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 A B S T R A C T

This paper explores the design of an R&D contest by a sponsor who can charge entry fees 
and allocate a fixed amount of productive resources across firms—e.g., access to computing 
infrastructure or laboratory equipment. The revenues collected through entry fees can fund the 
prize awarded to the winner. The posted prize, entry fees, and productive resources promised 
to potential entrants jointly determine firms’ decisions to enter the competition and their effort 
supply. We characterize the respective optimal contests for two objectives: (i) maximizing total 
effort in the contest and (ii) maximizing the expected quality of the winning product. We 
show that the optimal contest induces the entry of only the two most efficient firms when 
the sponsor can jointly set entry fees and allocate productive resources. The resource allocation 
plan in the optimum may favor the initially more competent firm and thus promote a ‘‘national 
champion’’ instead of leveling the playing field, and the optimum depends on the nature of the 
R&D task and effort cost profiles of the firms. Our analysis sheds light on the roles played by 
these instruments in shaping optimal research contests.

. Introduction

Inducement prize contests—which offer prizes to elicit efforts to achieve defined goals—are increasingly being recognized in the 
odern economic landscape as a cost-effective and efficient mechanism to procure technological solutions for specific needs, promote 
nnovative research of scientific significance, or encourage entrepreneurial efforts toward socially valuable goals (see, e.g., Terwiesch 
nd Ulrich, 2009). For example, Samsung strategically leverages its regular innovation challenges to acquire external expertise and 
oster new developments within its existing product lines. Toyota’s Mobility Unlimited Challenge promotes the development of 
ssistive devices for people with lower-limb paralysis. The NFL and Duke University set aside a prize purse for the innovative design 
f helmets that minimize injuries. The XPRIZE Foundation has sponsored numerous high-profile public innovation challenges “to 
ncourage technological development to benefit humanity,” and the U.S. government created an online platform, Challenge.gov, to 
acilitate the use of contest protocols and match federal agencies’ needs with public innovators. The Department of Defense (DoD) 
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engages in private R&D for defense technologies using competitive procurement exercises and awards contracts to private firms that 
develop prototypes of superior quality.

Due to their popularity and success, R&D contests have invigorated scholarly efforts to identify efficient ways to administer such 
competitions based on a wide range of perspectives and disciplines, from economics and operations management to information 
systems (see, e.g., Taylor, 1995; Fullerton and McAfee, 1999; Che and Gale, 2003; Terwiesch and Xu, 2008; Bimpikis et al., 2019; 
Letina and Schmutzler, 2019; Benkert and Letina, 2020).

This paper analyzes the optimal design of an R&D contest to address two natural and practically relevant questions. First, suppose 
that a pool of heterogeneous firms may enter the competition. How many firms should be included in the competition? Should a 
contest encourage open entry or limit participation, given the mixed observations in practice (see, e.g., Terwiesch and Xu, 2008; 
Boudreau et al., 2011; Ales et al., 2017, 2021)? Open entry expands the potential for diverse expertise, but excessive competition 
could diminish an individual firm’s incentive. Second, suppose that the contest sponsor has a fixed amount of resources—e.g., access 
to computing infrastructure or laboratory equipment—that could improve firms’ research productivity. How should she optimally 
allocate these limited resources among contenders? Resource allocation not only bolsters recipient firms’ productivity, but also 
varies their relative competitiveness in the contest and alters their effort incentives. Should the allocation favor the initially weaker 
firm in order to even the playing field—as traditionally advocated by the contest literature—or should it advantage the frontrunner 
to cultivate a ‘‘national champion’’—a strategy many governments have adopted in their industrial policies (see, e.g., Falck et al., 
2011)?

For these purposes, we construct a research tournament model à la Fullerton and McAfee (1999), in which the quality of a firm’s 
product is a random variable and the one with the best submission wins the prize—e.g., a cash prize (for example, the $1 million 
grand prize offered by Netflix in its competition for a more predictive algorithm, known as the Netflix Prize) or a procurement 
contract (as in the prototype competitions sponsored by the DoD). The sponsor sets and announces the contest rule to firms in the 
first stage, and firms commit to their entry and effort choice in the second stage. The contest rule consists of three elements: (i) a 
prize for the winner; (ii) a fee required for entry, with the revenue collected from participants to fund the posted prize; and (iii) an 
allocation profile of a limited amount of productive resources. The contest rule shapes the competition and ultimately determines 
firms’ willingness to participate and their effort supply upon entry. An optimally set rule allows the sponsor to select and maximally 
incentivize the most desirable entrants.

To the best of our knowledge, this study is the first formal analysis that integrates entry fees and resource allocation in the design 
of contests. Numerous observations inspire this approach. Entry fees, for instance, are required by a number of XPRIZE challenges—
e.g., the Google Lunar XPRIZE and XPRIZE Carbon Removal—and the prizes offered by data science competitions organized by 
Kaggle are funded by entry fees. These contests not only reward winners with prizes, but also often provide participants with 
various resources that bolster their productivity. Entrants in Mozilla’s Open Innovation Challenge, for instance, receive mentorship 
and are provided with Mozilla’s development tools, and the IBM Watson AI XPRIZE opens IBM Watson’s application programming 
interfaces (APIs) to participants. The DoD’s Small Business Innovation Research Program not only rewards winners with procurement 
contracts, but also provides an “implicit subsidy” to selected private contractors to support their development efforts (Lichtenberg, 
1990). The DARPA Robotics Challenge charges an entry fee, but also provides access to DARPA’s robotics lab and software to 
facilitate participating teams’ development.

