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Abstract

Heterogeneous players are matched into interconnected pairwise contests
across multiple battlefields. An organizer unilaterally sets her contest rules
to maximize effort provision on her respective battlefield. The conventional
wisdom of level the playing field may fail in this environment. However, an even-
odds equilibrium always exists, in which all contests are resolved with equal
winning probabilities. Further, we identify sufficient conditions—concerning
contest technologies and network structure—that mitigate network externalities
and restore the level-playing-field principle, such that each organizer prefers a
fully balanced contest regardless of others’ choices. We provide alternative
sufficient conditions under which the even-odds equilibrium remains unique,

even when an organizer does not necessarily prefer a fully balanced contest.
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1 Introduction

Economic agents often compete across multiple fronts and are connected—directly
or indirectly—through networks. One’s action on a battlefield not only influences local
outcomes but also generates spillover remotely and globally. Consider, for example,
an architectural firm bidding for multiple development projects. If the firm assigns its
top architect to a prioritized project, its competitor on a parallel project may face less
pressure and reallocate resources elsewhere; this potentially affects competitions for
projects in which the firm itself is not directly involved and firms it does not confront
head to head. A similar dynamic would arise, for instance, when professional athletes
plans their seasons, with each to conserve stamina for preferred tournaments. These
interactions—among multiple agents across multiple battlefields—form a network of
interconnected contests with complex externalities.

Significant scholarly efforts have been devoted to examining the strategic inter-
actions over networks and exploring how the nature of the underlying game—e.g.,
strategic substitutability or complementarity—determine the equilibrium and opti-
mal intervention (Galeotti, Goyal, Jackson, Vega-Redondo, and Yarivj, [2010; |Galeotti,
Golub, and Goyal, 2020). The nonmonotone best responses inherent in many contest
games (Dixit, 1987) yield important implications for contest design, underpinning
the conventional wisdom of leveling the playing field{f] A more balanced contest—one
that encourages the underdog to challenge the favorite—incentivizes greater efforts,
which sheds light on a plethora of practices that aim to promote closer competitions.
Consider, for instance, the handicap systems in golf tournaments and horse racing, as
well as the various measures to support small and medium-sized enterprises (SME)
set by the U.S. Small Business Administration (SBA) in federal procurement ]| The
economics literature has formally established that, to incentivize effort, an optimally
designed contest should prevent the emergence of dominant players in equilibrium—

ensuring that no contender can win with a probability exceeding 1/ Q.EY]

! As Dixit| (1987) demonstrates, players’ best responses are often nonmonotone in contest games:
In contrast to Cournot or Bertrand competitions, one’s effort choice is a strategic complement to
that of his opponent when he is in the lead, while it is a strategic substitute when he is behind.

2Many horse-racing tournaments—e.g., the Grand National or the Melbourne Cup—require that
horses with higher initial ratings carry heavier weight. A similar mechanism—aero handicap—is
implemented in Formula One (F1) championships, where teams that performed better in previous
seasons are allocated reduced aerodynamic testing time.

3See, e.g., [Fu and Wul (2020)), who show in a broad context that the optimal two-player contest
always yields equal winning probabilities in equilibrium; when the contest involves more than two



However, this level-playing-field principle is established in settings of standalone
contests. Imagine instead an organizer who sets the contest rules on her own turf to at-
tract effort and attention from contenders facing competing opportunities elsewhere—
e.g., a project developer seeking to improve the quality of building designs when other
projects are available to a pool of overlapped bidders. She needs to account for con-
tenders’ strategic trade-offs across multiple contests, anticipate the choices of compet-
ing organizers, and understand how her choices of local contest rules is transmitted
through the network. This complexity casts doubt on the conventional wisdom of
leveling the playing field.

Consider a simple case with competing players each subject to a resource con-
straint. Suppose that an organizer handicaps the frontrunner. This generates a direct
local effect that intensifies competitions in her own contest. Meanwhile, a player’s in-
creased effort on her battlefield may come at the expense of reduced effort elsewhere.
This causes indirect network effects, as the local shift in efforts alters contenders’
marginal benefits and costs of efforts across all other contests. The global impact re-
quires that all contenders reset their effort choices everywhere. These spillovers may
feed back to the original battlefield through the network, and the overall impact is a
priori unclear. In Section [2.2] we provide an intuitive example in which the indirect
network effect prevails; an organizer may thus prefer an imbalanced contest over an
even race, which violates the level-playing-field principle.

To our knowledge, this paper presents the first formal analysis of decentralized
contest design in a networked contest game to explore the boundaries of the level-

playing-field principle and shed further light on its nature in a broader context.

Snapshot of the Model The interactions are modeled as a two-stage game. In the
first stage, multiple organizers simultaneously set the contest rules for their respective
battlefields. In the second stage, economic agents—whom we refer to as “players”—
are matched into pairwise contests, with each modeled as a two-player generalized
Tullock contest. Players simultaneously allocate efforts across the contests they par-
ticipate in. Each player either incurs a convex cost based on the aggregate effort
exerted across all contests he participates in (a “pure-cost” case) or is subject to
a budget constraint (a “pure-budget” case). As a result, increasing effort on one

battlefield limits the player’s ability to contribute to others.

players, the optimum requires each player’s equilibrium winning odds be strictly below 1/2.



Players differ in their contest technologies on every battlefield, their cost func-
tions, or resource endowments. The asymmetry creates a room for each organizer to
structure her contest to manipulate the competitive balance. The organizer imposes
a multiplicative bias on each player’s impact function. This function translates effort
into output, and the choice of biases determines players’ relative competitiveness,
which effectively tilts the balance of the contest.

Such biases encapsulate diverse mechanisms observed in real-world competition.
It can be a weighted scoring rule, such as handicap systems in golf tournaments. It
can also reflect the various measures of actual productivity interventions, including
technical support (e.g., mentorship in Mozilla’s Open Innovation Challenge), resource
subsidies (e.g., the U.S. Department of Defense’s Small Business Innovation Research
program (Lichtenberg, 1990)), capacity-building for SMEs (e.g., counseling and train-
ing in federal procurement bids), and preferential industrial policies targeting specific
firms (Franke, Kanzow, Leininger, and Schwartz, 2013).

We characterize the subgame perfect Nash equilibrium (SPNE) of the two-stage
game. Specifically, this paper addresses: (i) whether and when an organizer prefers
to set biases to level her playing field in a networked environment; and (ii) whether

balanced competitions emerge in equilibrium, as they do in standalone contests.

Technical Nature of the Analysis Analyzing the SPNE of the resulting two-
stage networked contest game presents several technical challenges. Agents compete
in parallel contests, and organizers interact indirectly through the interconnected
competitions. Understanding these intertwined decisions requires a comprehensive
account of the network externalities and nuanced strategic interdependence at and
across two different levels of strategic interactions—i.e., the networked contests and
interaction among competing organizers who set rules for subsequent contests.

First, given a profile of biases set in the first stage, there is no closed-form solution
for the second-stage equilibrium of the networked contest. As a result, organizers’
objective functions are only implicitly characterized by equilibrium conditions and
cannot be directly used to construct explicit best-response mappings.

Second, to establish a given profile of contest rules as an SPNE, we have to
verify that each organizer’s choice constitutes a global best response to others’ chosen
biases. However, organizers’ payoff are generally non-explicit and non-concave due
to cross-battlefield externalities and strategic interdependencies. Standard first-order

conditions are thus insufficient for establishing global first-stage optimality.



Third, even if equilibrium existence can be established by verifying that no orga-
nizer has no profitable deviation from a candidate profile, proving uniqueness presents
substantially greater analytical challenges. It requires ruling out all potential alter-
native equilibria across every subgame, which is analytically infeasible given the lack

of closed-form solutions and the complex interdependencies among battlefields.

Summary of Findings We develop novel methods to address these difficulties
and obtain clear results, which can be summarized as follows. First, we identify a
unique profile of contest rules under which all contests are resolved with equal winning
probabilities; we show that this profile constitutes an SPNE, which we term the even-
odds equilibrium (Theorem|I]). This demonstrates that balanced competition remains
an equilibrium outcome despite the complexity introduced by the network structure.
Our approach to establishing equilibrium uniqueness resorts to a global deviation
argument: For any organizer, we consider a non-local deviation in her choice of biases
and compare the resulting second-stage equilibria before and after the deviation. This
approach allows us to verify global optimality without relying on closed-form solutions
or concavity in organizers’ payoff.

We then examine the uniqueness of the even-odds equilibrium. The analysis con-
sists of two layers. First, we ask whether the level-playing-field principle holds in a
network—i.e., whether an organizer would choose to level her battlefield regardless of
the contest rules elsewhere. We provide sufficient conditions for this to be the case,
which automatically guarantee uniqueness of the even-odds equilibrium (Theorem .
Specifically, this follows if either (i) each player’s impact function (i.e., the function
that maps effort into contest output) is sufficiently concave, or (ii) the network is
acyclic. These conditions mitigate the intricate indirect effects of a rule change on
a battlefield: The former limits spillovers across battlefields, while the latter shuts
down feedback loops.

However, even when these conditions are not satisfied, uniqueness may still hold.
We provide a set of weaker conditions under which equal winning probabilities odds
arise on all battlefields, even if an individual organizer does not unconditionally prefer
a level playing field (Theorem . The concavity of impact functions can be milder,
and the network may contain cycles. Since it is infeasible to examine all subgames
to rule out non-even-odds equilibria, we develop a targeted approach: For any given
bias profile, we identify the least balanced battlefield and assess whether the organizer

of that battlefield can profitably deviate. Though the second-stage equilibrium is

4



implicit, we are able to compare outcomes before and after the deviation and show
that a profitable deviation always exists. This construction rules out all candidate
equilibria that do not induce even winning odds across all battlefields.

We also consider two extensions. First, we analyze a sequential-move version of
the game where organizers set contest rules in a predetermined order. Whenever the
sufficient conditions for the level-playing-field principle hold in the baseline model, the
equilibrium outcome remains invariant to the timing of moves: A unique SPNE exists,
replicating the equilibrium rule profile of the simultaneous-move game (Theorem .
Second, we consider a centralized organizer who sets contest rules for all battlefields
maximize an objective strictly increasing in each player’s total effort. Again , a unique
equilibrium emerges with equal winning rates across contests (Theorem . This
yields a useful policy insight: Decentralized rule-setting by self-interested organizers
can—under certain conditions—achieve the same outcome as centralized planning,

suggesting potential efficiency of delegation in contest design.

Link to Literature Our paper belongs to the extensive literature on strategic in-
teractions among economic agents within networks, such as|Bramoullé, Kranton, and
D’amours (2014)); Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv| (2010); Gale-
otti, Golub, and Goyal (2020). There is a growing body of literature focusing on
contests and conflicts within networks (Dziubinski, Goyal, and Vigier}, |2016)). These
studies vary significantly in their assumptions regarding the mechanisms linking play-
ers and structuring contests or conflicts.

Dziubinski, Goyal, and Minarsch| (2021)), for instance, examine a conflict network
where a ruler attacks connected “nodes” successively to acquire and accumulate re-
sources. [Dziubinski, Goyal, and Zhou! (2024]) assume that each player’s efforts in one
battlefield comprising both local investments and spillovers from neighboring battle-
fields. (Goyal and Vigier| (2014)) study an attacker-defender game, where the attacker
and defender allocates combative efforts across nodes. |Konig, Rohner, Thoenig, and
Zilibotti (2017)) assume that each player’s entry in his (single) contest is determined
by his own effort, positive spillovers from allies, and negative spillovers from enemies.
In contrast, Hiller| (2017)) allows players to form either positive links (alliances aiding
in conflict) or negative links (direct conflicts).

Our paper more closely relates to [Franke and Oztiirk (2015)); Xu, Zenou, and
Zhou| (2022); and [Zhou and Li (2025), where multiple players are matched into con-

tests across a network and allocate efforts among battlefields. [Franke and Oztiirk



(2015)) assume bilateral contests on each battlefield, focusing on specific network
structures such as regular, complete bipartite, and star-shaped configurations. They

adopt convex cost functions, where increased effort on one battlefield raises effort

costs elsewhere. Xu et al| (2022) substantially generalize this framework by allowing

multilateral contests, budget constraints, and unrestricted network structures. They
employ variance inequalities to overcome technical challenges, establish equilibrium

existence, and provide conditions ensuring equilibrium uniqueness. Under quadratic

costs and bilateral contests on each battlefield, Zhou and Li (2025) examine com-

parative statics within acyclic networks, analyzing how shocks propagate throughout
the network. Despite the lack of closed-form solutions, they remarkably demonstrate
that comparative statics can be pinned down using sign functionsEl

Our paper departs from this literature in two significant aspects. First, our model
incorporates strategic interactions across two layers: Players compete within a net-
work, while organizers indirectly interact through players’ strategic effort choices in
response to independently set contest rules. Second, we specifically focus on organiz-
ers’ strategic choices of contest rules. Contest design is not considered by
Oztiirk| (2015) or [Xu et al.| (2022). Although [Zhou and Li| (2025)’s comparative stat-

ics offer useful insights for contest design, their analysis concerns externalities arising

from interventions on an individual battlefield. Our analysis accommodates both
decentralized and centralized contest designs, enabling simultaneous and sequential
rule-setting across all battlefields.

