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Abstract

This paper examines the optimal organizational rules governing the process of di-

viding a fixed surplus. The process is modeled as a sequential multilateral bargaining

game with costly recognition. The designer sets the voting rule—i.e., the minimum

number of votes required to approve a proposal—and the mechanism for proposer

recognition, which is modeled as a biased generalized lottery contest. We show that

for diverse design objectives, the optimum can be achieved by a dictatorial voting rule,

which simplifies the game into a standard biased contest model.

Keywords: Multilateral Bargaining; Costly Recognition; Contest Design

JEL Classification Codes: C70; C78; D72.

∗We thank Jidong Chen for helpful discussions, suggestions, and comments. Fu thanks the Singapore
Ministry of Education Tier-1 Academic Research Fund (R-313-000-139-115) for financial support. Wu thanks
the National Natural Science Foundation of China (Nos. 72222002 and 72173002), the Wu Jiapei Foundation
of the China Information Economics Society (No. E21100383), and the Research Seed Fund of the School of
Economics, Peking University, for financial support. Any errors are our own.

†Department of Strategy and Policy, National University of Singapore, 15 Kent Ridge Drive, Singapore,
119245. Email: bizfq@nus.edu.sg.

‡School of Economics, Sustainability Research Institute, Peking University, Beijing, China, 100871.
Email: zenan@pku.edu.cn.

§School of Economics, Peking University, Beijing, China, 100871. Email: zhuyuxuan@pku.edu.cn.

mailto:bizfq@nus.edu.sg
mailto:zenan@pku.edu.cn
mailto:zhuyuxuan@pku.edu.cn


1 Introduction

Organizations—firms, academic institutions, political parties, etc.—are political struc-

tures that “operate by distributing authority and setting a stage for the exercise of power

(Zaleznik, 1970).” Organizational power grants individuals preferred access to scarce re-

sources or wider oversight over vital activities (Black, Hollingsworth, Nunes, and Simon,

2022), which, in turn, motivates influencing efforts to acquire such power and leveraging

it to influence the outcome of resource allocation within an organization. In this paper,

we delve into the crafting of organizational rules that govern this process to promote the

organization’s interests.

We examine the interactions within an organization through the lens of a multilateral

sequential bargaining model with costly recognition (Yildirim, 2007). A pool of agents—

e.g., business units, academic departments, and R&D teams—divide a fixed surplus. In the

beginning of each period, agents invest in nonrefundable efforts to earn the right to propose,

securing an advantageous position in future resource allocation, which resembles a contest;

the proposer then suggests how to split the surplus, and the rest vote. If the proposal is

approved, the surplus is divided accordingly, and the game ends; otherwise, the process

restarts.

This dynamic is commonplace in organizational life. Executives strive to climb corporate

ladders, aiming for positions that offer significant decision-making influence. Within a com-

pany, more profitable business units generally receive priority in the allocation of corporate

resources. Internal research teams may propose competing approaches to new product de-

velopment; the favored team then guides the subsequent collective development effort (Deb,

Kuvalekar, and Lipnowski, 2023). Furthermore, political activists who provide exceptional

party services are often prioritized for electoral candidacy nominations (Mattozzi and Merlo,

2015).

The literature on multilateral bargaining has primarily assumed that the process is gov-

erned by exogenous organizational rules, which include a fixed voting rule and a fixed mech-

anism to recognize/select the proposer. Variations in the prevailing organizational rules can

significantly affect agents’ payoffs and reshape their incentives for strategic actions. This

leads to a crucial question that organizations must confront: How should an organization

strategically set its rules to induce agents’ behavior that advance its interests? For instance,

a firm’s decision protocol—which can either limit or expand its key executives’ power in

influencing distributive outcome—can arguably be tailored according to its own objectives.

Similarly, its evaluation and promotion mechanism—which selects the key executives—can

also be adjusted strategically. This paper addresses these questions.

1



Snapshot of the Model The bargaining protocol is abstracted as a k-majority voting

rule. A proposal needs at least k − 1 favorable votes from the peers for approval. Follow-

ing in the vein of Yildirim (2007), we model the mechanism to recognize the proposer as

a generalized Tullock contest: Each agent’s effort is transformed into an effective output

and an individual’s recognition probability is given by his output’s proportion to the total.

Agents are heterogeneous in that they differ in their effort costs, production technologies,

and patience levels.

A designer can choose the voting rule k and set the recognition mechanism with two

instruments. Specifically, she can impose a multiplicative bias to amplify or discount one’s

output; she can also create a headstart that adds to the output. Both of them can bias

the competition for recognition in favor of a subset of the agents. A biased mechanism

can intuitively mirror various measures that alter contenders’ relative competitiveness. For

instance, a preferred candidate in a company’s succession process often receives significant

positions—e.g., president or COO—which enhances their visibility to board members.

The design objective accommodates diverse preferences regarding the profile of agents’

efforts and their recognition probabilities. We assume that she values effort contributions

and thus the objective function (weakly) increases with each agent’s effort. For instance,

activists’ services benefit a political party, enhancing its overall strategy and appeal. Simi-

larly, a corporate executive’s performance not only propels their own career forward but also

contributes to the firm’s value. Likewise, efforts of a research team in product development

play a crucial role in the firm’s success. The conventionally assumed objectives in the lit-

erature on optimal contest design—such as total effort maximization and expected winner’s

effort maximization—are both special cases of our model. Notably, our objective function

accommodates concerns about the ex ante distribution of bargaining power, i.e., recognition

probability profile. For instance, the designer may have fairness concerns and value more

evenly distributed recognition opportunities.

Nature of the Problem The bargaining game with costly recognition can be viewed as a

contest with an endogenously determined prize. Agents balance their potential payoffs from

winning—being recognized—against those from losing. This difference effectively functions

as the prize spread that motivates their efforts. The payoffs, and consequently the prize

spread, ultimately hinge on their equilibrium continuation values. The winner offers a sub-

set of peers—namely, agents in a winning coalition—their equilibrium continuation values to

secure votes, whereas a loser receives his continuation value contingent on inclusion in a win-

ning coalition, or nothing if excluded. However, agents’ continuation values are endogenously

and reflexively determined by their efforts: Continuation values and efforts, along with their
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recognition probabilities and the formation of winning coalitions, are jointly determined in

the equilibrium.

This endogeneity substantially complicates the analysis of the game’s equilibrium proper-

ties and the effects of varying organizational rules on its equilibrium outcome, which nullifies

conventional approaches to optimal contest design. Suppose that we alter the voting rule—

e.g., by increasing k—while keeping the recognition mechanism constant. Two effects emerge.

First, there is a direct prize effect. An increase in k modifies each agent’s continuation value

and reshuffles all winning coalitions. Consequently, a proposer must secure more votes at

varied costs, which in turn changes the payoff for successful recognition. Moreover, this

alteration in continuation value impacts each agent’s demand for his vote and the proba-

bility of being included in others’ winning coalitions, thereby affecting his payoff when not

recognized. Second, an indirect rebalancing effect occurs as a rise in k shifts the balance in

the competition for recognition. This adjustment in prize spreads varies among heteroge-

neous agents, altering their incentives non-uniformly and potentially amplifying or reducing

asymmetries in their inherent competencies, such as differences in production technologies

and effort cost functions. The outcome is thus inherently uncertain.

Alternatively, modifying the recognition mechanism—which could bias the competition

in favor of one subset of agents while keeping k fixed—also triggers a rebalancing effect and

a prize effect, but through a different linkage. First, a direct rebalancing effect arises as a

biased recognition mechanism reshapes agents’ relative competitiveness. Second, an indirect

prize effect emerges: The tilted playing field changes each agent’s effort incentives and the

equilibrium outcome, thus altering his continuation value. This, in turn, affects the agent’s

respective payoffs for winning and losing, and consequently, his prize spread.