Our analysis accommodates diverse preferences for contest design. Specifically, the sponsor sets the contest rule to maxi-
mize either (i) the total effort of the contest (effort-maximizing contest) or (ii) the expected quality of the winning product 
(quality-maximizing contest). The first objective is broadly assumed in the literature on contest design. Imagine a nonprofit 
organization—e.g., the XPRIZE Foundation—that aims to rally social effort toward or stimulate ideas about a fundamental challenge, 
such as rainforest conservation or decarbonization, in which case the first objective tends to be more relevant. In contrast, imagine 
a pharmaceutical company that seeks a cost-efficient method to synthesize an ingredient in its drugs, in which case the second 
objective would presumably apply (see, e.g., Taylor, 1995; Terwiesch and Ulrich, 2009; Stouras et al., 2022).
Summary of the results We begin with a baseline model in which the sponsor imposes a uniform entry fee on all participating firms. 
We show that the optimal contest always involves only two active firms regardless of the sponsor’s objective, with the two most 
competent firms entering the contest. That is, limited entry is optimal regardless of the prevailing design objective when the sponsor 
is able to charge an entry fee, top up her prize purse with the revenue, and allocate productive resources.

The two design objectives are not aligned and generate diverging implications with respect to the optimal resource allocation. 
When the sponsor aims to maximize the total effort of the contest, the resource allocation plan fully levels the playing field, such 
that the two firms win with equal probability (Proposition  1). That is, the initially weaker firm is prioritized for resource allocation, 
which closes the gap between firms in terms of their competence and creates an even race.1 The result thus reflects the conventional 
wisdom in the contest literature of leveling the playing field. In contrast, when the sponsor is concerned about the expected quality 
of the winning product, she may promote a ‘‘national champion’’: The initially more competent firm receives more resources, which 
enlarges the gap in competitiveness and results in a more lopsided competition (Proposition  2). We demonstrate that the optimum 

1 If the sponsor is required to allocate resources evenly among firms, the model degenerates to that in Fullerton and McAfee (1999). Their Theorem 3 shows 
that restricting entry to two competitors optimizes a research contest absent a resource allocation problem. It is noteworthy that their result imposes a restriction 
on the profile of firms’ marginal costs. This condition is violated whenever one firm is a (sufficiently) close competitor to another firm, in which case involving 
two firms can be suboptimal. See Dizdar (2021) for detailed discussions.
2 
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depends on the nature of the R&D task—i.e., the level of difficulty—and the degree of heterogeneity of the two most competent 
firms.

The distribution of a firm’s product quality depends not only on its effort, but also the resources it receives. More specifically, a 
firm’s effort and the resources available are complementary to each other in producing a high-quality submission. As a result, the 
sponsor is compelled to spend more resources on the more competent firm when she is concerned about maximizing the winning 
product’s quality: The more competent firm bears a lower marginal effort cost and presumably expends a higher effort, so an 
allocation plan that prioritizes the initial favorite ensures allocative efficiency. However, this further upsets the competitive balance 
of the contest and tends to soften the competition, as the conventional wisdom of the contest literature would predict.

The concern about allocative efficiency does not arise when the sponsor maximizes total effort, so the usual prediction of leveling 
the playing field is preserved. The quality-maximizing contest must reconcile the trade-off between firms’ effort incentives and 
allocative efficiency, and thus a level playing field can be suboptimal. These findings highlight the costly nature of creating a level 
playing field as a catalyst for competition, which can compromise allocative efficiency. In addition, our findings emphasize the 
need to consider the specific nature of the research problem and the profiles of the contenders when designing the competition 
framework.

Our results shed light on the nature of these popularly adopted design instruments. Suppose, for instance, that the sponsor is 
unable to collect entry fees and can only allocate productive resources. The effort-maximizing contest should always involve at 
least three active firms whenever possible, as shown in the literature—e.g., Franke et al. (2013) and Fu and Wu (2020). We also 
demonstrate that without entry fees, a national champion is more likely to emerge when the sponsor is concerned about the expected 
quality of the winning product. Put differently, the ability to collect entry fees and use the revenue to supplement the prize purse 
enables the sponsor to create more balanced competition through resource allocation. This subtlety inspires us to further explore 
the role played by entry fees. We extend our model to allow for discriminatory entry fees, such that the sponsor may condition 
entry fees on firms’ identities (Propositions  3 and 4). The results and economic logic are presented and discussed in Section 4.

Our results yield ample implications for the practice of the administration of contest-like competitive events, which are discussed 
in Section 5.
Related literature Our paper is the first study in the literature to examine contest design that incorporates both entry fees and 
resource allocation. This novel approach enables us to explore two critical and inherent questions: (i) Should a contest encourage 
broader participation or restrict entry? (ii) When a sponsor has the ability to distribute productive resources, should the emphasis be 
on bolstering the frontrunner to capitalize on its efficiency, or should support be given to the underdog to ensure a more equitable 
competition?