Our paper thus naturally connects to the literature on multi-battle contests (e.g.,
Kovenock and Roberson, 2012} [Snyder|, [1989; [Klumpp and Polborn, [2006}; Konrad and|
Kovenock, 2009; [Fu, Lu, and Pan| 2015). In particular, this study is closely related
to the research stream that examines players’ allocation of scarce resources across
battlefields, a line of work dating back to Borel| (1921)) and Borel and Ville| (1938)).
The discrete version of the game is known as the Colonel Blotto game, with notable
contributions including Friedman (1958), Roberson| (2006), [Kvasov| (2007)), Kovenock|
land Roberson| (2012), [Roberson and Kvasov] (2012)), and [Fu and Iyer| (2019) [

4Matros and Rietzke| (2024) and [Sun, Xu, and Zhoul (2023) also contribute to this strand of the
literature. Unlike Franke and Oztiirk| (2015), Matros and Rietzke| (2024) require each player commit
to a single effort level that applies identically across all contests they participate.
analyze both constrained (uniform effort) and unconstrained effort allocation regimes. They show
that, for Tullock contest success functions in semi-symmetric networks, the two regimes produce the
same total effort and equilibrium payoffs.

(1958) analyzes two firms allocate fixed advertising budgets across multiple marketing




Our paper distinguishes itself from these studies along three dimensions. First,
we allow for multiple players to be matched in contests across a network, whereas
the literature predominantly assumes that two players compete in every battlefield.
Second, our model accommodates both a pure-cost case with strictly convex cost
functions and a pure-budget case, as seen in most Colonel Blotto game studies. Third,
and most importantly, the networked contests in our model are subgames that follow
decentralized decisions by contest organizers—none of the aforementioned studies
consider contest rule setting[f]

Finally, each organizer in our model competes for players’ effort investment on
her own battlefield. This renders our paper conceptually linked to the literature on
competing contests, with Azmat and Moller| (2009, 2018|) and Morgan, Sisak, and
Vardy| (2018) as leading contributions. Unlike our setting, these studies typically
assume that each player chooses which contest to enter, so organizers compete for
contestants’ discrete entry decisions. |[Korpeoglu, Korpeoglu, and Hafalir| (2022) allow
solvers to participate in multiple contests, but their focus lies in comparing exclusivity

versus non-exclusivity in contest design.

2 Preliminaries

In this section, we first lay out the primitives of our model, then provide an

example to illustrate the nuances caused by network.

2.1 Model Setup

A finite set of risk-neutral players N' = {1,2,..., N} are engaged in bilateral
contests within a connected network.[] Each player : € N competes head-to-head with
another on at least one battlefield. Let & = {a, b, ...} denote the set of battlefields and
e € £ an indicative battlefield. The network can then be represented by I' C N x &,

areas. [Robersonl (2006) fully characterizes the equilibrium of Colonel Blotto game. Kovenock and
Roberson| (2012)) introduce asymmetric prize valuations. [Kvasov| (2007) and |[Roberson and Kvasov,
(2012) relax the zero-sum assumption and allow for alternative uses of resources. [Fu and Iyer| (2019)
accommodate rent-augmenting investment other than rent-seeking efforts.

SFeng and Lu/ (2018)) and [Feng, Jiao, Kuang, and Lu (2024) also consider contest design. However,
they adopt team-based contest structures as in [Fu, Lu, and Pan| (2015). Their focus lies in the
decisions of a central planner who govern the entire contest architecture.

“For disconnected networks, we can always decompose them into several connected components
and our results remain intact.
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Figure 1: Examples of Network Structures

where (i,e) € T'if and only if player i is involved in the contest on battlefield e.
Further, let & = {e € £ : (i,e) € I'} denote the set of battlefields with player i’s
participation and N¢ = {i € N : (i,e) € T'} the set of players who compete on
battlefield e, with [N¢| =2 for all e € &.

The bilateral contest network I' described above can be adapted to model a rich
class of interconnected contest games. Figure [1| depicts three examples. In each
subfigure, the network is represented as a multigraph, whereby the vertices represent
players and the edges between vertices represent battlefields. Figure represents
a stylized single-battle contest, in which players 1 and 2 fight on a battlefield a;
Figure [1b| depicts a triangular network structure in which three players are matched
to three pairwise battles; Figure [Lc| represents a two-player multi-battle contest, in
which two players compete against each other simultaneously on battlefields a and b.

The game proceeds in two stages. Each battlefield e € £ is governed by an
organizer. In the first stage, organizers each set the rules for the contests on their
own battlefields. In the second stage, having observed the rule set for each contest,

players simultaneously exert their efforts to vie for wins.

Second Stage: Contests and Payoffs The contest between players ¢ and j on
battlefield e is modeled as a generalized Tullock contest. Put it formally, fixing the
profile of efforts ¢ = (5, J:j) the players exert on battlefield e, player ¢ wins with a
probability



Q) e
pE(at, 28) = ?fff(xf) + as f5(xf) ! (1)

2 x$ 4+ x5 =0,
and player j wins with the complementary probability, i.e., p§(z§, z§) = 1 —pf (2§, 5).
Following the tradition of the contest literature, we call ff(-) player i’s impact
function on battlefield e, which indicates the player’s contest technology on this bat-
tlefield and satisfies f£(0) =0, (ff)'(-) > 0, and (ff)”(-) < 0. Further, the parameters
af and of, with of, af > 0 and of +af = 1, are the multiplicative biases the organizer
on battlefield e assigns to players ¢ and j, respectively, which determine their relative

competitiveness in the contest.

Fixing player i’s effort profile &; = (xf).c¢, across all battlefields that involve him,
let X; ="

subject to either resource constraints or regular cost functionsﬁ In the former (pure

cce, Ti denote his total effort. The player bears a cost of ¢i(X;). Players are
budget) case, each player i’s effort cost can technically take the form of ¢;(X;) = 0 for
all X; € [0,X,] and ¢;(X;) = +oo for all X; € [X;, +00), where X; € (0, +00) is the
maximum effort at his disposal. In the latter (pure cost) case, we set X; to +oo and
let ¢;(+) be twice differentiable and satisfy ¢;(0) =0, ¢i(-) > 0, and ¢/(-) > 0.

A victory on battlefield e € &£ yields a prize value of v¢ > 0 to the winner. A
player ¢’s expected payoff in the game is thus

mi(@s, @) = Y opf(af) — (X)),
e€e&;
where x_; = (x1,...,@; 1, @1, ..., Ty) is the profile of effort strategies of all players
other than 1.

First Stage: Decentralized Contest Rule Setting in a Network In the begin-
ning of the game, the organizer of each battlefield sets the rules for her battle. More
formally, the organizer for each battlefield e € £ with N¢ = {4, j} imposes multiplica-
tive biases (af,a$) on players’ impact functions, with af,a$ > 0 and of + of = 1;
they set the rules simultaneously, and all (af, §) become commonly known prior to

the second stage of the game.

8This assumption is imposed for expositional convenience. Our analysis can be easily extended
to the case where some players are subject to a resource constraint while others have a regular effort
cost function.
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Figure 2: Equilibrium effort and organizer’s objective on battlefield a.

We assume that an organizer values the effort supplied by each player, so she
chooses (af,a$) to maximize an objective function A®(x®), which strictly increases
with z¢ for each i € N°.

Summary The two-stage game can be described by G = <F, (ff()) (ie)er” (c@())
(A‘f(-))ee £>’ where I represents the network structure, (f£(-)) (i.c)eT
functions, (CZ())Z - the set of players’ effort cost functions, and (Ae(-))e ¢ the set of

ieN?
the set of impact

organizers’ objective functions. Organizers each set (af,a$) in the first stage of the
game, and players simultaneously sink their efforts afterwards. We adopt subgame

perfect Nash equilibrium (SPNE) in pure strategies as the solution concept.

2.2 An Illustrative Example

The literature espouses the merit of level playing field in standalone contests
(Dixit}, |1987). Fu and Wu (2020) establish in a broad context that the optimal
contest induces equal equilibrium winning odds in bilateral contests. We now provide
a simple example to show that this level-playing-field principle may lose its bite when

a contest is embedded in a network.

Example 1 (Optimality of Imbalanced Competitions in a Network) Sup-
pose that N = {1,2,3}, € = {a,b,c}, and T is a bilateral contest network with
triangle structure, as depicted in Figure [1§ Let f{(x$) = 0.02z5 for each e € &
and ff(xf) = xf for all i € {2,3} and e € &. Consider a pure budget case with
(X1, X5, X3) = (2420,62.4,20). The prizes for winning the battles are respectively
(v, 0%, v¢) = (16.344,17,3). Fix the biases in battlefields b and ¢ at a® = (ab,ab) =
(0.1,0.9) and a“ = (a$,a5) = (0.1,0.9), respectively.

10



A level playing field—i.e., with p¢ = p = 1/2—requires setting a¢ = a3 = 1/2.
Suppose that the organizer on battlefield a seeks to maximize total effort in the battle,
i.e., A" = x{+x5. Figure[2d plots A* as a function of of. It shows that total effort is
minimized by setting of = a§ = 1/2, although the players win with equal probability.

In this context, leveling the playing field maximizes player 2’s effort (see Fig-
ure [2b)), while minimizing player 1’s (see Figure . Since player 1 is more critical to
the organizer due to his greater resource endowment, the total effort on this battlefield
primarily relies on player 1’s input and is minimized when p¢ = pb = 1/2.

As af increases and approaches 1/2, two effects are triggered. First, a more level
playing field intensifies competition on battlefield a, prompting both players to in-
crease their efforts—what we term the direct local effect, consistent with conventional
wisdom. Second, this direct effect induces an indirect network effect: It propagates
through the network, reshaping effort incentives on other battlefields. These shifts
then feed back into battlefield a, further influencing z{ and z§.

To illustrate these effects, consider the following thought experiment, focusing on
how variations in af affect player 1’s effort choice. Fix the biases on battlefields b and
c—(ab,ab) = (a,af) = (0.1,0.9)—and consider an initial case with ¢ < 1/2 < ag.
Figure [3al shows players’ relative standing on each battlefield under this set of biases.
In this setting, player 2 is the frontrunner on battlefield a, as his winning probability
exceeds 1/2. Now suppose that that af is increased toward 1/2. This change favors
the underdog, player 1. As predicted by the direct local effect, both players intensify
their efforts in response (see Figure [3b).

However, an increase in 2 would force player 2 to reduce his effort 24 on battlefield
b, due to his budget constraint. By Figure [3a] player 2 is initially the underdog on
battlefield b. A decrease in ¥ gives initial frontrunner on battlefield b—player 3—
an easier win, which allows the player to scale back his effort 2% and redirect the
saved resources to battlefield ¢. In turn, player 1—the initial leader on battlefield
c—must respond to the more aggressive player 3 by raising his effort z{. Ultimately,
the increased demand on player 1’s resources devoted to battlefield ¢ forces him to
reduce his effort 2§ on battlefield a, as shown in Figure 3]

The indirect network effect counteracts the direct local effect in shaping player
1’s effort choice. As of increases and approaches 1/2; the indirect effect dominates,
leading to a lower equilibrium effort 2§ on battlefield a (see Figure 2a)). In contrast,

the direct and indirect effects reinforce each other for player 2, resulting in an increase

11
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Figure 3: Illustration of the direct local effect and the indirect network effect.

in his effort on battlefield a as of approaches 1/2 (Figure [2D)).

3 Analysis

Assuming a nondegenerate conflict network—i.e., with || > 2—we now solve the
game by backward inductionf] Section characterizes and discusses the second-
stage equilibrium; Section [3.2] establishes an SPNE of the game in which all organizers
level their own playing field such that players win each contest with equal probability.

Section examines uniqueness of the constructed equilibrium.

3.1 Second-stage Equilibrium

The second-stage game is a collection of bilateral contests interconnected through
a network. The equilibrium existence in this setting has been established in Xu,

Zenou, and Zhou| (2022)), and we restate their result in our context as follows.