Clearly, these intricate interactions, driven by the bargaining process, do not occur in

contests with a fixed prize.

Summary of Results and Implications Despite the complications, our predictions are

straightforward. We demonstrate that when the designer can deploy both sets of instruments

(voting rule and recognition mechanism), the optimal approach always requires a dictatorial

voting rule with k = 1: A proposal is accepted with the consent of only the proposer.

As a result, each agent captures the entire surplus once recognized and receives nothing

otherwise. The game essentially becomes a standard static (biased) contest. Furthermore,

the designer sets the recognition mechanism without using additive headstarts, relying solely

on multiplicative biases to tilt the playing field.

As stated earlier, varying either the voting rule or the recognition mechanism would trig-

ger both a prize effect and a rebalancing effect, each with distinct underlying linkages. A
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dictatorial voting rule implies a winner-take-all distribution outcome, which generates the

largest and an equalized prize spread for every agent. However, the impact of this equalized

and fixed prize spread on the balance of the playing field remains indeterminate due to the

agents’ existing heterogeneity in terms of production technologies and effort costs, which

constitutes the aforementioned rebalancing effect. Nevertheless, the optimal balance of the

competition can always be adjusted by resetting the recognition mechanism—that is, the

contest rules—as our results indicate. We show that properly set multiplicative biases can

induce any desirable equilibrium outcome regarding effort supplies and the ex ante distribu-

tion of recognition opportunities, rendering additive headstarts redundant (Theorem 1).

It is worth noting that with k = 1, the bargaining game with costly recognition effectively

becomes a standard contest. Adjusting the recognition mechanism tilts the playing field but

no longer triggers the indirect prize effect. The voting rules and recognition mechanism play

distinctly different roles in achieving the optimum: The designer leaves the rebalancing role

exclusively to setting multiplicative biases, while maximizing incentives by setting k to 1.

To further illuminate the nature of the model, we consider two cases with restricted

settings, each limiting the designer’s choice to only one set of instruments. In the first

case, an unbiased recognition mechanism is fixed, and the designer sets the voting rules.

We demonstrate that a more inclusive voting rule—i.e., k > 1—may emerge to address

a sufficiently strong fairness concern (Example 1): The designer adjusts k to induce more

evenly distributed recognition opportunities. However, a unanimous voting rule could remain

suboptimal even if the designer predominantly prefers an egalitarian ex ante distribution of

recognition opportunities.

When the designer cannot adjust the voting rule but is allowed to alter the recognition

mechanism, the optimum may involve a positive headstart that boosts an agent’s effective

output (Example 2). This observation stands in stark contrast to the findings in our main

model and those obtained in the contest literature (e.g., Fu and Wu, 2020). We demonstrate

that a headstart triggers a unique effect that does not occur in a standard contest with a

constant prize.

The details will be discussed in depth after analytical results are presented.

Link to the Literature To the best of our knowledge, this paper provides the first formal

analysis of the optimal rule design in multilateral bargaining with costly recognition.

An extensive body of literature has developed from the canonical framework established

by Baron and Ferejohn (1989) to explore the process of distributive politics—e.g., Merlo

and Wilson (1995, 1998); Banks and Duggan (2000); Eraslan (2002); Eraslan and Merlo

(2002, 2017); Diermeier and Fong (2011); Diermeier, Prato, and Vlaicu (2015, 2016); and
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Evdokimov (2023). The majority of this literature assumes that the proposer is exogenously

and randomly selected from the agents.

A small, yet growing, strand of literature considers the selection of the proposer as

an integral part of the political process, examining the endogenous formation of bargaining

protocols. Yildirim (2007) models the process to select proposers as a contest in which agents

exert costly effort to gain power, pioneering the integration of a contest model (generalized

Tullock contest) with multilateral bargaining game to endogenize the recognition mechanism.

He analyzes the the effect of the prevailing voting rule on the equilibrium total effort, and

shows that with homogeneous agents, a more inclusive voting rule leads to lower total effort.

Yildirim (2010) compares total efforts and distributive outcomes between persistent and

transitory recognition procedures. Ali (2015) models the recognition process as an all-pay

auction.

Our paper extends the effort to incorporate recognition mechanisms into a holistic distri-

bution process and models the recognition process as an influencing competition. Our work

is closely related to Yildirim (2007). Similar to Yildirim, we adopt a generalized Tullock con-

test, but we introduce heterogeneous production technologies with fewer restrictions, as well

as nonlinear effort cost functions. Yildirim employs a fixed contest mechanism and assesses

the impact of varying voting rules on total efforts in the context of symmetric agents. In

contrast, we undertake a comprehensive exercise to design rules that govern the entire distri-

bution process for fully heterogeneous agents—i.e., setting protocols for both the recognition

process and voting—while assuming a general objective function concerned with effort and

recognition probability profiles.

Several papers examine the endogenous formation of bargaining protocol without using

contest approach. Diermeier, Prato, and Vlaicu (2015, 2016) employ a pre-bargaining pro-

cess to determine proposal power in the bargaining over policy. In McKelvey and Riezman

(1992, 1993); Muthoo and Shepsle (2014); and Eguia and Shepsle (2015), recognition proba-

bility is determined by seniority, which is endogenously voted on at the end of each session.

Kim (2019) assumes that current and past proposers are excluded from the pool of eligible

candidates when a round of bargaining fails to reach consensus. Jeon and Hwang (2022) as-

sume that an agent’s recognition probability and bargaining power depend on the previous

bargaining outcome in a dynamic legislative bargaining model, leading to an oligopolistic

outcome as the result of an evolutionary process. Agranov, Cotton, and Tergiman (2020)

examine, both theoretically and experimentally, a repeated multilateral bargaining model

in which the agenda setter can retain his power with the majoritarian support of other

committee members.

Our paper is naturally linked to the literature on contest design and, particularly, that
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on optimally biased contests. We develop a technique similar to that of Fu and Wu (2020)

and Fu, Wu, and Zhu (2023), who characterize the optimum without explicitly solving for

the equilibrium. Our analysis complements these studies by embedding the contest in a

multilateral sequential bargaining framework, which generates an endogenous prize spread.

The rest of this paper is structured as follows. Section 2 sets up the model and the

design problem. Section 3 characterizes the equilibrium. Section 4 solves the optimal design

problem and provides examples of the case with single instrument. Section 5 concludes.

Proofs and derivation for equilibria in the examples are collected in the Appendix.

2 Model Setup

The game proceeds in two stages. A set of agents interact in the second stage to divide a

fixed sum of surplus, which is modeled as a multilateral sequential bargaining process with

costly recognition, à la Yildirim (2007, 2010) and Ali (2015); a designer sets the rules in the

first stage that govern agents’ subsequent interaction.

2.1 Multilateral Sequential Bargaining with Costly Recognition

A set of n ≥ 2 agents, indexed by N := {1, 2, . . . , n}, decide how to divide a dol-

lar. In each period t = 0, 1, 2, . . . , one agent (proposer) makes a proposal st ∈ 4n−1 :=

{(s1,t, . . . , sn,t) : 0 ≤ si,t ≤ 1,
∑

i∈N si,t = 1}, where si,t denotes the share of the dollar each

agent i is to secure under this proposal. Agents simultaneously vote in favor of or against

the proposal. At the beginning of each period t, each agent exerts an effort xi,t ≥ 0 to vie

for the proposing right, which incurs a cost ci(xi,t).

We assume a “k-majority” voting rule—with 1 ≤ k ≤ n—for this sequential bargaining

process: The proposal is approved if at least k agents accept it (including the proposer).

Specifically, k = n implies a unanimous rule wherein the proposal can be vetoed by any

single dissident; k = bn/2c + 1 refers to a simple majority rule; with k = 1, the proposer

dictates the decision process.

