] (

1

λ†
j†

dλ
j†

dwe0

)2
1 +

[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
] . (A6)

Next, we provide an estimate of the term ( 1

λ†
j†

dλ
j†

dwe0
)2. Recall dxe†

s

dwe0
≥ 0; together with
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(9), we can obtain that

0 ≤ dxe†
s

dwe0
= −(we†)†(me†

s )
†

λ†
s

×

[
1− (2(pe

†
s )

† − 1)(me†

j†)
†
]

1

λ†
s

dλs

dwe0
+ (2(pe

†
s )

† − 1)(me†

j†)
† 1

λ†
j†

dλ
j†

dwe0

1 +
[
(me†

s )
† − (me†

j†
)†
] [

(pe†s )
† − (pe

†

j†
)†
] .

Recall from the definition of s that 1

λ†
s

dλs

dwe0
≥
∣∣∣ 1

λ†
j†

dλ
j†

dwe0

∣∣∣. Simple algebra would verify

that 1

λ†
j†

dλ
j†

dwe0
< 0, 2(pe

†
s )

† − 1 > 0, and

1

λ†
j†

dλj†

dwe0
≤ −

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)
(me†

j†
)†

× 1

λ†
s

dλs

dwe0
. (A7)

Substituting (A7) into (A6) yields that

I3 ≤
dλs

dwe0

dxe†
s

dwe0
+

dλj†

dwe0

dxe†

j†

dwe0
≤ −(we†)†

1−
(
2(pe

†
s )

† − 1
)
(me†

j†)
†(

2(pe†s )
† − 1

)2
(me†

j†
)†

(
1

λ†
s

dλs

dwe0

)2

.

To proceed, first, note that 2(pe
†
s )

† − 1 > 0 implies that (we†)† < ve
†
/4. Further,

recall from the definition of e0 that (w
e0)† ≤ (we)† for each battlefield e that satisfies

(we)† < ve/4. This implies that (we0)† ≤ (we†)†. Second, recall from the definition of

s, we have that
∣∣∣ 1

λ†
j0

dλj0

dwe0

∣∣∣ ≤ 1

λ†
s

dλs

dwe0
.

Combining (we0)† ≤ (we)†,
∣∣∣ 1

λ†
j0

dλj0

dwe0

∣∣∣ ≤ 1

λ†
s

dλs

dwe0
, and the above inequality gives

(18). This completes the proof.

Proof of Lemma A6

Proof. We first prove part (i) of the lemma. Carrying out the algebra, we can obtain

that ∑
i∈N (k)

∑
e∈Ei

dxe
i

dwe0

dλi

dwe0︸ ︷︷ ︸
≥0

=
∑

e∈E(k)

∑
i∈N e

dxe
i

dwe0

dλi

dwe0︸ ︷︷ ︸
≤0

+I+
k + I−

k ,

where the first inequality follows from (6), and the second inequality follows from (5).

Therefore, we can conclude that I+
k + I−

k ≥ 0.

Part (ii) of the lemma follows immediately from (5). For part (iii), by parts (i)

and (ii) of the lemma, we have that I+
0 + I−

1 > 0. Therefore, at least one of I+
0
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and I−
1 is positive. Meanwhile, by Lemma 6, at least one of I+

0 and I−
1 is negative.

Therefore, I+
0 and I−

1 have different signs.

Last, we prove part (iv). We consider the case of I+
0 > 0 > I−

1 (the analysis for

the case of I−
1 > 0 > I+

0 is similar). Suppose that I−
k < 0 for some k ∈ {1, . . . , 2ℓ}.

By part (i) of the lemma, we have that I+
k > 0. Further, by part (ii) of the lemma,

we have that I−
k+1 < 0. By the principle of mathematical induction, we can conclude

that I+
k > 0 and I−

k < 0 for each k ∈ {0, . . . , 2ℓ}. This completes the proof.

Proof of Lemma A7

Proof. Recall M+
k,k, M

−
k+1,k+1, and Mk,k+1 as defined in (19), (20), and (21). By

(9), for each k ∈ {1, . . . , 2ℓ}, we have that

I+
k = M+

k,k

[
1

λik

dλik

dwe0

]2
+Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
, (A8)

and

I−
k+1 = M−

k+1,k+1

[
1

λik+1

dλik+1

dwe0

]2
−Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
. (A9)

For notational convenience, define M :=
∏2ℓ

k=0Mk,k+1. We first show that M0,1

and M have the same sign. By Lemma A6(iii) and (iv), either we have that I+
k > 0

and I−
k < 0 for all k ∈ {0, . . . , 2ℓ} or we have that I+

k < 0 and I−
k > 0 for all

k ∈ {0, . . . , 2ℓ}. In what follows, we focus on the former case (the analysis for the

latter case is similar). Evidently, we have M+
k,k < 0 from (19); together with (A8),

we have that

Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

]
> 0, ∀ k ∈ {1, . . . , 2ℓ}, (A10)

which in turn implies that

2ℓ∏
k=1

Mk,k+1

[
1

λik

dλik

dwe0

][
1

λik+1

dλik+1

dwe0

] > 0.

The above inequality implies that MM0,1

[
1

λi0

dλi0

dwe0

] [
1

λi1

dλi1

dwe0

]
> 0. Further, by
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Lemma 6, we have that 1
λi0

dλi0

dwe0
> 0 and 1

λi1

dλi1

dwe0
> 0. These altogether indicate

that MM0,1 > 0.