Lemma 1 (Xu, Zenou, and Zhou, 2022) Fizing a profile of contest rules o =
{a}ece, there exists a Nash equilibrium in the second-stage game. Specifically, the
equilibrium effort profile x*(a) = {x°(a)}ece, together with a set of parameters

{Ai}iens, satisfies the following first-order conditions:

vpi () [1 = pf(=%)] = Nigi (a7), (2)

9The analysis for the case of || = 1 is straightforward.
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and

e( £eY(0
v° X % < \i, whenever x§ =0, (3)
ajfj (x])
where gf = f£/(ff). In the pure-cost case, N\; = c,(X;); in the pure-budget case,

X; = X, and \;s are the Lagrangian multipliers for budget constraints.

Lemma (1| provide the necessary conditions that characterize equilibrium efforts.
Specifically, must be satisfied in the equilibrium whenever a player exerts a pos-
itive effort xf. When a player exerts zero effort in a contest, condition holds
automatically, and the equilibrium further requires condition , which is obtained
by substituting z{ = 0 into the complementary slackness conditions.

By Xu et al,| (2022)), if the second-stage equilibrium is interior—i.e., when each
player exerts a positive effort in every contest he participate in—then the equilibrium
must be unique. As a result, a unique equilibrium always emerges in the pure-cost
case, since no player would completely forgo a contest. However, in the pure-budget
case, multiple equilibria may arise. We adapt Example 4 of Xu et al.| (2022) to

illustrate this possibility in our context.

Example 2 (Multiple Equilibria in the Second-stage Game) Suppose that
N ={1,2,3}, € = {a,b,c}, and T is a triangular network as shown in Figure [11]
Further, set ff(x§) = x¢ for each (i,e) € I'. Each player has a fized budget, with
(X1,X9,X3) = (X1,1,1) and X, > 8. The prize values are (v®,v°,v¢) = (1,1,1).
Fizing a set of neutral biases, with a® = o’ = a¢ = (1/2,1/2), there exists a
continuum of equilibria { (x{, x§, x5, 25, %, 25) = (2, X1—2,0,1,1,0)[4 < z < X; —4}

in the second-stage contest game.

In this case, player 1 is endowed with an excessively large budget. His oppo-
nents simply forgo competing against him—i.e., player b on battlefield a and player 3
on battlefield c—and instead concentrate their limited resources on the competition
against each other—i.e., the contest on battlefield b. The possibility of multiple equi-
libria in the second-stage game complicates the overall equilibrium analysis, as the
organizers’ rule-setting decisions in the first stage may depend on which second-stage
equilibrium is selected. However, our next result eliminates this concern.

For notational efficiency, let X' () denote the set of all second-stage equilibria

corresponding to a given ox.
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Proposition 1 (Equilibrium Property) Let (a*,x*(-)) be an SPNE of the game
G. The following statements hold:

(i) The second-stage equilibrium x*(a*) on the equilibrium path is unique—i.e.,
|X(a®)| = 1. Moreover, holds with equality at (a*, z*(a®)).

(i1) Fiz any o # o* off the equilibrium path and an arbitrary effort profile x(a') €
X(a/). Then (o, {z* (), () }arzar) also constitutes an SPNE of the whole
game G.

This result is nontrivial. Despite the possibility of multiple equilibria for the
second-stage contest game, Proposition (1) shows that such multiplicity does not arise
along the equilibrium path of any SPNE. It is worth noting that multiple equilibria are
unique to pure-budget cases and as illustrated in Example [2] some players exert zero
effort on certain battlefields in these equilibria. Multiple equilibria emerge when a
dominant player (e.g., player 1 in Example has enough resources to deter opponents
across several battlefields, affording him flexibility in how he allocates effort among
them. However, this flexibility is at odds with the organizers’ objective of eliciting
effort. In the first stage of the game, an organizers will strategically adjust the
contest rules (i.e., by lowering the bias for the dominant player) to avoid completely
discouraging the weaker player and intensify the competition on her battlefield. This
ensures a unique second-stage outcome on the equilibrium path.

Proposition (ii) further shows that an equilibrium outcome (a*, x*(ac*)) is robust
even to equilibrium selection off the path: A profile (a*, w*(a*)) can still be sustained
as the equilibrium outcome of an SPNE even if multiple equilibria arise off-path
and for a profile of contest rules @’ # a*, an alternative second-stage equilibrium
x(a/) # x*(a) is selected. As a result, once we pin down an outcome (o, z*(a*)),
we can construct an SPNE (a*, m*()) of the game by arbitrarily selecting a second-
stage equilibrium & € X (a) for a # a*.

The reasoning is as follows. Suppose, to the contrary, that an equilibrium outcome
(a*, x* (a*)) is sensitive to off-path equilibrium selection. Then there must exist some
battlefield ey whose organizer can profitably deviate unilaterally to an alternative
contest rule (a)’; moreover, the bias profile &’ = ((a®)’, (a~*)*) induces multiple
second-stage equilibria that differ in the effort profiles on battlefield ey. However,

this deviation is unlikely to be profitable for the organizer, since some player on the
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deviator’s battlefield exerts zero effort. This contradiction implies that the choice of
off-path equilibrium is irrelevant whenever an outcome can be sustained by an SPNE.
Proposition [1| paves the way for our equilibrium result. We can describe an SPNE

simply by its the equilibrium outcome (a*, m*(a*)) without loss of generality.

3.2 Even-odds Equilibrium as SPNE

In this part, we construct an SPNE of the game. We call an SPNE an even-odds
equilibrium if players win each contest with equal probability, i.e., (pf)* = 1/2 for all

(i,e) € I'. Our first main result ensues.

Theorem 1 (Existence of Even-odds Equilibrium) Fiz a game G. An even-
odds equilibrium always exists. There is a unique profile of contest rules a** that leads
to the equilibrium outcome of equal winning odds on every battlefield. As a result, the

even-odds equilibrium can be described by a unique associated equilibrium outcome

(a**’ m**<a**))

Theorem (1| establishes that there always exists an SPNE in which the players in
each contest win with equal probability. Further, the profile of contest rules that
induces the even-odds outcome in the second-stage game is unique. Three remarks
are in order. First, the result differs subtly from the conventional wisdom of leveling
the playing field in the contest design literature. The literature typically considers a
centralized design problem in which an organizer manipulates the competitive balance
of a standalone contest (Lazear and Rosen, [1981; Dixit|, (1987; |Che and Gale} 1998)). In
contrast, we consider a decentralized design problem where organizers independently
manage their own battlefields within a network. An organizer’s choice of biases factors
in (i) the biases to be set by others and (ii) its implications for all players’ second-
stage effort choices x(a) within the network—including those not involved in her
battle—as FExample [1] illustrates. Second, in the even-odds equilibrium, no single
organizer is willing to unilaterally deviate from a**; however, it is noteworthy that
leveling the playing field is not necessarily optimal for an organizer if others do not
level their playing fields. Third, Theorem [1| establishes that the even-odds outcome
can be sustained as a part of an SPNE and yet to verify its uniqueness. We discuss
the uniqueness of this equilibrium in Section [3.3]

Next, we delve in depth the fundamentals of the equilibrium and its analysis.

As explained above, solving for the equilibrium is technically challenging. First,
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unlike a standalone contest, a closed-form solution to (), the equilibrium efforts
in the networked contest game, is unavailable. Second, the dynamic and reflexive
interactions across the network causes irregularity to organizers’ payoff functions, as
illustrated in Figure[2d. As a result, fixing a potential candidate equilibrium, although
the first-order conditions of players’ equilibrium efforts with respect to the biases can
be obtained by Lemma , it is almost impossible to verify the (local) second-order
condition and its global optimality.

We develop a novel approach that examines organizers’ nonlocal deviations to
verify the equilibrium instead of analyzing their best responses. We first establish the
existence of a unique profile of biases a** that yields the equal-odds outcome on every
battlefield in the second stage; it remains to verify that a** indeed constitutes a first-
stage equilibrium. In what follows, we provide a sketch of the proof. For expositional
efficiency, we focus on the pure-cost case. The proof for pure-budget case is similar,
except that the expression of \; may differ. We will highlight these distinctions when
necessary.

Suppose, to the contrary, that o™ is not a part of an equilibrium. Then there
exists a battlefield ¢y € £ whose organizer can set a® # (@)™ to induce greater
effort from at least one player on her battlefield. Let x, ;\, and p denote the second-
stage equilibrium efforts, marginal effort costs, and winning probabilities under the
bias profile a = (&60, (a*eo)**), respectively. Similarly, we denote equilibrium vari-
ables under the bias profile a* with double asterisks. The following lemma helps us
predict how each player’ equilibrium total effort changes in response to the organizer

of battlefield ey’s deviation from (o)™

Lemma 2 (Individual Player’s Overall Effort Incentive) For each i € N,
N < A

Under o™, the competition on every battlefield is perfectly balanced. A deviation
on battlefield ey disrupts not only the competitive balance of eq itself but also that
of interconnected battlefields. Intuitively, this deviation generates negative overall
incentives for players across the network. Lemma [2| confirms and formalizes this
intuition: Every player’s equilibrium marginal effort cost \; weakly decrease following
the deviation. Given the strict convexity of the effort cost functions, their respective
equilibrium total efforts in the contest also weakly decrease after the organizer of
battlefield ey’s deviation.

16



The next lemma concerns the spillover of the deviation to players’ efforts on other
individual battlefields.

Lemma 3 (Individual Player’s Incentive on A Battlefield) Fiz an arbitrary
battlefield e # e with N© = {i,j}, and suppose X\;/\* < XJ/A;* Then & > (xf)**.

The deviation on battlefield eq triggers complex spillovers to interconnected con-
tests, altering players’ marginal benefits and marginal costs of efforts on other bat-
tlefields. While each player’s total effort unambiguously decreases, it remains unclear
how an individual adjusts effort on a specific battlefield other than ey. Intuitively,
the universal decline in marginal cost induced by the spillover tends to encourage
players to increase effort on other battlefields. The ratio i /A" captures the impact
on player 7’s marginal cost: A lower ratio indicates a sharper decline in cost reduction
and therefore, a more significant increase in effort incentive from cost side. Lemma
confirms that the player experiencing the greater cost reduction will indeed increase
effort in response.

We are ready to prove Theorem Let s denote the player with the lowest ra-
tio Xl /A* among all ¢ € N. By Lemma , following the organizer’s deviation on
battlefield eq, the player exerts weakly greater effort on all other battlefields—i.e.,
¢ > (28)* for all e € & and e # ey. Two possible cases arise: Player s is either

involved in the contest on battlefield eg, or not.

Case (a): s ¢ N°°. Lemma 3| implies that player s’s effort weakly increases in all
contests he participates in (he is not involved in the contest on battlefield ey).
Therefore, his total effort weakly increases following the deviation on battlefield
eg- Meanwhile, Lemma [2] predicts that his total effort would weakly decrease.
We can then conclude that his total effort remains unchanged, with X\, = AT
By definition, player s has the lowest ratio XS JA¥ = 1; together with Lemma ,
we can establish that the marginal effort costs of all players remain unchanged,
ie., \i/A=1forallicN.

Let iy and jy denote the players on battlefield eg. Recall that players win with
equality probability and thus exert positive effort in all their contests; therefore,
the first-order condition (2)—i.e., v°pf(x®) [1 — p§(x°)] = A\igf(2§)—holds for
alli € N and e € € under the bias profile a**. It follows that Z;° < (2{°)** and
250 < (x50)™, because pi) (1 —pi) < 1/4 = (p52)**(1—(p§))*). This contradicts
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the assumption that setting a is a profitable deviation for the organizer on

battlefield eg.

Case (b): s € N'®°. Assume, for contradiction, that setting a® is a profitable de-
viation for the organizer on battlefield eq. If 2% > (2%0)**  then we must have
X, > X by Lemma |3, Consequently, \, = ¢,(X,) > ¢,(X*) = A**, which
contradicts Lemma [2.
Alternatively, suppose ¢ < (z2)**. Then the other player on battlefield e,
denoted by jo, must exert strictly more effort, i.e., z3) > (xjg)** > (0. Moreover,

3 Eeo e\ k*
since £ < (z)**, we have

oy S (E) feo ((a50)™)
9s = (fseo)/(ggo) < ( Seo)/((xgo)**

7= (g8°)™.

Similarly, we can obtain g3’ > (g5’)™. Together, these imply
ﬁ > )\527/:0 _ )\JOZJ/]E(? )\]0
R (P F LRt

0

where the equality follows from the first-order condition ([2). This contradicts

the definition that player s has the lowest \; /A among all players.

This argument demonstrates that any unilateral deviation from a** would not
render an organizer better off. Hence, the bias profile a®* constitutes a first-stage
equilibrium of the game G. We thus establish that leveling the playing field can
always be sustained as an SPNE, even in the networked environment. It remains
curious whether this is the unique outcome of the game, and to what extent the

leveling-playing-field principle can be preserved in a network.