Recognition Mechanism The proposer selection mechanism is modeled as a contest. In

each period t, fixing an effort profile xt := (x1,t, . . . , xn,t), the probability of an agent i’s
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being recognized as the proposer is given by

pi(xt) =


f̃i(xi,t)∑

j∈N f̃j,t(xj,t)
,
∑

j∈N f̃j(xj,t) > 0,

1

n
,

∑
j∈N f̃j(xj,t) = 0.

(1)

The function f̃i(·) is called impact function in the contest literature; it converts one’s effort

into his effective output in the competition, taking the form of

f̃i(·) := αifi(·) + βi, ∀ i ∈ N . (2)

The function fi(·) describes agent i’s actual production technology, while the multiplicative

bias αi ≥ 0 and additive headstart βi ≥ 0 are set by the designer as a part of the game’s

rules and will be detailed later.

Preferences and Payoffs Each agent is risk neutral and has a discount factor δi ∈ (0, 1).

Agents differ in the degrees of their patience. If a proposal is approved in period τ , an agent

i’s discounted payoff is1

Πi := δτi si,τ −
τ∑
t=0

δtici(xi,t).

Solution Concept The bargaining game can be described as
〈
(f̃i(·))i∈N , (ci(·))i∈N , δ, k

〉
,

where (f̃i(·))i∈N denotes the set of impact functions, (ci(·))i∈N the set of effort cost functions,

δ := (δ1, . . . , δn) the set of discounting factors, and k the voting rule.

We assume that agents use stationary strategies whereby for each period t, agents’ period-

t actions are independent of the history (see Theorem 1 for the details of the strategies).

We adopt the solution concept of the stationary subgame perfect equilibrium (SSPE) and

drop the time subscript t throughout. A strategy profile is an SSPE if it is stationary and

constitutes a subgame perfect equilibrium.

To ensure the equilibrium existence, we impose the following mild and standard regularity

conditions:

Assumption 1 For each i ∈ N , fi(·) and ci(·) are twice differentiable in (0,+∞), satisfying

fi(0) = 0, f ′i(·) > 0, f ′′i (·) ≤ 0, ci(0) = 0, c′i(·) > 0, and c′′i (·) ≥ 0.

1If no agreement is reached, agent i’s discounted payoff is Πi = −
∑+∞

t=0 δ
t
ici(xi,t).
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2.2 Rule Design: Instruments and Objectives

We now lay out the design problem faced by the designer.

Design Instruments The designer sets the voting rule that governs the bargaining pro-

cess, which is implemented by the choice of k, the minimum number of favourable votes

required for the proposal’s approval. Meanwhile, she can manipulate the mechanism of pro-

poser recognition by setting the contest rules, which determine the probability of each agent’s

recognition for every given effort profile and, in turn, affect their effort incentives.

Recall that each agent i’s impact function f̃i(·) is given by (2). The designer imposes the

multiplicative weights α ∈ Rn
+ \{(0, . . . , 0)}—which scale up or down one’s output—and ad-

ditive headstarts β ∈ Rn
+. One may view (α,β) as nominal scoring rules. Alternatively, they

can be viewed as the organizational resources assigned to agents that alter their productivity

or influence (see, e.g., Fu and Wu, 2022).

Both multiplicative weights α and additive headstarts β are broadly adopted in modelling

biased contests: Epstein, Mealem, and Nitzan (2011); and Franke, Kanzow, Leininger, and

Schwartz (2014), for instance, consider the former; Konrad (2002); Siegel (2009, 2014); and

Kirkegaard (2012) focus on the latter; Franke, Leininger, and Wasser (2018) and Fu and Wu

(2020) allow for both. It is noteworthy that α and β play subtly different roles in impacting

the contest’s outcome: α alter the marginal returns of agents’ efforts, while β directly add

to their effective output regardless of their efforts.

Design Objectives As will be shown later in Theorem 1, there is no delay in each SSPE,

and thus agents exert effort at most once on the equilibrium path. The designer chooses

(α,β, k) to maximize an objective function Λ(x,p), where x := (x1, . . . , xn) and p :=

(p1, . . . , pn) denote the profiles of equilibrium efforts and agents’ recognition probabilities,

respectively. The following regularity condition is imposed.

Assumption 2 Fixing p, Λ(x,p) weakly increases with xi for each i ∈ N .

By Assumption 2, we focus on the scenario in which agents’ efforts are productive and

accrue to the benefit of the designer. Consider, for example, internal R&D teams within

a corporation crafting innovative proposals to compete for leadership roles in new product

development, or executives enhancing their performance to climb the corporate ladder.

The objective function accommodates a diverse array of preferences. Consider, for exam-

ple, Λ(x,p) =
∑

i∈N xi − λ
∑

i∈N

∣∣pi − 1
n

∣∣, with λ ≥ 0, which clearly satisfies Assumption 2.

When λ = 0, this objective boils down to maximizing equilibrium total effort, which is

conventionally assumed in the contest design literature. When λ > 0, the designer’s payoff
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depends on the profile of agents’ recognition probabilities. The term
∑

i∈N

∣∣pi − 1
n

∣∣ is essen-

tially the mean absolute deviation of p, which increases in the dispersion of p. The function

thus depicts a preference for more equitable distribution of recognition opportunities, which

compels the designer to set rules to reduce
∑

i∈N

∣∣pi − 1
n

∣∣.2
Alternatively, consider Λ(x,p) =

∑
i∈N pixi, which is the expected winner’s effort. Max-

imizing the expected winner’s effort has gained increasing attention in the literature (e.g.,

Moldovanu and Sela, 2006; Barbieri and Serena, 2024). For instance, a firm often views

its succession race as a process to develop managerial talent; the firm might benefit from

the chosen successor’s investment in their areas of expertise, as the losing candidates might

pursue alternative career paths, especially in high-profile public firms. For instance, James

McNerney joined and Robert Nardelli, respectively, joined 3M and Home Depot after they

lost the race to succeed Jack Welch at General Electric.

3 Equilibrium Existence and Characterization

We now characterize the equilibrium. Let v := (vi)i∈N be the set of agents’ equilibrium

expected payoffs and consider stage-undominated voting strategies, such that agents vote as

if they were pivotal. Suppose that an agent is not recognized as the proposer, he accepts a

proposal if his share exceeds the discounted continuation value—i.e., si ≥ δivi—and rejects

it otherwise. The proposer, in contrast, needs to select k − 1 agents to form the least costly

winning coalition and offers to them their continuation values. His expected cost is

wi =
∑
j 6=i

ψijδjvj,

where ψij is the probability of agent i’s including j in his offer. For each j ∈ N , we further

define µj :=
∑

i 6=j ψijpi as agent j’s probability of being included in others’ winning coalitions

before a proposer is recognized.

For each agent i, the expected payoff conditional on being the proposer is 1 − wi and

that when not selected is µi
1−pi δivi. The agent’s equilibrium effort xi solves the maximization

problem on the right-hand side of the following Bellman equation:

vi = max
xi≥0

{
pi(xi,x−i)(1− wi) + [1− pi(xi,x−i)]×

µi
1− pi(xi,x−i)

δivi − ci(xi)
}
. (3)

2Eraslan and Merlo (2017) examine the distributive implications of voting rules. They show that una-
nimity may paradoxically lead to more unequal distributive outcome. It is noteworthy that in our context,
the designer’s fairness concern refers to her preference for ex ante distribution of bargaining power among
agents—i.e., the recognition probability profile—instead of ex post distribution of the surplus.
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The first-order condition with respect to xi is

c′i(xi)︸ ︷︷ ︸
marginal cost of effort

≥ f̃ ′i(xi)

f̃i(xi)
× pi(1− pi)×

effective prize spread︷ ︸︸ ︷(
1− wi −

µi
1− pi

δivi

)
︸ ︷︷ ︸

marginal benefit of effort

. (4)

Equations (3) and (4) depict the strategic nature of this game. The term 1−wi− µi
1−pi δivi

is the payoff differential between winning the competition for recognition and losing that; this

is thus the effective prize spread that motivates each contender’s effort. However, wi, pi, µi

and vi are all endogenously and jointly determined in the equilibrium, together with agents’

effort profile x = (x1, . . . , xn). These nuances complicate the analysis and differentiate

the model from a standard contest with a fixed prize or a standard multilateral sequential

bargaining game. Our analysis obtains the following.