A classical question in the literature on contest design concerns comparing the optimal size of the competition—such as open 
versus restricted entry—with the optimal selection of participating contenders. Terwiesch and Xu (2008) demonstrate that the 
sponsor’s design objective—maximizing the average quality of solutions or best solution—plays a critical role for the choice between 
open entry and restricted access. Körpeoğlu and Cho (2018) suggest an additional positive incentive effect of open entry. Ales 
et al. (2021) demonstrate how the choice between open and restricted entry depends on the properties of innovation production 
technology—i.e., the weight and distribution of random terms—and the number of potential contributors.2 A burgeoning strand 
of the literature examines this question in empirical contexts. Chen et al. (2021), for instance, focus on how contestants’ entry is 
affected by the posted prize and the duration of the contest. Boudreau et al. (2011) investigate how the optimal size of a contest 
depends on the nature and uncertainty of the research problem.

Our paper joins the strand of literature that demonstrates the merit of limiting participation, such as Baye et al. (1993), 
Fullerton and McAfee (1999), and Che and Gale (2003). In particular, Fullerton and McAfee (1999) suggest that a contest organizer 
strategically sets entry to filter entrants and show that a contest of two active contenders can be optimal when the cost profile of 
eligible firms meets certain conditions. In contrast, we establish the optimality of minimum entry without restrictions on firms’ cost 
structures, which is achieved by the joint use of entry fees and resource allocation.3,4 The setting of joint design differentiates our 
study from prior contributions, since none of them allow for the allocation of productive resources.

Our paper is naturally linked to the growing literature that treats contestants’ participation as an endogenous choice (e.g., Ales 
et al., 2017; Mihm and Schlapp, 2019). A handful of papers assume that participation requires a fixed and exogenous entry cost 
(e.g., Fu et al., 2015; Boosey et al., 2020; Stouras et al., 2022). We instead assume an endogenously set entry fee and that the 
revenues from fees are added to the prize purse, which puts our paper in the company of Fullerton and McAfee (1999), Taylor 
(1995), Moldovanu et al. (2012), and Hammond et al. (2019).5,6 None of these studies involve the allocation of productive resources 
among firms.

2 Stouras et al. (2022) examine the same problem. In contrast to the majority of these studies, they assume that potential contenders’ types are privately 
known and consider the optimal reward structure that attracts the most desirable participants.

3 In the model of Fullerton and McAfee (1999), quality maximization and effort maximization perfectly coincide, since the total effort determines the 
distribution of the quality of the winning product. In contrast, our setting—by allowing for resource allocation—causes the two objectives to diverge.

4 Terwiesch and Xu (2008), in contrast, contend that broader participation allows the contest organizer to secure more diverse solutions for the problem 
she aims to tackle. Boudreau et al. (2011) demonstrate empirically that the proper number of participants depends on the nature of the underlying research 
problem, as well as the uncertainty it entails.

5 Azmat and Möller (2009, 2018) allow each contestant to choose which contest to enter when multiple contests are available.
6 Instead of an explicit decision regarding entry, Lemus and Marshall (2021) empirically examine a dynamic contest setting in which contestants decide 

whether to continue their participation.
3 
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The literature has long recognized the important incentive effects of the evenness of a contest. Brown (2011) and Bockstedt et al. 
(2022) empirically investigate how the presence of ‘‘star’’ contenders affects the incentives and performance of other entrants. In 
our setting, the resource allocation profile endogenously determines firms’ relative competitiveness, which affects their incentives 
and payoffs in the contest and, in turn, is a factor in their entry decisions. Our paper is closely related to the immense literature 
on contests with identity-dependent preferential treatment, such as Franke et al. (2013, 2014), Drugov and Ryvkin (2017), and Fu 
and Wu (2020). These studies typically view the identity-dependent biases imposed on contestants’ effort entry as a nominal scoring 
rule. In contrast, the resources allocated to a firm not only increase its relative competitiveness but also its actual output. A handful 
of studies—e.g., Fu et al. (2012), Deng et al. (2021), and Gao et al. (2022)—study similar productive resource allocation problems, 
with productive resources playing a role in determining contenders’ relative competitiveness. However, none of these studies involve 
entry fees.

The resource allocation profile set by the designer determines the mapping of firms’ efforts to the probabilities of their winning 
the contest. This links our paper to studies that endogenize the winning probability specification of a contest (i.e., the contest success 
function) through optimal contest design. Letina et al. (2023), for instance, let a designer decide how to allocate prizes based on 
the noisy signals of contestants’ efforts and find that the optimum boils down to a nested Tullock contest.

In our setting, the entry fee is a source of revenue to fund the prize purse, which also links our study to the extensive literature 
on the optimal prize structure in contests, such as Moldovanu and Sela (2001), Kalra and Shi (2001), Terwiesch and Xu (2008), Ales 
et al. (2017), and Stouras et al. (2022). These studies typically focus on the choice between a winner-take-all contest and multiple 
prizes. In contrast, we focus on a single prize and search for the entry fees that induce the optimal entry and generate the associated 
optimal size of the prize.