3.3 Uniqueness of Even-odds Equilibrium

This section addresses the uniqueness of the even-odds equilibrium established in
Theorem [} Our discussion unfolds on two levels. First, we investigate the boundary
of the level-playing-field principle within the network—i.e., we identify the conditions
under which an organizer always sets her contest rule to induce perfectly balanced
competition, regardless of the rules adopted in competing contests. The even-odds

equilibrium must be unique as long as the level-playing-field principle holds. Second,
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we explore whether, and under what conditions, this equilibrium remains unique
even when the principle fails—i.e., when perfectly balanced competition does not
automatically maximize an organizer’s payoff.

We present the following preliminaries which ease subsequent analysis and expo-
sition. Fixing e € &, define w® := vp¢(1 — pf) = vpS(1 — pS), with 4,j € N°. The
parameter w® is an intuitive measure of the competitive balance on battlefield e: A
larger w® implies a more balanced playing field; it is maximized when competition on
battlefield e is an perfectly even race, with pf = p§ =1 /2 and w® = v¢/4. Given the

correspondence between w® and (p5, pj), we obtain the following.

Lemma 4 (Reformulating Organizers’ Design Problem) The tuple (a*, w*())
constitutes an SPNE if and only if for each battlefield ey € &, with N¢ = {ig, jo},
(w)* solves the following mazimization problem:
(o 2 gy N o i)
s.t. holds for o in all e # ey,
holds for all (i,e) € T,

Py (1 = pjy) = w™ /v, (4)

Lemma 4] establishes an equivalence between the decision problem of an organizer
on battlefield ey setting biases @, and that of the organizer choosing w® [l It is
worth noting that when w® < v /4, there exist two probabilities p;’ that satisfy
; so the mapping between a“—which determine p;’—and w* is not one-to-one.
However, this nuance does not affect our analysis, given its purpose: The even-odds
equilibrium requires w® = v /4, which can only be attained when p;’ = 1/2. In
summary, to verify the uniqueness of the equilibrium, it suffices to establish w =

v /4 is an organizer’s unique best response for every battlefield e, € £.
3.3.1 Level-playing-field Principle in Conflict Network

Example (1| demonstrates the complications introduced by the indirect network
effect in an organizer contest-rule decision. Specifically, changes to the contest rules

on a single battlefield may affect the equilibrium behavior on others, which in turn

0The reformulation is firstly introduced by [Fu and Wul (2020) to characterize optimal contest
under a centralized organizer, and can be naturally adapted to our setting.
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reflexively impact the original one. This feedback loop casts doubt on the level-
playing-field principle well established in standalone contests.

In what follows, we examine the extent to which the conventional wisdom holds in
a network. We begin by introducing two assumptions. The first concerns the impact

function f£(-), and the second the network topology T
Assumption 1 For each (i,e) € T, ff is 2-concave—i.e., (ff)* is concave.

Assumption 2 The multigraph I" reduces to a tree after we replace any set of multiple

edges in I with a single edge.

Assumption [I] requires sufficient concavity on the impact functions, which corre-
sponds to a sufficiently noisy contest on each battlefield. Intuitively, greater concav-
ity implies that a player’s winning odds become less responsive to effort differentials.
That is, outcomes depend more on random factors than on players’ actions, so changes
in efforts have limited influence on winning probabilities. Assumption 2| requires that
the network be acyclic. This prevents recursive feedback loops and dampens indirect
network effects: While changes on one battlefield may spill over to others and vice
versa, the absence of cycles guarantees these effects cannot feed back to their origin.

We obtain the following.

Theorem 2 (Leveling-playing-field Principle in Conflict Network) Suppose
that Assumption [1] or 9 holds. Fizx an arbitrary battlefield e € € and a bias profile

a—€

, it is optimal for the battlefield organizer to set af that induce w® = v¢/4—i.e.,
a fully level playing field with players to win with equal probability—regardless of the
contest rules set for other contests. As a result, (a**,w**()) constitutes the unique

SPNE of game G.

Theorem [2] identifies sufficient conditions under which the level-playing-field prin-
ciple can be sustained in a conflict network, such that an organizer always sets her
rules to induce even winning odds, irrespective of others’ choices.

We now present a sketch proof of the theorem to illustrate the logic underlying our

d); dxf
dw®0 dw®o?

result. For this purpose, we first introduce the term which plays a critical

role in our analysis. We term it the ripple effect for a player ¢ on a battlefield e.

Recall that w® measures the degree of competitive balance on battlefield eg. The

d)\; dzs . . .
Joey and S—&- respectively capture how a change in the competitive

two components,
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balance on e affects player i’s total effort and his effort on an arbitrary battlefield

e. When -2o 2L () player i’s total effort (as indicated by A;) and his effort on

dw®o dweo
battlefield e move in opposite directions in response to a change in w. Conversely,

d); dxf
dw®0 dw®co

We then present two lemmata about the general properties of ripple effects, with

when

> 0, the two effects are aligned.

neither of them requiring Assumption [I] or Assumption [2}

Lemma 5 (Ripple Effects on Competing Battlefields) Fiz a battlefield ey € &,
with N = {ig, jo}. The following holds when competition in battlefield ey becomes

more balanced (as w® increases):

(i) The ripple effect for each battlefield e # ey is non-positive, i.e.,

dh dre  dy; dat
i 2% i <0 with N© = {i, 5. (5)

dweo dweo  dweo dweo

(i) The ripple effect for each player i € N is non-negative, i.e.,

d); dzf
—r >0.
Z dweo dweo — 0 (6)
ee&;

Lemma (1) suggests that balancing the competition on battlefield ej—i.e., in-
creasing w®—induces a negative aggregate ripple effect for each of other contest.
In contrast, by Lemma (ii), the aggregate ripple effect for each player is positive.
The claim in Lemma [5{(ii) follows directly from the definition. Recall that & denotes
the set of battles involving player i. The aggregate ripple effect for player ¢ can be

expressed as
d/\z dCL’Ze . d/\z dZL'Ze o d)\Z dXZ

dweo dweo  dweo dweo  dweo dweo’
ecé; ee&

where X; denotes player ¢’s total effort across all contests. This expression must be
positive, because \; and X; move in the same direction under convex cost functions.

We now develop a key thought experiment for our proof. Consider battlefield e
where players iy and j, compete under rules initially yielding equal winning probabil-
ities. Recall that our goal is to establish Assumption [I]or [2] as the sufficient condition
under which the leveling-playing-field principle holds in a network. For this purpose,
we examine a hypothetical scenario in which the organizer could get better off by uni-

laterally tilting the competitive balance on battlefield ey. The next lemma presents
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properties of ripple effects under such a circumstance. Together with Lemma [5] it

leads to contradiction when either of the two assumptions is satisfied.

Lemma 6 (Ripple Effects in the Deviating Battlefield) Fix a battlefield ey €
E, with N° = {igy, jo}, and a bias profile a that lead to w® = v¢/4. Suppose that
the organizer of battlefield eq can benefit from resetting her current contest rule a,
given the bias profile a=° for others. There always exists a degree of competitive

balance w < v® /4, such that the following holds: Letting all derivatives be evaluated

. . dz;? da)
at w® = w* and assuming 7% > 5= without loss of generality,
) dz eO PO
(Z) dw eo - 0 > eo ;
o @eo dNjg weo dhig )
(i) 5 Mo doc = 125 Ny w0 = 0;

oy ATy dhig 0> dz0 )y, |
(”Z) dw®0 dw®0 — ¥ — dw®0 dw*c0’

(“}) fOT 6, 7é €0, ifNe NEO = {ZO)]O}) dweo < 0 cmd d ]D d)\jo < 0.

w0 dw€o —

In summary, whenever the organizer of battlefield e, can benefit from an imbal-
anced contest, we can identify some value w® for which the resulting ripple effects
satisfy the properties in Lemma [ Crucially, w® does not have to be a profitable
deviation from w® = v /4 for the given contest rules aa=* on other battlefields.

Lemma [[(iii), which follows directly from (i) and (ii), establishes that the ripple
effects at w® diverge in sign between players ig and jo: positive for 7o but negative for
Jjo.- Moreover, Lemma @(iv) demonstrates that when ig and j, compete on additional
battlefields, jo’s ripple effects remain negative on those battlefields as well.

We are now ready to prove Theorem [2| Suppose that the hypothetical scenario
described above does exist. We derive a contradiction through Lemmata [5] and [0]

under either Assumption [I] or Assumption 2]

Case (a): Assumption [1] holds. The proof is similar to that of Theorem [I

we dX; | s w dhs | _
Let s denote the player with the hlghesdt)\ value of c}z,\ N dwto | 1€ ‘A— T

. w€0 d)\ w€0 w€0 iQ .
maX;eN |5 7ot |- By Lemma |§|( ii), oo T > Mg duw0 > 0. Therefore, either

s ¢ {ig, jo} or we can set s = jo without loss of generality.

Next, fix a battlefield e € £ and consider the associated ripple effect. The case

€0
dXj, 4T, <0.

with e = ¢y and s = j is straightforward. Lemma [6(iii) leads to S 0 <
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0 €o Jo
d:pfo dz0
0 O Jo O
dwe0 — dwe0 —
T, r_

Figure 4: Network Structure under Assumption

This, together with Lemma |§|(iv), indicates that ) . e ddquo < 0, which
contradicts Lemma [f](ii) []

If e # ey, we prove in the AppendiX that the ripple effect for player s on

d)s
7 dweo dweO

plays a critical role in verifying this inequality. This, again, enables us to

d\s dxg
conclude ) o 2557 < 0.

battlefield e is negative, i.e. < 0. It is worth noting that Assumptlonl

Case (b): Assumption [2| holds. Under Assumption , the multigraph I' decom-

poses into two connected components upon removal of all edges between 7y and
Jo- For notational convenience, denote by I'y and I'_ the two connected com-
ponents containing ig and jo (see Figure 4| for a graphical illustration). Further,
let N_ and &_ represent the player and battlefield sets in I'_, respectively. The
sets N and &, can similarly be defined.

<’0
2 without loss of generality.

dal
Following Lemma@( ), We can assume - 600 >0 >

Next, consider the aggregate ripple effect in I'_, i.e.,

d\; dxf
Z Z dweo dweo’

iEN_ e€é;

By Lemma [5(ii), the ripple effect for each player across all battlefields he par-

ticipates in must be non-negative. Consequently, Zee& d%ﬁ) ddwxfo > 0 for all

i € N_, which in turn implies that Z_ > 0. Meanwhile, Z_ can alternatively be

Tt can be verified that > dh, _dre (g impossible.

e€€s dweo dweO
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expressed as

Z Z d)\ dI d)\]() dx;o

e ien. dw duro " e€EigNEjy dwe dwe
From Lemma Zze e djl;\eo Tty < 0 for each battlefield e € £_. By Lemma@(iii)
and (iv), ;1;\]?0 dw]e% <0foralle € &, ,NE;,. We can then conclude Z_ < 0, which

is a contradiction ™

Theorem [2] establishes that when either Assumption [T or Assumption [2] holds,
each organizer’s optimal strategy is to maintain equal winning probabilities on her
battlefield, independent of other battlefields’ contest rules. This revives the level-
playing-field principle in a networked contest setting. Both assumptions serve to
limit the indirect network effect caused by the change in the competitive balance on
one battlefield, so each organizer can focus on the direct local effect when setting her
contest rule. The sketch proof above largely reveals the roles they play.

First, Assumption (1| requires strongly concave impact functions f£(-). For sim-
plicity, our discussion focuses on the pure-cost case. The first-order conditions

that determine the equilibrium can be written as

U,

— A
f@

The left-hand side indicates the marginal benefit of a player i’s effort on battlefield
e, while the right-hand side gives the marginal cost. Suppose that the competitive
balance of a battlefield ey varies. Its spillover alters players’ marginal benefits and
marginal costs of efforts on all other battlefields. This requires players adjust their
efforts everywhere to rebalance their costs and benefits. A strongly concave impact
function, as previously noted, limits the impact of a change in effort on winning

probability and therefore the impact on the marginal benefit of effort.

w €0 dXs w0 d);
As dwe0 )‘z dw®o |*

Note that the player, when being evaluated at w® = w®, is the most significantly

w0 d)\;
A dw®0

is the elasticity of \; with respect to w®. Our analysis verifies that the rebalancing

In the proof for Case (a), we identify a player s with

= max;ey

affected by the change on battlefield ey in terms of marginal effort cost, since

is impossible for player s. The significant change in marginal effort cost cannot be

12Tt can be verified that Z_ = 0 is impossible.
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matched by the limited change in marginal benefit of player’s effort. Contradiction

with Lemma (ii) thus ensues, because the aggregate ripple effect is negative, i.e.,

Zee e, d”fjjo d‘fuxfo < 0. This implies such a w® does not exist, and hence the abovemen-
tioned hypothetical scenario is unlikely. More intuitively, strongly concave impact
functions restrain the spillover caused by a change in the competitive balance on a
battlefield. This limits the indirect network effect that would feed back to the origin
and prevents it from reversing the direct local effect.