Theorem 1 Suppose that Assumption 1 holds. For each game 〈(f̃i(·))i∈N , (ci(·))i∈N , δ, k〉,
there exists an SSPE characterized by (x,v) and {ψij}i 6=j. In the equilibrium, each agent

i ∈ N exerts effort xi in each period. If selected as the proposer, he forms a winning coalition

of k − 1 agents such that agent j is included with probability ψij and offers the agent δjvj.

Otherwise, he accepts a proposer’s offer if and only if his share is no less than δivi. The

equilibrium is unique when k = 1.

Theorem 1 establishes equilibrium existence of the game, which paves the way for optimal

rule design. Assuming f̃i(0) = 0, linear cost function, and weakly decreasing elasticity

xif̃
′
i(xi)/f̃i(xi) for each i ∈ N , Yildirim (2007) verifies equilibrium uniqueness in the game.

Our setting relaxes these restrictions, allowing for headstarts βi which could lead to f̃i(0) 6= 0,

nonlinear cost functions ci(·), and unrestricted elasticity conditions. The equilibria are, in

general, nonunique in our context.

Because of the nuances caused by the endogenous payoff structure, a closed-form solution

for the equilibrium is in general unavailable. This nullifies the usual implicit programming

approach to optimal design commonly used in the contest literature. We develop a technique

similar to Fu and Wu (2020), which enables us to characterize the optimum without explicitly

solving for the equilibrium.

4 Optimal Rule Design

We now characterize the optimal organizational rules. We first present the main results—

i.e., the optimum when the designer has full flexibility to adjust (α,β, k). We then consider
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two restricted cases, each limiting the designer’s choice to one set of instruments, either the

voting rule k or the recognition mechanism (α,β). The observations stand in contrast to

our main result and the conventional wisdom in the extant literature, which sheds further

light on the nature of this model.

4.1 Main Result

The designer chooses (α,β, k) to maximize the objective function Λ(x,p). As previously

noted, a change in either k or (α,β) catalyzes two effects.

A change in k alters each agent’s prize spread, triggering a prize effect : Both wi and
µi

1−pi δivi depend on k, as demonstrated by condition (4). Imagine a dictatorial voting rule

with k = 1, which yields wi = 0 and δivi = 0 since the proposer monopolizes the entire

surplus, leaving others with nothing. In this case, each agent enters a winner-take-all contest

with a prize spread of 1. Suppose that k increases to 2. This reduces the prize spread for

all, as wi must be strictly positive, allowing one to earn a positive payoff even when losing.

This prize effect is non-uniform across heterogeneous agents: Their wi and µi
1−pi δivi may

differ, which also respond to changes in k differently, implying a rebalancing effect. The

asymmetric changes in prize spreads affect agents’ relative competitiveness and incentives,

which in turn influences the equilibrium outcome of the competition for recognition—i.e.,

agents’ efforts and the recognition probability profile. To see this, suppose k increases from

1 to 2. Ceteris paribus, the most patient agent is unlikely to be included in any other agent’s

winning coalition, in which case his payoff for losing the competition remains unchanged,

implying that his prize incentive decreases less than those of others. However, the impact

on the balance of the competition remains ambiguous. The non-uniform decrease in prize

spreads could either exacerbate or alleviate the asymmetry across agents caused by differ-

ences in their production technologies and effort cost functions. The indirect rebalancing

effect emerges.

A change in the recognition mechanism (α,β) directly alters agents’ relative compet-

itiveness and the balance of the playing field. This, in turn, affects agents’ continuation

values, reshuffles their respective winning coalitions, and alters the costs of buying votes.

Consequently, an indirect prize effect is triggered, and its effect on the equilibrium outcome

is also ambiguous and complex.

The optimum moderates and reconciles the interaction of these forces. Our analysis

concludes the following.

Theorem 2 Suppose that Assumptions 1 and 2 hold. When the designer can flexibly choose

(α,β, k), the optimum involves a dictatorial voting rule (k = 1) and zero headstart (β = 0).
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By Theorem 2, the sequential bargaining game with costly recognition simplifies to a

standard static contest with a prize spread of 1. A proposer does not need to form a winning

coalition and relinquish his share. As a result, agents’ patience levels no longer affect the

equilibrium outcome.

The logic of these results can be interpreted in light of the interactions between the prize

and rebalancing effects postulated earlier. A dictatorial voting rule (k = 1) results in a

maximized prize spread, since both wi and µi
1−pi δivi are zero. This provides the largest prize

incentive to the agents and tempts them to strive for recognition. The ambiguous indirect

effect on the balance of the playing field, however, can be corrected, if necessary, by adjusting

the recognition mechanism (α,β).

As mentioned above, varying the recognition mechanism (α,β) also entails an ambiguous

indirect prize effect, since a tilted competition affects agents’ prize spreads. However, this

effect is muted when k is set to 1. A dictatorial voting rule generates a fixed prize spread of

1, which allows the designer to set (α,β) for optimally balanced playing field while isolating

further complications on agents’ prize spreads.

Under a dictatorial voting rule k = 1, the bargaining game with costly recognition boils

down to a standard contest. The findings from the contest literature (Fu and Wu, 2020) can

be reinstated: The designer can induce any profile of equilibrium winning odds using α, and

additive headstarts β are rendered redundant.

In summary, the two sets of instruments play different roles: The voting rule—with

k = 1—maximizes the prize spread, while the multiplicative biases α optimally exploit

agents’ heterogeneity in terms of innate abilities and sets the optimal competitive balance.

4.2 Further Discussions

Next, we examine two cases with restricted settings to shed further light on the nature

of the model. Consider the objective function

Λ(x,p) =
∑
i∈N

xi − λ
∑
i∈N

∣∣∣∣pi − 1

n

∣∣∣∣ , with λ > 0. (5)

We first consider a case in which the designer can only vary voting rule—i.e., choosing

k ∈ {1, . . . , n}—while keeping the recognition mechanism neutral—i.e., α = (1, . . . , 1) and

β = (0, . . . , 0). We then examine a scenario in which the voting rule is fixed with k = 2 and

the designer is allowed to set the contest rule (α,β).
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Rule Design by Voting Rule under Fixed Recognition Mechanism Fix a neutral

recognition mechanism α = (1, . . . , 1) and β = (0, . . . , 0). We explore the optimal vot-

ing rule. We show that a dictatorial voting rule can be rendered suboptimal under this

circumstance.

Example 1 Suppose that n = 3, fi(xi) = xi, ci(xi) = cixi with c = (49
60
, 48

60
, 47

60
), and δ =

(4
7
, 4

8
, 4

9
). The recognition mechanism is fixed and required to be neutral, with α = (1, 1, 1)

and β = (0, 0, 0). The designer chooses k ∈ {1, 2, 3} to maximize her objective function (5).

The equilibria under different voting rules are depicted in Table 1.

k = 1 k = 2 k = 3

Equilibrium efforts 5
6
(23

72
, 24

72
, 25

72
) (1

4
, 1

4
, 1

4
) 405

653
(23

72
, 24

72
, 25

72
)

Total effort 5
6

3
4

405
653

Winning probability (23
72
, 24

72
, 25

72
) (1

3
, 1

3
, 1

3
) (23

72
, 24

72
, 25

72
)

Equilibrium payoff
((

23
72

)2
,
(

24
72

)2
,
(

25
72

)2
)

( 7
60
, 8

60
, 9

60
) 486

653

(
7
3

(
23
72

)2
, 8

4

(
24
72

)2
, 9

5

(
25
72

)2
)

Designer payoff 5
6
− λ

36
3
4

405
653
− λ

36

Table 1: Equilibrium Outcomes in Example 1.