2. The model

A sponsor organizes an R&D contest to acquire an innovative product. She posts a prize of a value 𝑉 > 0—e.g., a procurement 
contract—for the winner. A pool of 𝑛 ≥ 2 firms are interested in the competition. A firm bears an exogenous fixed entry cost 
𝛾 > 0—e.g., the costs of preparation for the project and forgone revenues from alternative engagement—as well as paying an entry 
fee 𝜙 ≥ 0 to the sponsor.7 Each firm 𝑖 ∈  ∶= {1,… , 𝑛}, on entry, commits to its effort 𝑥𝑖 > 0 to develop the product sought by the 
sponsor. In the case in which a firm 𝑖 chooses to opt out of the research contest, we set 𝑥𝑖 = 0. The effort incurs a constant marginal 
effort cost 𝑐𝑖 > 0. Assume without loss of generality that firms are ordered such that 𝑐1 ≤ ⋯ ≤ 𝑐𝑛, with a lower marginal cost to 
imply a greater level of innate ability. A firm’s cost is commonly known.8

The sponsor is endowed with an initial (monetary) prize purse 𝑏 > 0 and a fixed amount of (nonmonetary) productive resources—
e.g., the mentorship Mozilla provides to development teams, use of DAPRA’s robotics lab, or access to IBM Watson’s APIs—which 
improve the productivity of a recipient, and we normalize to unity. The sponsor sets the entry fee and splits and allocates her 
endowed productive resources among participating firms.
R&d contest The winner is selected through a standard “best of simultaneous submissions” R&D contest à la the research tournament 
model of Fullerton and McAfee (1999). The sponsor awards the prize to the firm that presents a product of the highest quality. The 
quality 𝑞𝑖 of a firm 𝑖’s product is randomly drawn from a distribution with cumulative distribution function (CDF) [𝐹 (𝑞𝑖)]𝛼𝑖𝑥

𝑟
𝑖 , with 

𝑟 ∈ (0, 1], where 𝛼𝑖 ≥ 0 is the amount of productive resource firm 𝑖 receives from the sponsor and 𝐹 (⋅) is a continuous CDF on a 
support [𝑞, 𝑞]. The term 𝛼𝑖𝑥𝑟𝑖  can intuitively be interpreted as the number of effective trials or draws of ideas, with the quality of 
each trial or draw following the distribution 𝐹 (⋅). The firm simply presents the output of the most successful trial or draw—with a 
quality 𝑞𝑖—as its submission to the contest.

A larger 𝛼𝑖𝑥𝑟𝑖  implies that a higher 𝑞𝑖 is more likely to be realized and firm 𝑖 is more likely to leapfrog its opponents. The resource 
𝛼𝑖 can presumably be viewed as a capital input that improves the firm’s efficiency—e.g., access to equipment, laboratory facilities, or 
computing infrastructure. The effort 𝑥𝑖 can conveniently be interpreted as a labor input sunk by the firm—e.g., the time, energy, and 
intellectual resources dedicated to the project. We assume the term 𝛼𝑖𝑥𝑟𝑖  to be concave—i.e., 𝑟 ≤ 1—which describes a development 
process with diminishing marginal returns. To put this intuitively, doubling input cannot more than double the likelihood of a 
scientific discovery.

If no firm enters, the contest is canceled. If only one firm enters, the entrant automatically wins the prize. Otherwise, by Fullerton 
and McAfee (1999) and Baye and Hoppe (2003), fixing an effort profile 𝒙 ∶= (𝑥1,… , 𝑥𝑛), with 

∑𝑛
𝑗=1 𝛼𝑗 ⋅𝑥

𝑟
𝑗 > 0, each firm 𝑖 ∈   wins 

with a probability9,10

𝑝𝑖(𝒙) ∶= Pr
(

𝑞𝑖 > max
𝑗≠𝑖

𝑞𝑗

)

=
𝛼𝑖 ⋅ 𝑥𝑟𝑖

∑𝑛
𝑗=1 𝛼𝑗 ⋅ 𝑥

𝑟
𝑗
. (1)

7 All of our results continue to hold when the fixed entry cost is reduced to zero, except for Proposition  4. A positive entry cost is required to ensure the 
existence of the optimal contest in Proposition  4. See Footnote 16 for details.

8 This common knowledge assumption is intended to capture systematic ability differences across firms. A similar assumption is made by Fullerton and 
McAfee (1999). This setting is appropriate for modeling a mature market with established firms and a long history of interactions.

9 Another micro-foundation to obtain this success function is the following: Firm 𝑖 ∈  has a production technology in the form of 𝑓𝑖(𝑥𝑖) = 𝛼𝑖 ⋅ 𝑥𝑟𝑖 , where 𝛼𝑖
is the resource allocated to firm 𝑖. The sponsor receives a noisy signal 𝑠𝑖 of firm 𝑖’s performance or output, with log 𝑠𝑖 = log 𝑓𝑖(𝑥𝑖) + 𝜖𝑖, where 𝜖𝑖 follows a type I 
extreme-value distribution (i.e., Gumbel distribution). The prize is awarded to the firm with the highest signal.
10 In the case of ∑𝑛 𝛼 ⋅ 𝑥𝑟 = 0, we let 𝑝 (𝒙) = 1∕|{𝑗 ∈  |𝑥 > 0}| if 𝑥 > 0.
𝑗=1 𝑗 𝑗 𝑖 𝑗 𝑖

4 
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Contest design Prior to the contest, the sponsor sets and publicly announces the contest rule—which is described by a triple 
(𝑉 , 𝜙,𝜶)—anticipating firms’ responses in terms of entry and effort decisions. The contest rule consists of three elements: (i) the 
posted prize value 𝑉 > 0; (ii) the entry fee 𝜙 ≥ 0; and (iii) a resource allocation profile 𝜶 ∶= (𝛼1,… , 𝛼𝑛) ≥ (0,… , 0). We assume that 
the entry fee is uniform for all firms and will relax this assumption in Section 4.