Next, we show that Mk,k+1 and M have the same sign for all k ∈ {1, . . . , 2ℓ}.
By (A10), we have that Mk,k+1 ̸= 0. Therefore, there exists a battlefield e such

that N e = {ik, ik+1} and peik ̸= 1/2. Following a similar argument as in the previous

analysis for battlefield e0, we can show that MMk,k+1 > 0. This implies that Mk,k+1

and M0,1 have the same sign, which concludes the proof.

Proof of Lemma A8

Proof. We first prove part (i) of the lemma. By (A10), 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have

the same sign. Further, it follows from (A8) and the postulated I+
k > 0 that

µk+1 >
−M+

k,k

Mk,k+1

× µk. (A11)

By (19) and (21), we have that

−M+
k,k − 2Mk,k+1 =

∑
e∈E:N e={ik,ik+1}

weme
ik

1 + (2peik − 1)me
ik+1

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
≥ 0,

which implies that
−M+

k,k

Mk,k+1
≥ 2. Substituting the inequality into (A11) gives (22).

Next, we prove part (ii) of the lemma. By (A10), 1
λik+1

dλik+1

dwe0
and 1

λik

dλik

dwe0
have

different signs. Further, by (20) and (21), we have that

M−
k+1,k+1 − 2Mk,k+1 =

∑
e∈E:N e={ik,ik+1}

−weme
ik+1

1− (2peik − 1)me
ik

1 + (me
ik
−me

ik+1
)(peik − peik+1

)
≤ 0.

Note that M+
k,k ≤ 0 from (19). These altogether indicate that

M+
k,kµk (µk + 2µk+1) +

(
M−

k+1,k+1 − 2Mk,k+1

)
µ2
k+1 ≤ 0.

Combining the above inequality and (A8) and (A9) gives (23).

It remains to prove (24). For each e with N e = {ik, ik+1}, define

I+
k (e) :=

dxik

dwe0

dλik

dwe0
and I−

k+1(e) :=
dxik+1

dwe0

dλik+1

dwe0
.
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Further, define

Ek,k+1 :=
{
e : N e = {ik, ik+1}

}
,

E1
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) > 0, I−
k+1(e) < 0

}
,

E2
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) < 0, I−
k+1(e) > 0

}
,

E3
k,k+1 :=

{
e : N e = {ik, ik+1}, I+

k (e) ≤ 0, I−
k+1(e) ≤ 0

}
.

By (5), we have that I+
k (e) + I−

k+1(e) ≤ 0, which implies that it is impossible to have

both I+
k (e) > 0 and I−

k+1(e) > 0. Therefore, Ek,k+1 = E1
k,k+1∪E2

k,k+1∪E3
k,k+1. Further,∑

e∈Ek,k+1
I+
k (e) = I+

k > 0 implies that E1
k,k+1 is non-empty.

Next, we claim that

−I−
k+1(e) ≥

2µk+1

µk

I+
k (e) + weµkµk+1, e ∈ E1

k,k+1. (A12)

Carrying out the algebra, (A12) is equivalent to

µk+1 ≥ µk ×
1− 2me

ik
+ (2peik − 1)(me

ik
−me

ik+1
+me

ik
me

ik+1
)

me
ik+1

(1 + (2peik − 1)me
ik
)

.

For each e ∈ E1
k,k+1, we have that I+

k (e) > 0, which implies that peik > 1/2 and

µk+1 ≥ µk ×
1− (2peik − 1)me

ik+1

(2peik − 1)me
ik+1

.

Therefore, (A12) holds if

1− (2peik − 1)me
ik+1

(2peik − 1)me
ik+1

≥
1− 2me

ik
+ (2peik − 1)(me

ik
−me

ik+1
+me

ik
me

ik+1
)

me
ik+1

(1 + (2peik − 1)me
ik
)

,

which is equivalent to

2(1− peik)
[
1 + (2peik − 1)(me

ik
−me

ik+1
)
]
≥ 0.

The above inequality obviously holds as me
ik
,me

ik+1
∈ (0, 1] and peik ∈ [0, 1].
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Moreover, we claim that

−I−
k+1(e) ≥

2µk+1

µk

I+
k (e), e ∈ E2

k,k+1 ∪ E3
k,k+1. (A13)

If e ∈ E3
k,k+1, then (A13) obviously holds. If otherwise e ∈ E2

k,k+1, following a similar

argument as in the proof of (23), we can obtain that I−
k+1(e) ≤ −I+

k (e)×
µk+1

µk+1+2µk
≤

−I+
k (e)×

2µk+1

µk
, which also yields (A13).

In summary, we have (A12) and (A13). This in turn implies that

−I−
k+1 =

∑
e∈E1

k,k+1

−I−
k+1(e) +

∑
e∈E2

k,k+1∪E
3
k,k+1

−I−
k+1(e)

≥
∑

e∈E1
k,k+1

[
2µk+1

µk

I+
k (e) + weµkµk+1

]
+

∑
e∈E2

k,k+1∪E
3
k,k+1

2µk+1

µk

I+
k (e)

=
2µk+1

µk

I+
k +

∑
e∈E1

k,k+1

weµkµk+1

≥ 2µk+1

µk

I+
k + we0µkµk+1,

where the last inequality follows from the fact that E1
k,k+1 is non-empty and we ≥ we0

for each e ∈ E1
k,k+1 (by the definition of e0). This completes the proof.
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