Second, Assumption [2] requires an acyclic network structure. As stated in the
sketch proof and illustrated in Figure [4] the multigraph I can be split into two
connected components if the edges between two vertices—i.e., players 7o and jo—
were removed. The decomposition enables us to separate the respective impact of a
change in the contest rule for battlefield ey on players iy and jy, which paves the way
for our analysis. Suppose that Assumption [2]is violated (see, e.g., Figure . Their
effort choices would be entangled: They not only engage in the direct competition
on battlefield ey, but also are connected via various indirect paths traversing other
players and battlefields (see, e.g., Figure . The direct local effect on x;, and x;,
caused by a change in a® triggers indirect network effects that reflexively affect the
choices of z;, and z;,, which causes complications. An acyclic network severs the

linkages and keeps z;, and z;, immune to the shock of the indirect network effects.

3.3.2 Uniqueness of Even-odds Equilibrium when Leveling-playing-field

Principle Fails

Next, we examine to what extent the even-odds equilibrium remain unique when
Assumptions[I]and [2are not satisfied, in which case the leveling-playing-field principle

may not hold. We present the following two assumptions.

Assumption 1’ For each (i,e) € I, ff is p-concave with p = 1+2\/§ ~ 1.2—i.e., (ff)°

1S concave.

Assumption 2" The simple graph, obtained by replacing all parallel edges in I' with
single edges, has the following structure: each edge is contained in at most one cycle,

and all cycles in the simple graph have odd length.

Assumptions |1’ and 2’| impose weaker restrictions and can respectively be implied
by Assumptions [I] and [2] Specifically, Assumption [/l demands a weaker notion of

concavity for impact functions, while Assumption [2'| allows for cycles in the network.
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Theorem 3 (Equilibrium Uniqueness when Leveling-playing-field Princi-
ple Fails) Suppose that Assumption or holds. Then (a**,w**()) constitutes
the unique SPNE of game G.

We outline the key logic of the proof. Assume, for contradiction, that an alterna-
tive equilibrium exists in which at least one battlefield e exhibits imbalance (pf # p).
Consider the battlefield with minimal w® value and perturb the contest rule on this
battlefield. It can be verified in the proof that under either Assumption (1’| or [2'} the
direct local effect dominates the indirect network effects. This implies that the orga-
nizer on this battlefield can improve the performance of her contest by increasing the
value of w® toward v°/4, i.e., leveling the playing field. The hypothetical equilibrium
thus dissolves.

Recall that w® = v°pfp;. A small w® implies either a small prize value v or a
lopsided competition. Both cases imply limited effort incentives. The former means a
small stake that discourages significant investment; the latter implies that one player
faces a slim chance of winning, while the other expects an easy win, which disin-
centivizes both. Consequently, a marginal change in contest rules would not trigger
substantial effort adjustments, thereby containing network spillovers and dampening
indirect effects.

Assumption [1] fulfills a role comparable to that of Assumption [} Strong con-
cavity attenuates equilibrium effort levels and weakens cross-battlefield spillovers.
Assumption [2| plays a role analogous to Assumption [2; The simplified network ar-
chitecture constrains the channels through which indirect effects are transmitted and
compounded, allowing the local effect to prevail.

To further illustrate the result, we revisit Example As previously noted, the
leveling-playing-field principle does not hold under this network structure: Given
(ab,al) = (0.1,0.9), and (a§,af) = (0.1,0.9), the organizer on battlefield a would
not fully level the playing field. However, the set of biases provided in Example[l}—i.e.,
(af,a3) = (0.5,0.5), (o, ab) = (0.1,0.9), and (a§, af) = (0.1,0.9)—cannot constitute
an equilibrium. The triangular network fails Assumption [2| but satisfies Assump-
tion By Theorem [3, the game possesses a unique SPNE, in which players in every
battlefield win with equal probabilities.

To close this section, it is useful to note that Assumption [I] or 2] is sufficient but
not necessary condition. The equilibrium uniqueness result established in Theorems
and [3| holds more broadly than the context defined by Assumption [1'|or 2/l Although
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an analytic result is difficult, our numerical exercises suggest that the even-odds
equilibrium can remain unique even with a less concave impact function or in a

network in which some edges are contained in multiple cycles of an arbitrary length.

4 Extensions

We now examine two extensions. Section [4.1] generalizes to model to incorporate
richer timing architectures of the battlefield organizers. Section considers the

design problem from a centralized organizer’s perspective.

4.1 Sequential Move

In the baseline model, organizers set contest rules simultaneously. We now con-
sider an alternative setting in which organizers act sequentially. Specifically, orga-
nizers are partitioned into T groups, and the first stage of the game unfolds over
T > 1 period(s) accordingly. In each period, one group of organizers choose their
contest rules simultaneously, with their choices of biases observable to those who act
in subsequent periods. Fix t € {1,...,T}, and let &' denote the set of battlefields
whose organizers act in period ¢. Further, let a=" := (a®)ceer 1<r<1—1 denote the bias

profile chosen prior to period ¢t. The following result ensues.

Theorem 4 (Equilibrium with Sequential Move) Suppose that Assumption
or[d holds. Then there exists a unique SPNE, in which every organizer perfectly levels
the playing field. That is, for eacht € {1,...,T}, a biases profile a<', and a battlefield
e € &, the organizer of battlefield e chooses a(a~") such that pf = p; = 1/2. As a

result, (a**, x**) is the unique equilibrium outcome.

By Theorem [} the conditions that sustain the leveling-playing-field principle in
simultaneous-move setting ensure that (o™, **) remains the unique equilibrium out-
come under sequential moves.

The proof and logic are straightforward. Consider a simple example with two bat-
tlefields, as illustrated in Figure[Id Let the organizer of battlefield a move first. The
first-stage game can be solved by backward induction. The organizer on battlefield
b—the second mover—will fully balance the playing field regardless of the contest
rule for battlefield a, as implied by Theorem
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Now consider the organizer of battlefield a, the first mover. She anticipates that
the late mover will fully level the playing field. In other words, the contest rule for
battlefield b is endogenously pegged to her choice for battlefield a to induce a fully
balanced competition on battlefield b. This dynamic strategic linkage neutralizes the
indirect network effect caused by her own choice, allowing her to focus on the direct

local effect. Thus, she would also set a contest rule to fully level the playing field on
her battlefield.

4.2 Centralized Contest Design

We now let a central organizer sets contest rules a = {@®}.c¢ for all battlefields in
the first stage of the game. Upon observing the contest rules, players simultaneously
exert their efforts in the second stage.

We assume that the organizer maximizes an objective function determined by
the profile of players’ individual total effort profile, i.e., A(x) := A(Xy, Xo, ..., Xn).
It is noteworthy that the central organizer is concerned about only each player’s
individual total effort X; instead of his entire effort profile ;. This assumption ensures
the existence of an optimum/[®] Clearly, varying contest rules has no effect on the
organizer’s payoff in the pure-budget case. We therefore focus on the pure-cost case.
Moreover, we assume that the objective function A(x) is strictly increasing in X; for all
i € N. That is, the organizer strictly benefits from each player’s effort contribution.
A simple example is the aggregate effort over the network— i.e., A(x) = >, \  Xi.

The following result ensues.

Theorem 5 (Centralized Contest Design within A Network) Suppose that
the central organizer’s objective function A(x) = A(Xy, ..., Xy) is strictly increasing
in X; for all i € N. The optimal contest is unique, in which the organizer sets

a = o™ and players win with equal probability on every battlefield.

Theorem [5[shows that a central organizer always benefit from leveling the playing

fields. Her choices of o internalizes the externalities that each battlefield’s contest

130therwise, an optimum may not exist. To see this, consider a setting with N = {1, 2}, £ = {a, b},
and I = {(1,a), (1,b), (2,a),(2,b)}, as in Figure[Ld Set f£(z¢) = a¢ for all (i,e) € I, ¢;(X;) = (X;)?,
and (v%,v®) = (1,1). Suppose that the organizer’s objective is to maximize total effort on battlefield
a, i.e., A = x§ + x§. We can verify that no optimal biases exist. The organizer can generate total
effort arbitrarily close to the supremum—equal to 1/4—by setting a® = (1,1) and a® = (¢,1 — &),
where ¢ is an infinitesimal positive parameter.
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rule imposes on the others. Leveling the playing field maximizes every player’s effort
incentives. Recall that a** is the unique bias profile that would induce even winning
odds on all battlefields. This leads to the following result.

Corollary 1 (Centralization versus Decentralization) The optimal contest rules
for the central designer, o™, also constitute a first-stage equilibrium of the decen-
tralized contest design game in which the organizer on each battlefield unilaterally

mazximizes total effort in her own battle.

Corollary [1f yields useful practical implications. Notably, the central organizer’s
interests are not aligned with the organizers in our original decentralized contest
design game. Nevertheless, Corollary [1| predicts that if the central organizer simply
delegates the task of setting contest rules to a set of self-interested agents—each
managing a single battlefield—the resulting equilibrium outcome may still replicate

the centrally determined optimum.

5 Conclusion

In this paper, we analyze a game of decentralized contest design in which multiple
players engage in pairwise contests within a network. Each battlefield is managed by
an organizer who sets contest rules to incentivize effort supply for her own contest.

We investigate the subgame perfect Nash equilibrium of the game and examine the
extent to which the well-known level-playing-field principle continues to hold in this
networked setting, given the complex externalities that arise when contest rules are
set independently for individual battlefields. We show that an even-odds equilibrium
always exists, in which the contest on every battlefield is resolved with equal proba-
bility. We further identify sufficient conditions under which the leveling-playing-field
principle remains valid—i.e., conditions under which each organizer prefers a fully
balanced contest regardless. We also demonstrate that the even-odds equilibrium
may remain unique even when these conditions are not satisfied and a fully balanced
contest is not necessarily an organizer’s unconditional best response.

Our paper is the first to analyze decentralized contest design in a networked
context. The analysis sheds new light on the game-theoretic structure of networked
contest games and contributes novel insights to the understanding of the conventional

wisdom of level playing field in the contest literature.
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Ample opportunities for future research remain. For instance, Section identi-
fies sufficient conditions for the uniqueness of the even-odds equilibrium, even when
the level-playing-field principle does not hold. These conditions, however, are not
necessary: In all cases examined, our numerical exercises reveal that the equilibrium
remains unique even when the conditions are violated. This observation naturally
leads to the conjecture that uniqueness holds under a general network structure as
long as the impact functions are strictly concave. Although this conjecture is analyt-
ically difficult to establish, it warrants serious research attention going forward.

Our paper assumes bilateral contests on each battlefield. A natural extension
would be to allow multilateral competitions, which would introduce formidable tech-
nical challenges. First, in a battlefield e with n® players, the organizer’s choice of
contest rules becomes a vector of (n®— 1), rather than a single variable as in our cur-
rent setup. This greatly increases the dimensionality of the decision problem, with
the complications further compounded in a networked environment. Second, in a
multilateral setting, defining and measuring competitive balance on a battlefield can

be considerably more elusive.
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Appendix: Proofs

Proof of Proposition [I, By [Xu, Zenou, and Zhou| (2022), the second-stage equi-
librium is unique for an arbitrary first-stage biases profile for the pure-cost case, and

it suffices to consider the pure-budget case. We state several intermediate results.

Lemma Al Fiz o and e € &, with N¢ = {i, j}. If there exists x € X () such that
2§ >0, then (x5) = xf for all ' € X (). As a corollary, fiving x € X (), if x§ =0
for some (i, e)—which implies x5 > 0—then (x§)" = 0 for all 2’ € X(cv).

Lemma A2 Fiz o, ' € X (), and battlefield ey, with N = {ig, j1}. If (25)" =0,
then for any " € X(a), we have (25*)" = 0 for all e, € &, with N = {ig, ju}.

J
Moreover, \;,(x") = 0.
Lemma A3 Fizing o, \j(x') = \(2") =: \; for all ', x" € X () and alli € N.

We first prove part (i) of the proposition. Let (a*,x*(-)) be an SPNE and let

' = x*(a*). Suppose, to the contrary, that there exists &” # &’ such that &” €

X(a*). Then there exists ig € N and e; € &, such that (z7!)" # (z!)". By
Lemma , (z5)) = 0 and (25!)" = 0, where j; € N and j; # i; otherwise,
player iy would choose the same effort in the battlefield across all equilibria, which
contradicts (zj!)" # (zj,)”. Further, by Lemma , (z5) = (254)" = 0 for all
ey € Eiy, with N = {ig, 7.}, and A\ (') = A, (") = 0.