The sponsor is subject to two prevailing budget constraints. First, the productive resources she can provide to the firms are 
limited—i.e., ∑𝑖∈ 𝛼𝑖 = 1. Second, the value of the posted prize, 𝑉 , is bounded by her initial endowment 𝑏 and the proceeds 
collected through entry fees. Denote by 𝑘(𝑉 , 𝜙,𝜶) the number of entrants in the equilibrium for a given contest rule (𝑉 , 𝜙,𝜶). The 
budget constraint for the prize purse is thus 𝑉 ≤ 𝑏 + 𝑘(𝑉 , 𝜙,𝜶)𝜙.

The sponsor can have two design objectives. She may intend to promote technological efforts for socially valuable missions—
e.g., an XPRIZE challenge to discover clean and renewable energy in response to climate change. The sponsor, under such a 
circumstance, aims to maximize firms’ total effort, which is given by 

𝑍∗ ∶=
∑

𝑖∈
𝑥𝑖. (2)

Alternatively, the sponsor can be concerned about the quality of the winning product—e.g., when the DoD procures mili-
tary equipment from private contractors or Netflix searches for an algorithm for more precise predictions. Denote by 𝑞𝑚𝑎𝑥 =
max{𝑞1,… , 𝑞𝑛} the quality of the winning product. For a given effort profile 𝒙 ≡ (𝑥1,… , 𝑥𝑛), 𝑞𝑚𝑎𝑥 is the first-order statistic of the 
quality of firms’ submissions 𝑞𝑖, which follows a distribution with CDF 

[

𝐹 (𝑞𝑚𝑎𝑥)
]

∑𝑛
𝑖=1 𝛼𝑖⋅𝑥

𝑟
𝑖 . The sponsor thus sets the contest rule 

(𝑉 , 𝜙,𝜶) to maximize 
𝑍∗∗ ∶=

∑

𝑖∈
𝛼𝑖 ⋅ 𝑥

𝑟
𝑖 . (3)

Maximizing objective (3) generates the distribution of maximum output that first-order stochastically dominates any other 
distribution. This implies that the optimal contest is independent of the designer’s risk preference, as long as her objective function 
is an increasing function of the maximal output.11

Timeline and payoff The game proceeds in two stages. In the first, the sponsor announces the contest rule (𝑉 , 𝜙,𝜶). The contest 
takes place in the second stage. Firms observe (𝑉 , 𝜙,𝜶) and simultaneously make their entry and effort decisions.

For a given effort profile 𝒙 ≡ (𝑥1,… , 𝑥𝑛), a firm 𝑖 ’s expected payoff in a contest (𝑉 , 𝜙,𝜶) is given by

𝜋𝑖 (𝒙;𝑉 , 𝜙,𝜶) =
{

𝑝𝑖(𝒙) ⋅ 𝑉 − 𝑐𝑖𝑥𝑖 − 𝜙 − 𝛾, if 𝑥𝑖 > 0,
0, if 𝑥𝑖 = 0,

where 𝑝𝑖(𝒙) is defined in (1).

3. Analysis

This section characterizes the optimal contest. Before we proceed, two remarks are in order. First, the second-stage contest 
game, in general, does not yield a closed-form equilibrium solution. This nullifies the traditional implicit programming approach 
to optimal contest design, which requires a closed-form equilibrium solution for every possible contest rule (see, e.g., Franke et al., 
2013). We adopt the technique developed by Fu and Wu (2020) to circumvent this challenge.12 Second, we assume that the sponsor 
has a budget adequate (the precise lower bound will be provided later for each proposition as our analysis unfolds) to attract the 
participation of the set of firms she desires for all possible scenarios we will consider in the subsequent analysis. Note that assuming 
an adequate budget does not render entry fees redundant: For any given initial budget, charging entry fees allows the sponsor to 
supplement the prize purse. The sponsor has an incentive to do so, because it better motivates the firms.

3.1. Effort-maximizing contests

We now let the sponsor choose the contest rule (𝑉 , 𝜙,𝜶) to maximize the total effort of the contest, 𝑍∗ ≡
∑

𝑖∈ 𝑥𝑖. When designing 
the contest, the sponsor needs to ensure budget balance, which requires that the prize be sufficiently funded by the sponsor’s initial 
prize purse and the revenues of entry fees collected from participants. In addition, she is subject to a  participation constraint, which 
ensures that the firms she targets would enter the competition.

Denote by 𝒑∗ ∶= (𝑝∗1 ,… , 𝑝∗𝑛) the effort-maximizing equilibrium winning probabilities. Further define 

𝑏∗ ∶=
4𝛾

2 − 𝑟
> 0. (4)

The following result can be obtained.

11 We thank an anonymous referee for suggesting this discussion.
12 Fu and Wu (2020) also study optimal contest design using two instruments: multiplicative biases and additive head starts. Our setting differs from theirs 

in two key respects. First, in their model, both instruments directly influence the contest success function and thus affect firms’ marginal incentives to exert 
effort. In contrast, in our setting, the entry fee influences only the firms’ entry decision and does not affect their marginal returns to effort once they have 
entered, holding the prize value fixed. Second, although the prize purse is fixed in Fu and Wu (2020), it can be endogenously adjusted in our model through 
the collection of entry fees.
5 
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Proposition 1 (Effort-maximizing Research Contest with Uniform Entry Fees). Suppose that 𝑏 > 𝑏∗ and the sponsor aims to maximize the 
total effort of the R&D contest.13 The optimal contest (𝑉 ∗, 𝜙∗,𝜶∗) is given by

𝑉 ∗ =
2𝑏 − 4𝛾

𝑟
, 𝜙∗ =

(2 − 𝑟)𝑏
2𝑟

−
2𝛾
𝑟
,

and

𝜶∗ =

(

𝑐𝑟1
𝑐𝑟1 + 𝑐

𝑟
2
,

𝑐𝑟2
𝑐𝑟1 + 𝑐

𝑟
2
, 0,… , 0

)

.