When k = 1, all three agents have an effective prize spread of 1. Given fi(xi) = xi for all

i ∈ {1, 2, 3}, agents’ relative competitiveness is determined entirely by the heterogeneity in

their effort costs. Consequently, agents’ equilibrium winning probabilities would be ranked

as p1 < p2 < p3, with agent 3 being the frontrunner given his lowest marginal effort cost

(c3 < c2 < c1).

Suppose instead that k increases to 2. As mentioned earlier, this change generates a

prize effect and further triggers a rebalancing effect. Agents’ patience δi now influences their

valuations of the win: Ceteris paribus, the most patient agent is least likely to be included in

a winning coalition when losing the competition, thus facing the largest prize incentive. The

non-uniform change in prize spreads alters the balance of the playing field. In this specific

example, a more patient agent also has a higher marginal effort cost (c3 < c2 < c1 and

δ3 < δ2 < δ1). As a result, setting k = 2 mitigates the imbalance caused by the heterogeneity

in effort costs. The more inclusive voting rule—i.e., k = 2—reduces agents’ prize valuations,

which disincentivizes efforts but offsets the asymmetry caused by heterogeneous effort cost

functions.

In this particular case, a voting rule k = 2 perfectly levels the playing field, enabling

all agents to win with the same probability. Consequently, the designer would abandon

13



dictatorship if λ is sufficiently large—i.e., with a strong preference for evenness—since this

leads to the most equally distributed recognition probabilities.

This results stand in contrast to the observations obtained in the baseline model. When k

and (α,β) are set together, the optimal balance of the contest is addressed by setting (α,β)

to achieve desirable distribution outcome. However, this is infeasible in this example. The

designer has to adjust the voting rule to exploit the indirect rebalancing effect to achieve a

more even outcome while sacrificing effort supplies.

Rule Design with Recognition Mechanism under Fixed Voting Rule We then

examine a case with fixed voting rule. We demonstrate that additive headstarts can be

rendered a part of the optimal rules.

Example 2 Suppose that n = 3, k = 2, fi(xi) = xi, and ci(xi) = cixi with (c1, c2, c3) =

(1, 1, c). Let (δ1, δ2, δ3) = (3
8
, 1

2
, 12

13
). Assume that λ is sufficiently large and c is sufficiently

small, with λ� 1
c
� 1.

Intuitively, the optimal recognition mechanism requires p1 = p2 = p3 = 1/3 when λ

is sufficiently large (i.e., λ � 1
c
). Moreover, the total effort depends crucially on agent

3 when he is excessively strong (i.e., 1
c
� 1). These observations enable us to conclude

α∗ = (62Y
35
, 62Y

37
, 62Y c

39
) and β∗ = (0, 17Y

222
, 0), where Y > 0 is an arbitrary positive constant,

in the optimal recognition mechanism. The game yields an equilibrium outcome of x =

( 70
372
, 57

372
, 78

372c
) and p = (1

3
, 1

3
, 1

3
). The designer’s payoff is Λ = 127

372
+ 78

372c
.

Agent 1 Agent 2 Agent 3
Equilibrium efforts 70/372 57/372 78/(372c)
Winning probability 1/3 1/3 1/3
Equilibrium payoff 56/372 72/372 39/372
Winning coalition {1, 2} {1, 2} {1, 3}

Table 2: Equilibrium Outcomes in Example 2.

The prediction of Example 2 departs from the findings of the extant literature on contest

design. Fu and Wu (2020), for instance, formally establish that headstart is suboptimal for

a design objective function (5). This contrast reveals how the endogenous prize structure

differentiates the game from a standard contest.

With k = 2, varying the recognition mechanism triggers both the direct rebalancing

effect and the indirect prize effect. The designer values both efforts and an even distribution

of recognition opportunities. The two concerns could be at odds, but the use of headstart

provides an avenue to achieve both through the indirect prize effect.
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Note that in this setting, c1 = c2 > c3 and δ1 < δ2 < δ3: Agent 3 is ex ante the strongest

contender, followed by agent 2, then agent 1. The designer would benefit if agent 3 can be

sufficiently incentivized given his low effort cost. As the most patient agent, agent 3 will

not be included in any other’s winning coalition (see Table 2), which tends to amplify his

prize spread and incentivize his effort. However, his prize spread also depends on the cost of

buying votes, i.e., wi. By Table 2, he would include agent 1 in his winning coalition, offering

the latter’s continuation value for his approval. To more effectively incentivize agent 3, the

designer may reduce agent 1’s continuation value—or equivalently, his expected payoff—to

enlarge agent 3’s prize spread.

Further, by Table 2, agent 1 would buy agent 2’s vote upon being the proposer. To reduce

agent 1’s equilibrium payoff, the designer needs to increase agent 2’s continuation value. This

can be achieved by awarding either a positive headstart β2 > 0 to agent 2 or assigning a

larger multiplicative α2. However, the former is effective than the latter in this regard. Both

approaches increase agent 2’s recognition probabilities and improve his payoffs. However, a

larger α2 increases the marginal benefit of effort, which promotes his effort supply; effort is

costly and reduces agent 2’s payoff. In contrast, a headstart increases agent 2’s recognition

probability without eliciting more effort, which more effectively boosts agent 2’s payoff, while

increasing agent 1’s vote-buying cost and diminishing his continuation value.

These effects stem from the dynamic bargaining process and are absent in a simple static

contest, in which case the prize spread is exogenous and independent of the rule of the

recognition mechanism (α,β). In a standard contest, the equilibrium is governed by the

first-order condition

c′i(xi)︸ ︷︷ ︸
marginal cost of effort

≥ f̃ ′i(xi)

f̃i(xi)
× pi(1− pi)× fixed prize spread︸ ︷︷ ︸

marginal benefit of effort

.

Fu and Wu (2020) verify that setting α alone can induce any desirable contest outcome;

multiplicative biases α can more effectively motivate efforts than additive headstarts β

because of the former’s direct impact on marginal benefits of efforts, rendering β redundant.

The same logic applies in the current framework with k = 1. However, with k ≥ 2, in addition

to the first-order condition (4), agents’ behavior is also subject to the Bellman equation (3):

An agent’s equilibrium effort affects his expected payoff, as well as his continuation value,

which in turn alters the overall equilibrium through its impact on others’ prize valuations

(effective prize spreads). In this particular example, varying β creates an opportunity for

the designer to exploit the endogenous payoff structure of the game through the indirect

prize effect.
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5 Concluding Remarks

In this paper, we explore the design of optimal organizational rules that govern a se-

quential multilateral bargaining game with costly recognition, in which the right to propose

a plan for dividing resources is determined by a contest. We consider two sets of design

instruments: (i) the voting rule that governs how proposals are accepted or rejected; and (ii)

the recognition mechanism that determines how the proposer is selected based on agents’

efforts. When both sets of instruments are deployed together, the optimum always involves

a dictatorial voting rule, which simplifies the bargaining game with costly recognition into a

standard contest.
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Appendix: Proofs

Proof of Theorem 1

Proof. We first characterize the SSPE assuming its existence, then prove equilibrium exis-

tence.

Equilibrium Characterization Denote by V ∆ the k-th lowest continuation value. Let

N 1 := {i ∈ N : δivi < V ∆}, N2 := {i ∈ N : δivi = V ∆}, and N3 := {i ∈ N : δivi > V ∆}.
Evidently, agent i, when becoming the proposer, buys out the votes of the cheapest “winning

coalition”—i.e., N1 and a subset of N2, from which we can conclude

ψij


= 0, j ∈ N3 or i = j,

= 1, j ∈ N1 and i 6= j,

∈ [0, 1], otherwise,

and µi


= 0, i ∈ N3,

∈ [0, 1− pi], i ∈ N2,

= 1− pi, i ∈ N1.