Consider an arbitrary battlefield e, € &;, and player iy’s opponent, player j,.
By Lemma , Aj, is the same across all equilibria; together with the fact that

€y

(5,

) = (x5")" = 0, we can conclude that

(0g.)" (f5)'(0)

(g )* fim(agr)”

Aj, =

where 3" is player ig’s equilibrium effort in battlefield e,. By the monotonicity of

fix(+), there exists a unique zj" such that the above inequality holds with equality,

and denote it by ;. It follows immediately that 27" < (2§*)" and 23" < (z3*)”,
which in turn implies that

Z g < Z (zir) < X, and Z g < Z (z5)" < Xio-

ey Egio ey Egio ey Egio ey 6510
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If Zeu ety i = Xy, then all inequalities above hold with equality, which implies
that (z§*) = (25*)" = 27 for all e, € &,. This contradicts the postulated (z!)" #
(wfol)” CIf Zeu et i’fg < 72-0, we consider the following alternative strategy for player

io o = Denee\fer) B > 0. Tt follows

immediately that o3 > (27)) and 27 > (25})". Recall the postulated (z5})" # (z7,)".

10

io: T, = (x (:%fg)euegio\{el}), where :Efol = X

We can thus assume z§! > (zf!)" without loss.
ajt (£;1)'(0)
Set a® = (aj},aj) such that \; = W
that (x;,, (x_4,)") satisfies (2) and (3] in Lemmaunder (o, {(a®)*}eeer(er} ), and
thus constitutes a second-stage equilibrium. Following a similar argument as in the

It is straightforward to verify

previous analysis, we can conclude that for any second-stage equilibrium under this
biases profile, player ig’s equilibrium effort in battlefield e, is xj). Note that zj) >
(z5))". Therefore, fixing {(a®)*}eee\{e}, the organizer of battlefield e; is better off by
deviating from (a®)* to a®, which contradicts the postulate that a* constitutes a
first-stage equilibrium.

Next, we prove part (ii) of the proposition. Suppose, to the contrary, that there
exists (-), with &(a) € X' (), such that (a*, z(+)) is not a SPNE. Therefore, fixing
x(-) and (a~°)*, there exist a battlefield e such that setting (a®)* is suboptimal to
its organizer. Denote the most profitable deviation for the organizer by ()" and let
o = ((a), (a¢)*). By assumption, (a*, z*(-)) is a SPNE. Therefore, the organizer
of battlefield e is better off in *(a*) than in x*(a’). Thus, she is strictly better off
in (a’) than in z*(a).

By Lemma it is impossible that the two players in battlefield e are active.
Otherwise, the equilibrium efforts in battlefield e under x(a’) coincide with those
under *(a’). Meanwhile, it is evident that at least one player exerts positive effort
in each battlefield in the second stage. Therefore, it must be the case that one player
remains active and the other inactive in battlefield e, and the active player’s effort is
strictly higher in x(a’) than in *(a’). Following a similar argument as in the proof
of part (i), this is impossible given that («®)’ is the most profitable deviation for the

organizer of battlefield e. This concludes the proof. [J

Proof of Lemma For the pure-cost case, similar to ({§]), we can obtain that

%= S (B ) < e w (35) )

GESZ' 6651‘
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where the inequality follows from the monotonicity of ¢, and (g¢)~! and p§(1 — p§) <
1/4. The above inequality, together with , implies Xl < Af*. The proof for the

pure-budget case is similar and omitted for brevity. [J

Proof of Lemma(3] For notational convenience, define (f)** := f£((x§)™), (¢¢)** =
g5 ((x)™), fe = fE(7%), and gf := gf(x¢). Suppose, to the contrary, that =& < (xf)**
By (2 ., we have

e

kk € k% kk e k*k v Y -~e Y -~e e~e -~€
A (g)T = )‘j (gj) = 1 and A;g; = )‘jgj =vp; (1 = pf), (7)

Evidently, at least one player is active in battlefield e in the equilibrium. We

consider three cases:

(a) Suppose 7 = 0 and 7§ > 0. The postulated Ni/AF <\ j/ ;" implies that X = 0.

Meanwhile, it follows from (3)) that > (+}/() > 0. A contraction.

(@)™ (£7)'(0)

(b) Suppose 7§ = 0 and 77 > 0. From [3), we have X > Further,

( )**fe
x5 > 0 imphes A —~—-~-+~. Note that Y emma ese
) > 0 implies A" < TN Note that Xy < A by L | Th

altogether indicate that (ff)* < ff, which implies that (z§)** < z¢. A contra-

diction.

(c) Now suppose, 75 > 0 and 7§ > 0. Let a; := f;e/(ff)** and a; := f;.e/(fje)**. Note
that g7 (-) = f7(-)/(ff(-))" is strictly increasing; together with the postulated

T8 < (2%)**, we have that gf < (¢f)**. Further, by (7), we have /\M(Zgl) =

/\*3\(397)**, together with §¢ < (¢¢)** and the postulated X;/\* < >\j/>\j , We can

obtain that § g5 < (g5)™ and 7§ < (x5)™, which implies that 0 < a;,a; < 1.

By , we have that 1 = Z)— — (O‘Z)**(ﬁ)” which implies % = )i
J J

(pg)** (a-)**(f‘-i)**’ ( e)**fe
eI % ~ ~e\ _ (_a
fe/(fe)** = 2 and thus (p§, pj) = (a e m +a —); together with . we have that
(91)** = 4p¢ (1 Ps) X /\X_ > %, where the inequality follows from Lemma .

Further, from the concavity of ff(-) and the postulated z§ < (z§)**, we have

foo_ g G
ey () Uy (@)

) gf > 46%‘@3’

a; = e\kkx — )
(95) (a; + a;)?
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which implies (114_1%)2 < 1. Similarly, we can obtain that (a_i“;_)Q < 1. Summing
7 J g J

the two inequalities yields a; + a; > 2, which contradicts a;,a; < 1.

This completes the proof. [J

Proof of Theorem [1} Tt suffices to show that there is a unique profile of contest

rules a** that leads to the equilibrium outcome of equal winning odds on every

battlefield. For the pure-cost case, we first solve for the second-stage equilibrium

profile ** that leads to equal winning odds in all battlefields. Plugging (p§)** = 1/2

into (2) yields % = A\;*g¢ ((2£)™); together with the monotonicity of gf = f£/(ff),
~ (90) () and

=) = 4 S () ) ®)

ec&;

we have (xf)**

from which we can solve for A\'* and pin down a**. The first-stage biases profile a**
is uniquely determined by .
The proof of the pure-budget case closely follows that of the pure-cost case after

we replace (§) with X; = Deee, (95 )7'(%=). The concludes the proof. O

7

Proof of Lemma It suffices to show that for any a®, the organizer of battlefield
eop can choose w® to induce the same equilibrium effort profile &, and vice versa.
First, fix an arbitrary a® and a second-stage equilibrium x*, which yields (w®)*.
Evidently, the organizer can set w® = (w®)* to induce &*. Second, fixing an arbitrary
w® < v /4—which induces x*—the winning probability in battlefield ey can be
solved from . The corresponding biases a®® can then be derived from . U

Proof of Lemma Bl  We first state an intermediate result.

Lemma A4 Fix a battlefield eq € €, with N = {ig, jo}. The following statements

hold in the second-stage equilibrium:

(i) Fiz e # ey, with N¢ = {i,5}. If 2,25 > 0, then

17%]

e e i e e d\;
dof _ _w'm [1— (2p5 — D)me] & 25 + (2pf — 1)ms o o)
dweo N 1L+ (mg§ —mS$)(p — pf) ’
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e . el e (f5) (x§)*
where g§ 1= g¢(xf) and mg¢ = TP FeT e © [0, 1].

(ii) For battlefield ey, we have that

dit L1 d U5 e [ L L]
dweo 20 70 WEO )\ dweo d eo g]o Jo wWeo >‘j0 dweo .
(iii) For each i € N, we have that
d\; dz$
L P 11
dweo dweo (11)
ee&;

where 0; = 0 in the pure-budget case and §; = in the pure-cost case.

_ 1
C;/ (Xz)

We are ready to prove the lemma. For part (i), first consider the case of zf, 2 > 0.
By @, we have that

A\, dzt  d); das

dweo dweo  dweo dweo

mi[L— (2pf = Dms] i)+ ms[1+ (2p8 = Dme] (3 os)”
L+ (m§ —ms§)(pf — pj) '

Note that m§ € [0,1]. Moreover, ¢, 2§ > 0 implies that p; € (0,1). Therefore,
1 —(2pf —1)m§ > 0, 14 (2pf — 1)m§ > 0, and 1+ (m§ —m$)(pf — p§) > 0, which
implies .

Next, suppose 7 = 0 and z§ > 0. If 2§ = 0 in a neighborhood of w®, then by
Lemma A; = 0 in this neighborhood. Therefore, d%fo = dcf;\eo = 0, which also
implies . Otherwise, if f > 0 in a neighborhood of w®, then . holds in the
neighborhood and is satisfied at w® by continuity.

Next, we prove part (i) of the lemma. By (11)), we have that ) do;

e€E; dw@o dwo
o ( dweo) > 0. This concludes the proof. [J

Proof of Lemma @ For part (i) of the lemma, we first show that there exists

we < v < 0. By assumption, there exists w® < v /4
wWE0 =0
such that A®(x O,ccjeg) I > A (xy), 7)) oo 4 Recall that A is strictly

e()

<
dw weo =0 0

increasing in zj) and x%). There exists W € (W, v /4) to satlsfy
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dx0 dz30 dz0 .
or - < 0. Further, 52 > i% by assumption. Therefore,
. W weo =@eo W Lweo =weo W Lweo =weo
dx . . ~
e < 0. In the rest of the proof, all derivatives are evaluated at w® = w*
w0 =w*e0

dX; dX;
we have that Joes >0 and —2 > (. Therefore
w0 dw€0 )

d)\l0 dl‘leg d)\j0 dxjg

dweo dweo  dweo dweo

< 0. (12)

Note that

d\; dxf
1= Z Z dweo dweo — 0’ (13)

ieN e€&;

where the inequality follows from Lemma (ii). However, and imply that

I\ drp |, di Dy, def
I 20 20 Jo Jo < 0
; GZN dwe dwes | dweo dweo | dweo duwe
eeq i

which is a contradiction.

Next, we prove part (ii) of the lemma. The first two inequalities in part (ii) follow

immediately from part (i) and ([10]), and 1t remains to prove > 0. Suppose, to the

dweO
contrary, that < 0; together With > 0 as shown in part (i), we can obtain
(12). From and Lemma [f[(ii), we have that Z < 0, which contradicts (|13)).

Part (iii) of the lemma follows immediately from parts (i) and (ii), and it remains
dae’ dae’
to prove part (iv). It suffices to show - < 0; - i
dze’
Ty < 0 and (ii).
Fix ¢/ # ey, with N¢ = {iq, jo}. By (9, we have that

%0 < ( can be implied by

’ dwe0 dwe0

’ / ’ ! / ! ' dX;
dl';o w* mj'o il B <2p§0 — m oi ,\L ot (2p§0 B 1)m$0 )‘io duw's

= — X o/ ’ .
dweo )\jo 1+ (m ; )(plo B pso)

Recall that we have shown 14 (m, — mj;)(pf; - pj:)) > 0 in Lemma . Further, simple
algebra would verify that
1 1 dAj,

1= = | g
0

e e 1 d)\
+ (2pjo - ]‘) lo)\ dweO
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1y, Ldy, 1 d\,
— (20 — 1\me¢ | - 2o
=5, duweo PP~ D, [Ajo dweo " N, dwes
Sl [Ty 1],
Ajo dweo Ajo dweo )\ dweo

where the first inequality follows from pj; €[0,1], m¢ € [0,1], and ;-2 — L
J0

0; and the second inequality follows from part (i) of the lemma. Therefore, 742 < 0,

which concludes the proof. [J

Proof of Theorem . It remains to show that under Assumptlonl drs )

dweO dw*®o

for each e € &, with e # ¢y. We first Show that d)‘s # 0. Suppose, to the contrary,
that -2 — O By the deﬁmtlon of s, =0 for each i € N; together with (10]), we

have that 4 < 0 and 4 <0, Wthh contradicts Lemma 6(1).

dcf;\eo > 0 (the analysis for the case with d o5 <0 follows analo-

gously). Fix e € &, with e # ey and N = {s, j}. By (9)), we have that

50

Next, suppose

A
dr;  wmg o [1 — (2p{—Dm ] Al dcqueso + (25— Dm J)\lj dweo
dweo As 1+ (mg —ms)(ps — pf) '

Assumption (1| implies that (f5)(0) = (f¢)'(0) = +oo and thus p§ € (0,1). Further,
the assumption implies m§ € [0,1/2]. Carrying out the algebra, we can obtain that
1 dX o1 od)