The optimal contest induces a profile of equilibrium winning probabilities 𝒑∗ ≡ (𝑝∗1 ,… , 𝑝∗𝑛) = (1∕2, 1∕2, 0,… , 0): The two most competent 
firms enter the contest and they win with an equal probability.

By Proposition  1, it takes (exactly) two to tango: The optimal R&D contest involves the two most efficient firms and fully levels the 
playing field, such that firms 1 and 2 win with equal probability. To achieve this, the sponsor arms the less efficient firm—i.e., firm 
2—with a larger amount of resources, with 𝛼∗2 = 𝑐𝑟2∕(𝑐

𝑟
1 + 𝑐

𝑟
2) ≥ 𝑐𝑟1∕(𝑐

𝑟
1 + 𝑐

𝑟
2) = 𝛼∗1 .

A smaller contest weakens competition in the contest and limits effort contribution, which tends to leave more surplus to 
participating firms. As a result, at least three firms will be kept active in the optimum if the designer optimizes the contest with 
only the choice of 𝜶, as Franke et al. (2013) show. This contrasts with our result of involving only the two most competent firms. 
Although the sponsor does not directly benefit from the entry fees collected, these fees play a critical role in our setting by mitigating 
this adverse effect: The sponsor collects revenue through entry fees to extract firms’ surplus and finance a larger prize purse, which 
bolsters the incentive provided to participating firms and motivates their investment. Without entry fees, the optimal contest has to 
involve broader participation—i.e., by requiring at least three active firms whenever feasible.14

Resource allocation and the entry fee play complementary roles. By Proposition  1, the sponsor fully levels the playing field by 
spreading more resources to the ex ante weaker firm—i.e., firm 2—such that they win with an equal probability. The optimal contest 
fully extracts firms’ surplus, which is achieved by the proper combination of resource allocation and entry fee.

3.2. Quality-maximizing contests

Now suppose that the sponsor is concerned about the quality of the winning product, 𝑍∗∗ ≡
∑

𝑖∈ 𝛼𝑖⋅𝑥𝑟𝑖 . The following preliminary 
result paves the way for our formal characterization of the optimum. Let (𝑝∗∗1 , 𝑝∗∗2 ) solve 

min
𝑝1+𝑝2=1, 𝑝1≥𝑝2>0

(

𝑐𝑟1𝑝
1−𝑟
1
𝑝𝑟2

+
𝑐𝑟2𝑝

1−𝑟
2
𝑝𝑟1

)

×
[

1 − 2𝑝2
(

1 − 𝑟𝑝1
)]𝑟 . (5)

Further define 

𝑏∗∗ ∶=
𝛾

𝑝∗∗2
(

1 − 𝑟𝑝∗∗1
) . (6)

The following result ensues.

Proposition 2 (Quality-maximizing R&D Contest with Uniform Entry Fees). Suppose that 𝑏 > 𝑏∗∗ and the sponsor aims to maximize the 
expected quality of the winning product of the R&D contest. The optimal contest induces two entrants—with the two ex ante most competent 
firms remaining active in the competition—and a profile of equilibrium winning probabilities 𝒑∗∗ = (𝑝∗∗1 , 𝑝

∗∗
2 , 0,… , 0), with (𝑝∗∗1 , 𝑝∗∗2 ) defined 

above and 𝑝∗∗1 ≥ 1
2 ≥ 𝑝∗∗2 . The optimal contest rule (𝑉 ∗∗, 𝜙∗∗,𝜶∗∗) is given by

𝑉 ∗∗ =
𝑏 − 2𝛾

1 − 2𝑝∗∗2 (1 − 𝑟𝑝∗∗1 )
, 𝜙∗∗ =

𝑏𝑝∗∗2
(

1 − 𝑟𝑝∗∗1
)

− 𝛾

1 − 2𝑝∗∗2
(

1 − 𝑟𝑝∗∗1
) ,

and

𝜶∗∗ =

⎛

⎜

⎜

⎜

⎝

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟 +
𝑐𝑟2(𝑝

∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

,

𝑐𝑟2(𝑝
∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟 +
𝑐𝑟2(𝑝

∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

, 0,… , 0

⎞

⎟

⎟

⎟

⎠

.

13 Technically, the condition 𝑏 > 𝑏∗ ensures 𝜙∗ > 0. It can be shown that when 𝑏 < 𝑏∗, no pure-strategy equilibrium exists for firms’ entry decisions under any 
contest rule (𝑉 , 𝜙,𝜶) set by the sponsor.
14 To better understand the prize-enhancing role of entry fees, consider a benchmark case in which the sponsor can use entry fees to restrict entry but cannot 

use the revenue collected to supplement the prize purse—i.e., the entry fees are simply burned. In such a case, the sponsor does not strictly benefit from the 
ability to charge entry fees, since she can exclude firms by simply allocating zero resources to them. The model then effectively reduces to Franke et al. (2013) 
under the objective of maximizing total effort, in which the optimal contest involves three or more firms. The entry fees in our setting thus reconcile the usual 
trade-off in contests between individual incentives and total contributions: A large contest weakens the former, while a small contest limits the latter.
6 
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Fig. 1. Quality-maximizing Resource Allocation Scheme.