(6)

Define

VL := 1−
∑
j∈N1

δjvj − (k −|N1|)V ∆. (7)

His expected cost is then

wi =

 1− VL − δivi, i ∈ N1,

1− VL − V ∆, otherwise.

The effective prize spread 1− wi − µi
1−pi δivi in (4) can be expressed as

1− wi −
µi

1− pi
δivi = VL +

1− µi − pi
1− pi

V ∆ =


VL, i ∈ N1,

VL + 1−pi−µi
1−pi V ∆, i ∈ N2,

VL + V ∆, i ∈ N3.

(8)

We are ready to lay out the conditions for equilibrium characterization. An SSPE can

be characterized by (x,v,p,µ, VL, V
∆). Combining (4) and (8) yields

c′i(xi)f̃i(xi)

f̃ ′i(xi)
≥ pi(1− pi)

(
VL +

(1− pi − µi)V ∆

1− pi

)
. (9)

Next, consider the expected payoff vi. By (3), we have

vi = pi(1− wi) + µiδivi − ci(xi) =


1

1−δi

(
piVL − ci(xi)

)
, i ∈ N1,

V ∆

δi
, i ∈ N2,

pi(VL + V ∆)− ci(xi), i ∈ N3.

(10)
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Combining (3), (6), and (10) yields

µi


= 1− pi, i ∈ N1,

∈ [0, 1− pi] solves V ∆

δi
= piVL + (µi + pi)V

∆ − ci(xi), i ∈ N2,

= 0, i ∈ N3.

(11)

Each agent chooses exactly k−1 agents in his winning coalition—i.e.,
∑

j∈N ψij = k−1, ∀i ∈
N . Therefore, ∑

i∈N

µi =
∑
i∈N

∑
j∈N

ψjipj =
∑
j∈N

pj
∑
i∈N

ψji =
∑
j∈N

(k − 1)pj = k − 1. (12)

Last, (7) can be rewritten as

VL +
∑
i∈N1

(δivi) +
(
k −|N1|

)
V ∆ = 1. (13)

To characterize an SSPE, it suffices to find (x,v,p,µ, V ∆, VL) that satisfies (9)-(13).

Equilibrium Existence Let Y :=
∑

i∈N f̃i(xi). By (1), we have pi = f̃i(xi)/Y , which

implies that

xi = f̃−1
i (Y pi), for pi ∈

[
f̃i(0)/Y, 1

]
, (14)

and ∑
i∈N

pi = 1. (15)

Substituting (14) into (9) yields

Y c′i

(
f̃−1
i (Y pi)

)
f̃ ′i

(
f̃−1
i (Y pi)

) ≥ (1− pi)(VL + V ∆)− µiV ∆,with equality holding if pi >
f̃i(0)

Y
. (16)

Rewriting (11) and (12) and substituting (10) into (13) yield

µi =
1

V ∆
med

{
0, V ∆(1− pi),

V ∆

δi
− pi(VL + V ∆) + ci

(
f̃−1
i (Y pi)

)}
, (17)

∑
i∈N

µi = k − 1, (18)

and ∑
i∈N1

δi
1− δi

[
piVL − ci

(
f̃−1
i (Y pi)

)]
+
(
k −|N1|

)
V ∆ + VL = 1, (19)

where med{·, ·, ·} gives the median of the input.

20



To prove equilibrium existence, it suffices to show that there exists (p,µ, Y, V ∆, VL) to

satisfy conditions (15)-(19). The proof consists of four steps. First, fixing (Y, V ∆, VL), we

show that there exists a unique (p,µ) to satisfy (16) and (17). Second, fixing (V ∆, VL),

there exists Y ≥
∑

i∈N f̃i(0) to satisfy (15). Third, fixing VL, there exists V ∆ to satisfy (18).

Last, we show that there exists VL to satisfy (19).

Step I Substituting (17) into (16) yields

Y c′i
(
f̃−1
i (Y pi)

)
f̃ ′i
(
f̃−1
i (Y pi)

) ≥med

{
(1− pi)(VL + V ∆), (1− pi)VL, VL + V ∆ − V ∆

δi
− ci(f̃−1

i

(
Y pi)

)}
,

(20)

with equality holding if pi >
f̃i(0)
Y

.

Let

φ(pi) :=
Y c′i
(
f̃−1
i (Y pi)

)
f̃ ′i(f̃

−1
i (Y pi))

−med

{
(1− pi)(VL + V ∆), (1− pi)VL, VL + V ∆ − V ∆

δi
− ci

(
f̃−1
i (Y pi)

)}
.

By Assumption 1 and (2), f̃i(·) is increasing and concave, implying that φ(·) strictly increases

with pi. Therefore, if φ
( f̃i(0)

Y

)
≥ 0, or equivalently,

Y c′i(0)

f̃ ′i(0)
≥ med


(

1− f̃i(0)

Y

)
VL,

(
1− f̃i(0)

Y

)
(VL + V ∆), VL + V ∆ − V ∆

δi

 , (21)

then pi = f̃i(0)
Y

. Otherwise, if φ
( f̃i(0)

Y

)
< 0, or equivalently,

Y c′i(0)

f̃ ′i(0)
< med


(

1− f̃i(0)

Y

)
VL,

(
1− f̃i(0)

Y

)
(VL + V ∆), VL + V ∆ − V ∆

δi

 , (22)

then pi >
f̃i(0)
Y

; moreover, pi is uniquely pinned down by φ(pi) = 0, or equivalently,

Y c′i
(
f̃−1
i (Y pi)

)
f̃ ′i(f̃

−1
i

(
Y pi)

) = med

{
(1− pi)(VL + V ∆), (1− pi)VL, VL + V ∆ − V ∆

δi
− ci

(
f̃−1
i (Y pi)

)}
.

(23)

Further, µi can be uniquely solved from (17). Therefore, fixing (Y, V ∆, VL), there exists

unique pair (pi, µi) to satisfy (16) and (17), which we denote by
(
pi(Y, V

∆, VL), µi(Y, V
∆, VL)

)
with slight abuse of notation.
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Step II We show that fixing (V ∆, VL) and
{
pi(Y, V

∆, VL), µi(Y, V
∆, VL)

)
}i∈N , there exists

Y ≥
∑

i∈N f̃i(0) to satisfy (15). By definition of pi(Y, V
∆, VL), pi(Y, V

∆, VL) ≥ f̃i(0)
Y

, which

implies ∑
i∈N

pi

(∑
j∈N

f̃j(0), V ∆, VL

)
≥ 1.

Next, we claim that

lim
Y→+∞

∑
i∈N

pi(Y, V
∆, VL) = 0.

Suppose f̃ ′i(0) < +∞. Then (21) holds as Y approaches infinity, in which case pi = f̃i(0)
Y

and

lim
Y→+∞

pi(Y, V
∆, VL) = lim

Y→+∞

f̃i(0)

Y
= 0.

Suppose f̃ ′i(0) = +∞. Then (22) holds for all Y and pi(Y, V
∆, VL) solves (23). As Y

approaches infinity, the right-hand side of (23) is finite; therefore, the left-hand side must

be finite, indicating that pi(Y, V
∆, VL) approaches 0.

By the intermediate value theorem, there exists Y ≥
∑

i∈N f̃i(0) such that∑
i∈N

pi(Y, V
∆, VL) = 1.

In what follows, we denote the largest Y determined by (V ∆, VL) by Y (V ∆, VL).