—— 2pc — 1

Ndweo T DM

SR PR U VR WY

=N dwe s Nodweo X dwe

1 dXs 1 1 d)\, 1 d)\;
_ >0,
/\ dweo -

[1 — (2p8 — 1)m§]

o dweo N, dweo

where the first inequality follows from m$ € [0,1/2] and p; € (0,1); and the last

1 d)s 1 d>\
inequality follows from =75 > ; dw

. This concludes the proof. [J

Proof of Theorem Consider the following two cases depending on whether As-
sumption [I] or P/ is satisfied.
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Case (a): Assumption[1]holds. Note that Assumption|l]implies that (ff)’(0) =
oo and thus z§ > 0 for all (i,e) € I'. Suppose, to the contrary, that there exists an
alternative equilibrium (aT,wT(-)) + (a**,:c**()) Then there exists (i, e) such that
(p$)T # 1/2, which implies that (w®)! < v¢/4. Let ey be the battlefield with mini-
mal w® among all battlefields that satisfy (w®)! < v¢/4—i.e., (w®)! = min {(w®)
(w)" < v°/4}—and N = {iy, jo}. By (13), we have that

dX\; dzf

7= — > 0. 14
Z dweo dweo — 0 (14)
(i,e)el’

Note that Z can be divided into three parts:

dN;, dr;° d)\ dx§l dX; dzf
L= queo dur D G (15)
dweo dwe dweo dweo dwee dweo
~ ~ - e;éeo iENe
T I2 v
Is
Let s € N such that 1 D | = max;en %—dcf;\e"o By Lemma @, s # iy5. Suppose
/\IT Bs > 0 (the analysm for the case with )\IT B < 0 follows analogously). By (@),

duct
there exists ef € &, such that d “s- > (). Denote player s’s opponent in battlefield
el by j7. Evidently, ef # e5. Otherwise, if e = eg, then s = jy, which contradicts

Lemma [f(iii).

Lemma A5 The following statements hold:

2
(weo)T 1 d)j,
I, < — 1
VT e ) (15)

7, <0, (17)
Igg—(w%)*l_(z( ) —1)(m )T) (1 d\;, ) | 18)

e 2 e T €
(20)1 — 1) (et \ A, dw
Plugging , , and into , we can obtain that
ef ef
1 d),, )2 o e ¢ (GO0

1y A
AL, dwee o (20t = 1) (me))t

< 0,

T < (w)f x <
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where the last inequality follows from 2(p¢)f —1 € (0,1), (mﬂ)T € [0,1/p], and
p= HT‘E This contradicts .

Case (b): Assumption |2/ holds. Recall ¢y as defined in Case (a). The proof
is the same as that of Theorem [2 if eq is not in a cycle, and it suffices to consider
the case where ¢g is contained in a unique cycle with odd length. Denote the set of
players on the cycle by {ig, ..., i }—where 2¢ + 1 gives the length of the cycle—and
let N = {ig, 11}

By Assumption 2] if we remove all edges on this cycle—i.e., all battlefields e
with N¢ = {iy,ix11} for some k € {0,...,2¢}—the network is divided into 2¢ + 1
connected components, each contains exactly one player on the cycle. Denote the
connected component that contains player i, by I'(k). Further, denote the players
and battlefields in T'(k) by N(k) and E(k), respectively. For each k € {0,...,2(},
define

dxf d)\; dz$ d);
+ . E ' Lk Lk - . E : Lk Lk
I = ¢ dweo dweo and L, = ¢ dweo dweo’
ecENe={ig,irt1} ecE&Ne={iy,ix_1}

The following intermediate result ensues.
Lemma A6 The following holds:
(i) For each k € {0,...,2(}, T,/ + I,” > 0.
(i) For each k € {1,...,20}, T, + I,_,, <O.
(iii) The signs of I and I, are different.

(iv) The signs of I, are the same among all k € {0,...,2(} and those of I, are the
same among all k € {0,...,2(}.

By Lemma there are two cases: (i) Z > 0 and Z,, < 0 for all k € {0,...,2(};
and (ii) Z,” < 0 and Z;; > 0 for all k € {0,...,2¢}. In what follows, we focus on the

former (the analysis for the latter case is similar).
dX;
dwe%

and the following:

For notational convenience, define py 1= ’/\i
1k

1—(2p5 —1)mg
Migi= 3, —um e

%
GGSZNE:{ik,ik+1} g 1 + (mlek - mlk+1)(p’fk - pfk+1)
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— (2pf,,, —Umj
MI;—‘,—IJg—}—l — Z —w®m?® _ ( ke+1 ) k (20>

k41 — me e _ pe ’
ecENe={ig,ipt1} 1+<mik mlk+1)(plk p1k+1)

2pz -1 m;
M1 = Z —wmg 6( i - i bl ) (21)

K
ecENe={ig,ipt1} Flt (m’k - mik-&-l)(pik o pka)

We state several intermediate results.
Lemma A7 The signs of My i1 are the same among all k € {0,...,2(}.
Lemma A8 Suppose that Z,7 > 0 for all k € {0,...,2(}. Fizingk € {1,...,2(}, the

following holds:

d)‘ik+1

)‘k ] dw®0

and - have the same sign. Moreover,

dweO
M1 > 2fb. (22)

1 i1 1 dAiy
~ o and/\ g have different signs. Moreover,

_ Mk
h < (-1, X — 23
kE — ( k+1) H/k; +2ka;+1 ( )
and 5
Ty 2 l;kﬂzij W e fthg (24)
k

Now we can prove the equilibrium uniqueness. By Lemma [A7 for all £ €
{0,...,20}, either My 1 > 0 or Mgy < 0. In the former case, from in
Lemma (i), we have that prg = poe1 > 2p¢ > -++ > 2%y Meanwhile, by

Lemma @(ii), we have that /\LZ\};O > /\ijj}e% > 0, which implies that pu; > pg. A
1 0

contradiction.

In the latter case, it follows from and Lemma [A6]i) that

- M Hi
I < (T X — = <TF x—‘v’krel ,
¢ < () f + 2t~ g 2t { 2y
which implies that
2
If < I} x H (25)

5 Mk T 2Mk+1
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Next, combining Lemma [A6]ii) and in Lemma [A§[(ii) yields that
+ o 2H2 + €0
5 > ” =T + max {2, w e ) (26)

Moreover, we have that

dxg? dzs® -
Tf T < Tf 47 =200 W | 0T AN > oY da;

dweo dweo dweo dweo N een R dweo dweo
dl’fo d\; €0, € 1 e
S e Tgen. = W g Ko ( > < w®po(pn — po), (27)

where the first inequality follows from Lemma (i); the second inequality follows
from and Lemma @(iii); the second equality follows from ; and the last in-

equality follows from Lemma [6{ii) and m;? < 1.
Combining , and yields that

20

2/@ Mk
H(Z]) := —I; +max {Z;", w* I} + w® — X|| —— L0.
(@)= {ZF w i} — (I3 po(p1 — fio)] ,guH?um

Note that #(-) is linear in Z;" on [0, w*puips] and [w®pips, +00). Simple algebra
would verify that H(0) > 0, H(w®pyus) > 0, and H(oco) > 0. Therefore, H(Z;") > 0,

and we arrive at the contradiction. This completes the proof. [J

Proof of Theorem We prove Theorem [4 by induction on ¢.

Base case: Consider the last period t = T'. Fixing e € €7, the organizer chooses a®
to maximize A°(x€), holding fixed a¢. By Theorem |2 the organizer chooses

a® to induce p§ = p§ = 1/2, with N° = {4, j}, in the equilibrium.

Inductive step: Foreacht € {1,...,T—1}, suppose that the statement holds for each
7 > t. We show that for each battlefield e, € £ and each a<!, the battlefield

organizer chooses a‘ to induce pj? = pj? = 1/2, with N® = {ig, jo}.

First, following a similar argument as in the proof of Lemma [A4] we can show
that @D holds for each e € U,<,£™ and e # ey. Second, by the induction
hypothesis, for each e € U,-,E7 and each i € N¢, we have that pf = 1/2 and
thus 2 = (. This implies that 9 A anq thus 24 4 < (),

dweo dweo = X, dweo dweo dweo —
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Fixing the biases profile up to period ¢t — 1—i.e., fixing a~!—the battlefield

organizers in period ¢ choose their biases, anticipating the biases set by their

followers. Note that the condition d‘ffo df;io < 0 we prove above ensures that
Lemmata [5] and [6] continue to hold. Following a similar argument as in the
proof of Theorem [2] we can show that all battlefield organizers in period ¢ will
again choose biases to induce equal winning probabilities in their battlefields.

This completes the inductive step.

Conclusion: By the principle of induction, for each ¢ € {1,...,T}, a biases profile
a~' and a battlefield e € &', the organizer chooses a‘(a~') such that pf =
p§ = 1/2. This completes the proof. [J

Proof of Theorem Fix an arbitrary biases profile a and « € X (). It follows
from that

K= 3ot = Sl (=2l < > (o) @

Further, by the definition of a™*, we have that (p)*™* = 1/2 for all (i,e) € I'. Similar
to (28)), we have that

X =3 ()7 (Ue(pf)*z(;i); @g)**)) = ()" <ﬁ) . (29

ect; ect;

A closer look at and reveals that X; < X*, where the inequality holds with
equality if and only if pf = 1/2 for all (i,e) € I'. Further, by Theorem , we must

have a = a**. This completes the proof. [
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Supplemental Appendix: Omitted Proofs
Proof of Lemma [AT]]

Proof. Suppose, to the contrary, that there exists eq € £, with N = {ig, jo}, and

two second-stage equilibria ', " € X (), with (7)) # (z7))" and (z§)" > 0.
Note that equilibrium requires that 8739(;’/) < X\i(@), where the inequality holds

with equality if (xf)’ > 0. Similarly, aﬂé;ﬁn) < Ai(x"), where the inequality holds with

equality if (z¢)” > 0. These altogether indicate that

(@)

S (ot - ) < T
(i,e)el’
and ormi(”)
e\/ e\ T\ L
Z ((25) = (29)") x T ow < 0.
(i,e)el’

Combining the above two inequalities yields that

> (ot - wi)) x | ) O (A1)

(3,e)el’

Define x(z) := za’ + (1 — z)x”, with z € [0, 1], and

o) = 3 () = (i) x ZZE)

(i,e)el’ v

Evidently, (A1) is equivalent to w(1) > w(0). Meanwhile, w(z) can be rewritten as

= X v |((a ey x P (a2
ee&, Ne={i,j} - v J -
= 3w (- ) P -y - ) < PR
ecE,Ne={i j} L ? J i

which yields that

Sz =Y vt x ((mf)'—(xf)”)gx%—F((JZ;)/—@;)”VX%

e€€, Ne={i,j}
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Recall that % =p§(l — pz)( which in turn implies that

%
82]95 _ . (f5) e (218 = ()
(0x0 ) = (1= 2p7)pi (1 — pf) { e } + i (1 —pf) )2
pg(l—pf) e/ reNI [ peN! e\l re e\ [ pe\’
- (L= 280 (LY () + () e = (Y ()

- 10575 x[?”a?¢+a??—2a??’?’]<0
where the equality holds if and only if ff = 0, or equivalently, z§ = 0. Similarly,
we have that ( < 0. These altogether indicate that w'(z) < 0. Moreover, from
(252) # (232)" and the postulated (x5)" > 0, we have that

20

(1)~ Gagpy)? < Tt fa()( Do

Therefore, w'(z) < 0 for all z € (0,1), which implies that w(1) < w(0). This contra-
dicts (Al]). m

Proof of Lemma [A2]

Proof. Suppose (z§})" = 0. By Lemma , (5))" = 0 for all 2" € X' (). Evidently,
each battlefield has at least one active player in the second-stage equilibrium, which
implies that (z7))” > 0.

Suppose, to the contrary, that (z§*)"” > 0 for some e, € &;,, with N = {ig, j, }.
Then player i has a profitable deviation. Specifically, suppose that he slightly reduces
(z5))" and increase (z3")" by the same amount. This does not change his winning odds
in battlefield e; but strictly increases his winning odds in battlefield e,. Therefore,
for all 2" € X(a), (25*)" = 0 for all e, € &.

It remains to show A, (z”) = 0. Thus far, we have shown that (z7)” = 0 and

(251)" > 0; together with (I)) and (2)), we can conclude X (") =0. =
Proof of Lemma [A3]

Proof. Evidently, each battlefield has at least one active player in the second-stage

equilibrium. There are two cases:
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(a) player i has an inactive opponent in some battlefield in one equilibrium. In this

case, by Lemma [A2] we have that \; = 0 across all equilibria.