Similar to Proposition  1, Proposition  2 also predicts that the optimal contest involves only the two most competent firms. Despite 
the similarity, quality maximization stands in sharp contrast to effort maximization in terms of the underlying trade-offs. Note that 
the productive resources 𝜶 ≡ (𝛼1,… , 𝛼𝑛) do not directly affect the sponsor’s payoff when she maximizes total effort. In contrast, 𝜶
directly enters the objective function (3) and generates intrinsic value to the sponsor in a quality-maximizing contest. Because of 
the complementarity between the resource 𝛼𝑖 and a firm’s input 𝑥𝑖, the sponsor must avoid spreading costly and scarce resources 
across less productive firms. This concern compels her to limit the competition and induce the entry of only the two most efficient 
firms.

When allocating resources between heterogeneous firms, the sponsor must strike a balance between two competing effects. 
Prioritizing the weaker firm fuels competition, which we call the competition effect. However, this undermines allocative efficiency, 
which requires that the resources be concentrated on the more competent firm, since resources and effort are complementary. 
Tension between the two concerns tilts the optimum away from its counterpart of effort maximization and may even overturn the 
conventional wisdom by further upsetting the balance of the competition. A closer look at (𝛼∗∗1 , 𝛼∗∗2 ) yields the following.

Corollary 1 (National Champion vs. Handicapping).  Suppose that 𝑐1 < 𝑐2. The following statements hold:
(i) If 𝑟 ≥ 1∕2, then 𝛼∗∗1 < 𝛼∗∗2 .
(ii) If 𝑟 < 1∕2, then there exists a threshold 𝓁—which depends on 𝑟—such that 𝛼∗∗1 ≷ 𝛼∗∗2  if and only if 𝑐2∕𝑐1 ≷ 𝓁.

The sponsor may create a national champion by prioritizing the more competent firm in resource allocation, which further 
upsets the competitive balance of the contest. Fig.  1 depicts the comparison between 𝛼∗∗1  and 𝛼∗∗2  in the optimum. The horizontal 
axis measures the degree of heterogeneity between the two most efficient firms, log(𝑐2∕𝑐1), and the vertical axis traces the value of 
the exponential term 𝑟.

Recall that 𝛼𝑖𝑥𝑟𝑖  is interpreted as the number of trials. The term 𝑟 thus measures how effectively effort 𝑥𝑖 can be converted into 
output and provides an intuitive account of the R&D task’s technological nature. A more challenging R&D task or a more strenuous 
R&D process can intuitively be described as a smaller 𝑟, since a given input is less likely to deliver high-quality trials. For instance, 
a research project that aims for major scientific discovery—e.g., a universal flu vaccine—can be described by a small 𝑟; in contrast, 
an effort to incrementally improve an engineering process presumably implies a larger 𝑟. By Corollary  1 and Fig.  1, 𝛼∗∗1 > 𝛼∗∗2  when 
𝑟 < 1∕2 and 𝑐2∕𝑐1 > 𝓁. That is, the optimal contest favors the more competent firm if and only if (i) the R&D process is sufficiently 
difficult and (ii) firms are substantially heterogeneous.

To understand the result, first note that the competition effect wanes when the difficulty of the task increases—i.e., with a 
smaller 𝑟: The additional incentive provided by a level playing field is diminished by the lower marginal return to effort, so a more 
even race incentivizes firms less effectively. As a result, 𝛼∗∗1 < 𝛼∗∗2  may not hold when 𝑟 falls below 1∕2. Second, an increase in the 
degree of heterogeneity between firms—i.e., a larger 𝑐2∕𝑐1—magnifies the loss of allocative efficiency when assigning resources to 
the weaker firm, which further diminishes the appeal of a level playing field. A national champion—i.e., 𝛼∗∗1 > 𝛼∗∗2  —thus emerges 
when the R&D process is sufficiently difficult and the degree of heterogeneity between firms is significant, i.e., 𝑐 ∕𝑐 > 𝓁.
2 1
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Again, the entry fee plays a critical role as a design instrument. For instance, Deng et al. (2021) consider a resource allocation 
problem in an R&D contest, but their setting does not involve the use of entry fees, which nevertheless play a crucial role in driving 
our results; they show that a national champion arises in the optimum whenever 𝑟 falls below 1∕2. Entry fees render a national 
champion less likely: By Corollary  1, a national champion requires not only 𝑟 < 1∕2 but also 𝑐2∕𝑐1 > 𝓁. The revenue from entry 
fees enlarges the prize purse, which amplifies effort incentives, and thereby magnifies the competition effect of a more level playing 
field. Meanwhile, concern about allocative efficiency can be ameliorated because less efficient firm 2 contributes more effort when 
a larger prize is in place. We then observe that the entry fee catalyzes even races in the optimum.

4. Discriminatory entry fees

We now relax the assumption of uniform entry fees and allow them to depend on firms’ identities. Denote by 𝜙𝑖 ≥ 0 the entry fee 
imposed for a firm 𝑖 ∈   and let 𝝓 ∶= (𝜙1,… , 𝜙𝑛). We first consider the optimal contest that maximizes total effort, then proceed 
to the case of quality maximization.

4.1. Effort-maximizing contests

Similar to the analysis in Section 3.1, the sponsor chooses (𝑉 ,𝝓,𝜶) to maximize 𝑍∗ ≡
∑

𝑖∈ 𝑥𝑖, subject to firms’ participation 
constraint and her own budget constraint.