Step III Fixing VL, Y (V ∆, VL) and
{
pi(Y, V

∆, VL), µi(Y, V
∆, VL)

)
}i∈N , we show that there

exists V ∆ such that (18) holds, i.e.,∑
i∈N

µi

(
Y (V ∆, VL), V ∆, VL

)
= k − 1. (24)

First, consider the case where V ∆ approaches 0. For each i ∈ N , when pi = f̃i(0)
Y

, we

have that

lim
V ∆↘0

µi

(
Y (V ∆, VL), V ∆, VL

)
= lim

V ∆↘0

1

V ∆
med

0, V ∆

(
1− f̃i(0)

Y (V ∆, VL)

)
,
V ∆

δi
− f̃i(0)

Y (V ∆, VL)
(VL + V ∆)

 = 0,

where the second equality follows from the fact that V ∆

δi
− f̃i(0)

Y (V ∆,VL)
(VL +V ∆) ≤ 0 ≤ V ∆

(
1−

f̃i(0)
Y (V ∆,VL)

)
as V ∆ approaches 0.

When pi >
f̃i(0)
Y

, by (17), µi
(
Y (V ∆, VL), V ∆, VL

)
= 0 for sufficiently small V ∆. Therefore,
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we have that

lim
V ∆↘0

∑
i∈N

µi

(
Y (V ∆, VL), V ∆, VL

)
= 0.

Next, consider the case where V ∆ approaches infinity. For each i ∈ N , we have that

0 ≤V ∆

[
1− pi

(
Y (V ∆, VL), V ∆, VL

)]
≤V

∆

δi
− pi

(
Y (V ∆, VL), V ∆, VL

)
(VL + V ∆) + ci

(
f̃−1
i

(
Y (V ∆, VL)pi

(
Y (V ∆, VL), V ∆, VL

)))
;

together with (17), we can obtain that

µi

(
Y (V ∆, VL), V ∆, VL

)
= 1− pi

(
Y (V ∆, VL), V ∆, VL

)
, as V ∆ → +∞.

Therefore,

lim
V ∆→+∞

∑
i∈N

µi

(
Y (V ∆, VL), V ∆, VL

)
= lim

V ∆→+∞

∑
i∈N

[
1− pi

(
Y (V ∆, VL), V ∆, VL

)]
= n− 1.

Note that µi(Y, V
∆, VL) and Y (V ∆, VL) are continuous for all i ∈ N , and 0 ≤ k− 1 ≤ n− 1.

Therefore, there exists V ∆ ≥ 0 to satisfy (24). In what follows, we denote the largest V ∆

determined by VL by V ∆(VL).

Step IV We show that there exists VL ∈ [0, 1] to satisfy (19), i.e.,

∑
i∈N1

δi
1− δi

[
piVL − ci

(
f̃−1
i (Y pi)

)]
+
(
k −|N1|

)
V ∆ + VL = 1, (25)

where V ∆ = V ∆(VL), Y = Y (V ∆, VL), and pi = pi(Y, V
∆, VL) for i ∈ N , as defined above.

The left-hand side of (25) is non-negative; moreover, it is no less than 1 when VL = 1. To

conclude the proof, it suffices to show that limVL↘0 V
∆(VL) = 0, from which we can conclude

that the left-hand side of (25) approaches 0 as VL ↘ 0.

Suppose, to the contrary, that limVL↘0 V
∆(VL) > 0. Then, as VL ↘ 0, we have that

0 ≤ V ∆(1− pi) <
V ∆

δi
− pi(VL + V ∆) + ci

(
f̃−1
i (Y pi)

)
, ∀ i ∈ N .

Recall that N2 is nonempty by definition. That is, there exists some agent j ∈ N2. By (17),

we have

V ∆(1− pj) ≥
V ∆

δj
− pj(VL + V ∆) + cj

(
f̃−1
j (Y pj)

)
.

A contradiction.
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Proof of Theorem 2

Proof. We first show that the optimum can be achieved by setting k = 1. It suffices to show

that for each (α,β, k) and a resulting equilibrium, there exists (α̂, β̂) such that (α̂, β̂, 1)

induces the same equilibrium effort profile x and recognition probabilities p.

By (1), (2) and (9), we have

pi =
αifi(xi) + βi∑

j∈N
[
αjfj(xj) + βj

] ,
and

c′i(xi)
αifi(xi) + βi
αif ′i(xi)

≥ pi(1− pi)

(
VL +

(1− pi − µi)V ∆

1− pi

)
, (26)

with equality holding if xi > 0.

We construct (α̂, β̂) as follows. For xi = 0, we set (α̂i, β̂i) = (0, pi). For xi > 0, note by

(13), we have that

1 =
∑
i∈N1

(δivi) + (k −|N1|)V ∆ + VL ≥ V ∆ + VL, (27)

where the inequality follows from vi ≥ 0 and |N1| ≤ k − 1. Combining (26) and (27) yields

c′i(xi)fi(xi)

f ′i(xi)
≤ c′i(xi)

αifi(xi) + βi
αif ′i(xi)

= pi(1− pi)

(
VL +

(1− pi − µi)V ∆

1− pi

)
≤ pi(1− pi).

Define θ̂i := pi(1− pi)f ′i(xi)/c′i(xi)− fi(xi). The above inequality indicates θ̂i ≥ 0. Set

(
α̂i, β̂i

)
:=

(
pi

fi(xi) + θ̂i
, α̂iθ̂i

)
. (28)

It remains to verify that (x,p) is the unique equilibrium effort profile and recognition

probabilities under (α̂, β̂, 1). When k = 1, the game degenerates to a standard contest with

prize value of unity. It suffices to show that

pi =
α̂ifi(xi) + β̂i∑

j∈N

[
α̂jfj(xj) + β̂j

] , (29)

and xi solves

max
xi≥0

α̂ifi(xi) + β̂i∑
j∈N

[
α̂jfj(xj) + β̂j

] − ci(xi). (30)

Note that pi = α̂ifi(xi) + β̂i for all i ∈ N by construction (see, e.g., (28)). Therefore,∑
j∈N (α̂jfj(xj) + β̂j) =

∑
j∈N pj = 1, which implies (29).
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Next, we verify that xi solves the maximization problem (30). For i ∈ N with xi = 0, it

is evident that choosing xi = 0 dominates xi > 0 under (α̂, β̂, 1) because α̂i = 0. For i ∈ N
with xi > 0, by (28), we have

c′i(xi)
α̂ifi(xi) + β̂i
α̂if ′i(xi)

= c′i(xi)
fi(xi) + θ̂i
f ′i(xi)

= pi(1− pi),

which is exactly the first-order condition for (30).

The above analysis shows that the optimum can be achieved by k = 1, in which case

the game reduces to a standard static contest. By Theorem 2 in Fu and Wu (2020), the

optimum can be achieved by choosing multiplicative biases α only and setting headstart β

to zero under Assumption 2.

Derivation for Equilibria in Example 1

First, consider the case of k = 1. The game reduces to a static Tullock contest. Let

Y := x1 + x2 + x3. The equilibrium conditions can be derived as

Y ci = 1− pi,

from which we can solve for the aggregate effort Y and the equilibrium winning probabilities

p := (p1, p2, p3), and equilibrium efforts x := (x1, x2, x3) as follows:

Y =
2∑
i∈N ci

=
5

6
,

p = 1− Y c =

(
23

72
,
24

72
,
25

72

)
,

and

x = Y p =
5

6

(
23

72
,
24

72
,
25

72

)
,

Next, consider the case of k = 2. The equilibrium conditions in the proof of Theorem 1—

i.e., conditions (14), (15), (16), (17), (18), and (19)—for this example can be written as

follows:

Y pi = xi,∑
i∈N

pi = 1,

Y ci = (1− pi)(VL + V ∆)− µiV ∆,

µi =
1

δi
− pi −

piVL − cixi
V ∆

,∑
i∈N

µi = 1,
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VL + 2V ∆ = 1.