(b) player i has an active opponent in all his battlefields in all equilibria. Note that,
for the pure-budget case, it is impossible that player ¢ remains inactive in all
his battlefields in any equilibrium. This implies that in any equilibrium, player
7 must be active in at lease one battlefield. Fix an equilibrium and consider one
such battlefield, say battlefield e, with N'¢ = {7, j}. It follows immediately that
zi,x5 > 0. By Lemma , both players ¢ and j exert the same effort—i.e., x¢
and z§—in all equilibria. Note that A; is uniquely determined by once we

know zf and z§. This implies that A; must be the same across all equilibria.
This concludes proof of the lemma. m
Proof of Lemma [A4]

Proof. We first prove part (i) of the lemma. Fixing e # eq, with N = {4, j},
can be rewritten as
e agfie

= ——t —andpi=1-—pf=
M= ey P

o f;

ot ff + sl
from which we can conclude that

pi  _ ailff
L—pf  offf

Taking the logarithm of both sides of the above equation and differentiating it with

respect to w® gives

1 dp; 1 dxf 1 dz§
pi(1—p) dweo— gfdweo  g§ dweo’

(A2)

Suppose z7,x§ > 0 at w®. Then, by continuity, z7, z§ > 0 in a neighborhood of

w®. Therefore, the first-order condition holds in the neighborhood, which gives
vpi (L= pi) = Aigi = Ajg5-
Again, taking the logarithm of both sides of the above equation and differentiating it
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with respect to w gives

1—2p¢  dp§ 1 d\ 1 dx 1 d\; 1 dx¢
D; 1% _ + X; _ J + J ) (AB)
(1 —pf)dwe  Njdwe — gim§dwe  Ajdwe  gimS dwe

Combining (A2) and (A3)), we have that

L d\ — 1-=2pf dpf 1 daj
Aidweo  pi(1—pf)dweo gims dwe

— 1= (0 2pym¢] g;nf ddjfo —(1- ng)m;gj;; dcffi. (A4)
Similarly, we have that
Aijddljjo = =1+ (1= 20 g;n jj; + (1 —2%)m Zg;nf dcgfo. (A5)
Combining and yields that
doe (L= (@0 = Dyms] g 4 (20F - Dms g
dweo 9T 1+ (m§ —m$)(pf — p5) .

Substituting into the above equation gives @
Next, we prove part (ii) of the lemma. The first-order condition in battlefield
ep becomes
W = iogfg = )‘jog;g'
Note that this condition holds in a neighborhood of w®. Taking the logarithm of
both sides of the above condition and differentiating it with respect to w® gives .

Last, we prove part (iii) of the lemma. For the pure-budget case, it is evident
that the left-hand side of is zero because 0; = 0. Further, > __ N z¢ = X implies
that the right-hand side—i.e. Zees dweo T s also zero, and thus ) holds. For the
pure-cost case, we have that \; = ¢,(X;) = Ci(zee/\/ ) leferentlatmg both sides
with respect to w® gives . This completes the proof. m

Proof of Lemma [A5]

Proof. First, consider Z;. It is straightforward to verify that all inequalities in
Lemma @ (iii) are strict under Assumption . 1’} together with . Z; can bounded
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from above by

i, daiy 1 1 d\ 1 d\
T, = 70 T )\T €0 T €o t - 0 L 70
1 dweo dwEO 20 (glo ) (mzo) (weo).l. )\1.0 dwe_o X )\1_0 dweo

PVCRN AN (ﬁ)

2 2
< (weo)T(mfoO)T % L d)‘jo < (weo)T « L d>‘jo
- 4 )\;O dweo | —  4p )\}L.O dweo | 7

where the first inequality follows from the AM-GM inequality; the third equality fol-
lows from ; the second inequality follows from Lemma @(ii); and the last inequality
follows from Assumption . This gives .

Next, consider Z,. By Lemma @(iii), we have that Z, < 0. This gives .

Last, consider Z3. By , 73 can be bounded from above by

vy A Ay dod'dN, dat dA dod)

dweo alwe0 - dweo dweo  dweo dwe  dweo dweo’
e#eg ieN€ ieNet

together with @, we can obtain that

7 < B dil Dy dat
— dweo dweo  dweo dweo

) [ ) - )] (3
Lt [mg')t = (me)7 ] [t = 1]

(we') (me))' [1 — ) - 1) T] (; Z;:z)
[ = ] [ - <psi>*]

(A6)

d 4
Next, we provide an estimate of the term (A% dwi )2.
5t
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@D, we can obtain that

1 dAjt

de (i (L RO = D s+ ) = Dl -2k

0< y = X ;

w A L [ meD)t = meD1] [t = (vh)1]
Recall from the definition of s that 1 ‘M:O > ﬁz—i . Simple algebra would verify
tht/\mdweo<0 2(p)t —1 >0, and

1Ay 1= e =D 1,
A dwo = ()T = 1) (me)T T A du

(A7)

Substituting (A7) into (A6|) yields that

A i s (2(p)" = 1) (m)! ( 1 d, )
3 = e e e o — e e
dweo dwe " dweo dweo 2(pH)t —1)° (m];)f AL duweo

To proceed, first, note that 2(p¢') — 1 > 0 implies that (w® )" < v /4. Further,
recall from the definition of ey that (w®)" < (w®)' for each battlefield e that satisfies
(w®)" < v¢/4. This implies that (w®)! < (w')!. Second, recall from the definition of

1 dAjg 1 _d),
s, we have that ‘ ; -l < A_gdw;o‘
0
- d\; : L
Combining (w®)! < (w®)T, % aos | < 5 425 and the above inequality gives
S

Al
(18). This completes the proof. m
Proof of Lemma [A6]

Proof. We first prove part (i) of the lemma. Carrying out the algebra, we can obtain

that e e
X, X,
+ _
Z Z dweo dweo Z Z w@o dweo +I +Ik ’
ieEN (k) e€&; ec&(k) ieNe
| S —

>0 <0

where the first inequality follows from @, and the second inequality follows from .
Therefore, we can conclude that I,j +Z, >0.

Part (ii) of the lemma follows immediately from (f]). For part (iii), by parts (i)
and (ii) of the lemma, we have that Zj + Z; > 0. Therefore, at least one of Z;

A6



and Z; is positive. Meanwhile, by Lemma @ at least one of Z;” and Z; is negative.
Therefore, Z;” and Z; have different signs.

Last, we prove part (iv). We consider the case of Zj > 0 > Z; (the analysis for
the case of Z; > 0 > Z is similar). Suppose that Z, < 0 for some k € {1,...,2(}.
By part (i) of the lemma, we have that Z,” > 0. Further, by part (ii) of the lemma,
we have that Z,_,, < 0. By the principle of mathematical induction, we can conclude
that Z;} > 0 and Z,; < 0 for each k € {0,...,2¢}. This completes the proof. =

Proof of Lemma [AT|

Proof. Recall ./\/l,j,k, M1 gy and My i1 as defined in , , and . By
@D, for each k € {1,...,2¢}, we have that

2

1 d\; 1 d)\; 1 d\
Tr = My, | — S Y bt A8
k Mk,k [)\lk d’u}eO] +Mk‘,k2+1 [)\Zk dwE()] [)\ik+1 dweo ] Y ( )

and

a1 1 d) 1 d)
T, = M: i) — Lk | A9
1 = Micii e [Aikﬂ dw60] M k41 [)\ik dw%] [MM dwe()] (A9)

For notational convenience, define M := Hiio M. 1. We first show that M,
and M have the same sign. By Lemma (iii) and (iv), either we have that Z;" > 0
and Z,, < 0 for all k& € {0,...,2(} or we have that Z,” < 0 and Z,, > 0 for all
k € {0,...,2¢}. In what follows, we focus on the former case (the analysis for the
latter case is similar). Evidently, we have M;’k < 0 from ; together with ,

we have that

1 d\ 1 d\,.,
Mk7k+1 [— k] [/\ s ] >0, Vk € {1,...,25}, (AlO)

. € . €
i, dweo inp AW

which in turn implies that

20

1 d\, 1 dh,

— 0.
H My 41 [)\ik dw%] [)\ T >

k=1 Ukt

The above inequality implies that MM [ 1 d/\io] [ L d/\”] > 0. Further, by

m dw®0 E dw*®0

AT



i,
dw*®o

Lemma |§|, we have that t > 0. These altogether indicate
that MMy, > 0.

Next, we show that My 41 and M have the same sign for all £ € {1,...,2(}.
By , we have that My 41 # 0. Therefore, there exists a battlefield e such
that N¢ = {iy, 141} and p§, # 1/2. Following a similar argument as in the previous

analysis for battlefield ey, we can show that MM}, ;11 > 0. This implies that My, ;41

0 —_—
i 0 and v

and M have the same sign, which concludes the proof. m

Proof of Lemma

Proof. We first prove part (i) of the lemma. By (A10), Piet1 gnd L P paye

. €, . €,
)‘Zk+1 dw*©0 )‘% dw*®0

the same sign. Further, it follows from ([A8) and the postulated Z,” > 0 that

M
k.k
M1 >
My kg1

By and , we have that

. 1 + (2p§,; — 1)?7sz+1 >,
1+ (m§, — mik+1)(pik - pik_H)

_Mg,k; - 2Mk,k+1 = E wm

ecE&Ne={igixs1}

B NIRT - Mt s : o .
which implies that W:fl > 2. Substituting the inequality into (A11)) gives (22)).
’ dX; ;
Next, we prove part (i) of the lemma. By (A10]), 2L and A%dAk have
'k

. €,
)‘%+1 dw®0

different signs. Further, by and , we have that

S —uem 1 — (2pf, — Dmg,
T+ (m§, —mg, )05, — pfk+1) -

e€&:Ne={ig,ixt1} kit

MI;Jrl,kJrl - 2Mk,k+1 =

Note that ./\/lzk < 0 from ([19)). These altogether indicate that

Mt (e + 24040) + (Ml;+1,k+1 - 2Mk,k+1> pi1 <0,

Combining the above inequality and (A8) and (A9) gives (23).
It remains to prove (24). For each e with N = {iy, 411}, define

dx;, ., dA\
+ _ Lk+1
L (e) = dweo dweo

and I,;rl(e) =

Tk41
dweo  dweo
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Further, define

Erprr ={e N = {ig,ips1}},

Eonm =1 N = {ig, i1}, L (e) > 0,T,,(e) <0},
513,k+1 = {6 PN =ik, ina b, I (e) < 0,Z;,,(e) > 0} )
51?,k+1 = {6 tN€ = {ik7ik+1}7zlj_(€> < O’Ik_+1(€) < 0} .

By (B), we have that Z," (e) +Z,, ; (e) < 0, which implies that it is impossible to have
both Z; (e) > 0 and Z,_, | (¢) > 0. Therefore, & p1 = & 1y UER k1 UER 411 Further,
Dcctirns L (€) = I > 0 implies that &, is non-empty.

Next, we claim that

_ 2 .
—Z, 4 (e) > Uk#z}j(e) + W fipr1, € € 51%,k+1- (A12)

T Hk

Carrying out the algebra, (A12)) is equivalent to

N mg, (L (2pf, — Dmg,)

For each e € &}, ,, we have that Z,"(e) > 0, which implies that pf, > 1/2 and

1— (20, — Dme_,
(2pfk — 1)ym¢

Tht1

Hi+1 2 e X

Therefore, (A12) holds if

1-— (2pfk — 1)m§ 1—2m; + (prk — 1)(mfk —ms _ +mEmé )

Tht1 Tht1 i V1

(2p§, — 1)ym - m¢ (1 + (2p5 — 1)ms) ’

Th+1 Tt1

which is equivalent to

2(1—p§k) 1+(2pfk—1)(m‘? —mi )| >0.

i Th41

The above inequality obviously holds as mg ,ms, € (0,1] and p§, € [0, 1].

Tk+1
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Moreover, we claim that

2
(e) > 'l::rlIZ(GL €€ &1 Ui (A13)

_Ik+1

If e € £ ., then (AI3) obviously holds. If otherwise e € £, following a similar
argument as in the proof of (23)), we can obtain that Z,_, , (e) < —Z;" (e) x ukff—i;uk <
—Z(e) x Q‘Z“f, which also yields (A13).

In summary, we have (A12)) and (A13]). This in turn implies that

Ly = Z I (e) + Z —Zy 11 (e)
eegé,kﬂ eeglz,k+lugl§,k+1
21541 e 2ftp41
> {TIZF(@) t e |+ i I,/ (e)
e€EL 11 e€ER 111U 1
241 e
=TT+ Z W g fk+1
Hi eegé,lﬂ_l
2
2 %Lﬁ + W k41,
k

where the last inequality follows from the fact that &, ,, is non-empty and w® > w*

for each e € 5,; 41 (by the definition of ey). This completes the proof. m

A10
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