It can be verified that p = (1
3
, 1

3
, 1

3
), x = (1

4
, 1

4
, 1

4
), µ = ( 7

48
, 16

48
, 25

48
), VL = 13

15
, and V ∆ = 1

15

constitute an SSPE of the game. The equilibrium of the case of k = 3 can be similarly

verified.

Derivation for Optimal Recognition Mechanism in Example 2

Next, we prove the optimality of (α∗,β∗) in Example 2. When the designer sufficiently

concerns the profile of agents’ recognition probabilities—i.e., when λ � 1/c—the optimal

equilibrium winning probability profile must be p = (1
3
, 1

3
, 1

3
) and the designer’s payoff at

p = (1
3
, 1

3
, 1

3
) is Λ = x1 + x2 + x3. When c is sufficiently small, agent 3 is excessively strong

and the designer’s payoff is mainly determined by x3. Therefore, it suffices to show that

(α∗,β∗) maximizes x3 among all rules (α,β) that induce p = (1
3
, 1

3
, 1

3
).

Fix p = (1
3
, 1

3
, 1

3
). We first rewrite the equilibrium conditions in the proof of Theorem 1—

i.e., conditions (14)-(19). Evidently, condition (15) is satisfied and condition (14) becomes:

α∗ixi + β∗i =
Y

3
, ∀ i ∈ {1, 2, 3}. (31)

Next, consider condition (16). The condition holds with equality for xi > 0. Further, if

xi = 0 for some i ∈ N and the strict inequality holds, we can increase αi until the equality

holds and at the same time keep the equilibrium effort profile x and recognition probabilities

p unchanged. Therefore, we can assume that equality holds for all agents and the condition

becomes
Y ci
α∗i

=
2(VL + V ∆)

3
− µiV ∆, ∀ i ∈ {1, 2, 3}. (32)

Substituting (32) into (31) yields

3cixi ≤
2(VL + V ∆)

3
− µiV ∆, ∀ i ∈ {1, 2, 3}, (33)

with equality holding if β∗i = 0. To establish the optimality of headstarts, it suffices to show

that the inequality is strict for at least one agent.

Conditions (17), (18), and (19) are

µi =


2
3
≤ 1

δi
− 1

3
− VL

3V ∆ + cixi
V ∆ , i ∈ N1,

1
δi
− 1

3
− VL

3V ∆ + cixi
V ∆ ∈

[
0, 2

3

]
, i ∈ N2,

0 ≥ 1
δi
− 1

3
− VL

3V ∆ + cixi
V ∆ , i ∈ N3,

(34)

µ1 + µ2 + µ3 = 1, (35)

and ∑
i∈N1

δi
1− δi

(
VL
3
− cixi

)
+ (2−|N1|)V ∆ + VL = 1. (36)
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Substituting (34) into (33) yields that

cixi ≤


2
9
VL, i ∈ N1,

1
4

[
VL − ( 1

δi
− 1)V ∆

]
, i ∈ N2,

2
9
(VL + V ∆), i ∈ N3,

(37)

from which we can conclude cixi ≤ 2VL
9

for i ∈ N1; together with (36), we can obtain that

∑
i∈N1

δi
1− δi

× VL
9

+
(
2−|N1|

)
V ∆ + VL ≤ 1. (38)

In what follows, we will show that c3x3 ≤ 30
144−δ3 , and the equality holds if and only if

α∗ = (62Y
35
, 62Y

37
, 62Y c

39
) and β∗ = (0, 17Y

222
, 0). Consider the following three cases.

Case I: 3 ∈ N 1. Note that |N1| ≤ k − 1 = 1, we have that N1 = {3}. By (38), we can

obtain that [
1 +

δ3

9(1− δ3)

]
VL + V ∆ ≤ 1;

together with (36), we can obtain that

c3x3 ≤
2VL

9
≤ 2(1− δ3)

9− 8δ3

<
30

144− δ3

.

Case II: 3 ∈ N 2. By (34) and (37), we have that

0 ≤ 1

δ3

− 1

3
− VL

3V ∆
+
c3x3

V ∆
≤ 1

δ3

− 1

3
− VL

3V ∆
+
VL − ( 1

δ3
− 1)V ∆

4V ∆
.

Carrying out the algebra, we can obtain that

VL ≤
(

9

δ3

− 1

)
V ∆ =

35

4
V ∆. (39)

Further, 3 /∈ N1 implies that N1 ∈
{
{1}, {2}, ∅

}
, and thus (38) becomes

1 ≥


16
15
VL + V ∆, if N1 = {1}

10
9
VL + V ∆, if N1 = {2}

VL + 2V ∆, if N1 = ∅

 ≥ 16

15
VL + V ∆, (40)

where the last inequality follows from (39).
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Combining (37), (39) and (40), we have that

c3x3 ≤
1

4

[
VL − (

1

δ3

− 1)V ∆

]
≤ 30

144− δ3

=
13

62
.

Note that equality holds in condition (37) if and only if β∗3 = 0. Further, equality holds in

condition (39) only if µ3 = 0. Last, equality holds in condition (40) if and only if N1 = {1}
and β∗1 = 0.

Because N1 = {1} and µ3 = 0, we have that µ1 = 2
3

from (34); together with (35), we

have µ2 = 1
3
. Moreover, by (34), we can conclude 2 ∈ N2, which implies that N2 = {2, 3}

and N3 = ∅.
Combining (39) and (40) (recall that equality holds in these conditions), we can obtain

VL = 105
124

and V ∆ = 3
31

; together with (37), we have x1 = 2VL
9

= 35
186

. Substituting µ2 = 1
3
,

VL = 105
124

and V ∆ = 3
31

into (34), we can obtain that x2 = VL−4V ∆

3
= 19

124
.

Last, we solve for (α∗,β∗). Recall that β∗i = 0 for i ∈ {1, 3}. Therefore, α∗i = Y
3xi

from

(31). For i = 2, we have x2 = 19
124

. Further, by (32), we have Y
α∗

2
= 2VL+V ∆

3
= 37

62
, which

implies that α∗2 = 62Y
37

; together with (31), we can conclude β∗2 = Y
3
− α∗2x2 = 17Y

222
.

In summary, the equality holds in c3x3 ≤ 30
144−δ3 if and only if α∗ = (62Y

35
, 62Y

37
, 62Y c

39
) and

β∗ = (0, 17Y
222
, 0), in which the equilibrium is x = ( 35

186
, 19

124
, 39

186c
), p = (1

3
, 1

3
, 1

3
), µ = (2

3
, 1

3
, 0),

VL = 105
124

, and V ∆ = 3
31

.

Case III: 3 ∈ N 3. Condition (34), together with the postulated 3 ∈ N3, implies that

µ3 = 0. Analogous to derivation of (39), we can obtain that

VL >

(
9

δ3

− 1

)
V ∆ =

35

4
V ∆. (41)

Suppose N1 6= ∅. By (40), we have that

1 ≥ 16VL
15

+ V ∆. (42)

Combining (33), (41), and (42) yields that

c3x3 ≤
2(VL + V ∆)

9
<

30

144− δ3

.

Next, suppose N1 = ∅; together with 3 ∈ N3 and k = 2, we can conclude N2 = {1, 2}. It

follows from (36) that

VL + 2V ∆ = 1. (43)
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Recall µ3 = 0. Combining (34), (35), and (37), we can obtain that

1 = µ1 + µ2 =
1

δ1

+
1

δ2

− 2

3
− 2VL

3V ∆
+
x1 + x2

V ∆
≤ 4− 2VL

3V ∆
+

VL
2V ∆

− 2

3
,

which in turn implies that

VL ≤ 14V ∆. (44)

Therefore,

c3x3 ≤
2(VL + V ∆)

9
≤ 5

24
<

30

144− δ3

,

where the first inequality follows from (33), the second inequality from (43) and (44).
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