Proposition 3 (Effort-maximizing Contest with Discriminatory Entry Fees). Suppose that the sponsor aims to maximize the total effort of 
the R&D contest and is allowed to impose discriminatory entry fees. Moreover, 𝑏 > 𝑏∗. The optimal contest involves two active firms and 
induces a profile of equilibrium winning probabilities ̂𝒑∗ = (𝑝∗1 , 𝑝

∗
2 , 0,… , 0), where (𝑝∗1 , 𝑝∗2) > (0, 0) satisfies 

𝑝∗1 + 𝑝
∗
2 = 1, and 𝑏 × min

𝑖∈{1,2}

{

1 − 𝑟𝑝∗𝑖
}

− 2𝛾 ≥ 0. (7)

The corresponding contest—which we denote by (𝑉 ∗, 𝝓̂
∗
, 𝜶̂∗)—involves

𝑉 ∗ =
𝑏 − 2𝛾
2𝑟𝑝∗1𝑝

∗
2
, 𝝓̂

∗
=

(

𝑏
(

1 − 𝑟𝑝∗2
)

− 2𝛾

2𝑟𝑝∗2
,
𝑏
(

1 − 𝑟𝑝∗1
)

− 2𝛾

2𝑟𝑝∗1
, 0,… , 0

)

,

and

𝜶̂∗ =

⎛

⎜

⎜

⎜

⎝

𝑐𝑟1(𝑝
∗
1 )

1−𝑟

(𝑝∗2 )
𝑟

𝑐𝑟1(𝑝
∗
1 )

1−𝑟

(𝑝∗2 )
𝑟 +

𝑐𝑟2(𝑝
∗
2 )

1−𝑟

(𝑝∗1 )
𝑟

,

𝑐𝑟2(𝑝
∗
2 )

1−𝑟

(𝑝∗1 )
𝑟

𝑐𝑟1(𝑝
∗
1 )

1−𝑟

(𝑝∗2 )
𝑟 +

𝑐𝑟2(𝑝
∗
2 )

1−𝑟

(𝑝∗1 )
𝑟

, 0,… , 0

⎞

⎟

⎟

⎟

⎠

.

By Proposition  3, the optimal R&D contest again involves two active firms when the sponsor can charge discriminatory entry fees. 
Two remarks are in order. First, the optimal contest is not unique, which stands in stark contrast to our previous findings. Multiple 
contests exist that generate maximum total effort while inducing different winning probability profiles in the equilibrium. The 
effort-maximizing contest in Section 3.1—which charges a uniform entry fee and induces an even contest with (𝑝1, 𝑝2) = (1∕2, 1∕2)
—remains one of the optima.15

This observation leads to the second remark: The sponsor does not (strictly) benefit from the opportunity to charge discriminatory 
entry fees. Relaxing the constraint of uniform entry fees allows for multiple optima, but none of them strictly outperforms the 
original optimum in Proposition  1. The sponsor can charge a uniform entry fee and set 𝜶̂∗ to level the playing field, as she does 
in Section 3.1. She can also set 𝜶̂∗ to induce uneven winning odds (even if the two most efficient firms are ex ante symmetric) and 
impose a customized entry fee equal to the surplus each active firm expects to earn in the contest. Regardless, all of these candidate 
contests fully extract firms’ surplus.

4.2. Quality-maximizing contest

Now suppose that the sponsor is concerned about the quality of the winning product, i.e., maximizing 𝑍∗∗ ≡
∑

𝑖∈ 𝛼𝑖 ⋅ 𝑥𝑟𝑖 . The 
following result ensues.

Proposition 4 (Quality-maximizing R&D Contest with Discriminatory Entry Fees). Suppose that the sponsor aims to maximize the expected 
quality of the winning product of the R&D contest and can charge discriminatory entry fees. Moreover, 𝑏∗ < 𝑏 < 2𝛾

1−𝑟 .
16 Then the optimal 

contest involves two active firms.

15 To see this, note that if a tuple (𝑝1 , 𝑝2) = (𝑝♮1 , 𝑝
♮
2) satisfies constraint (7), then (𝑝1 , 𝑝2) = (𝑝♮2 , 𝑝

♮
1) also satisfies the constraint.

16 The assumption 𝑏 < 2𝛾
1−𝑟

 is imposed to guarantee that the equilibrium winning probability of the most efficient firm in (8) is smaller than one (note that this 
assumption is not satisfied in the case with 𝛾 = 0). Otherwise, a maximum does not exist when the two most efficient firms are heterogeneous; moreover, the 
supremum can be approached arbitrarily closely by giving the second most efficient firm an infinitesimal amount of winning probability and the most efficient 
firm complementary probability.
8 
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(i) If 𝑐1 < 𝑐2, then the optimal contest induces an equilibrium winning probability profile ̂𝒑∗∗ =
(

𝑝∗∗1 , 𝑝
∗∗
2 , 0,… , 0

)

, with 

𝑝∗∗1 = 1 − 𝑝∗∗2 = 1
𝑟
−

2𝛾
𝑟𝑏
. (8)

The corresponding contest rule—which we denote by 
(

𝑉 ∗∗, 𝝓̂
∗∗
, 𝜶̂∗∗

)

—is

𝑉 ∗∗ =
𝑏 − 2𝛾
2𝑟𝑝∗∗1 𝑝

∗∗
2
, 𝝓̂

∗∗
=

(

𝑏(1 − 𝑟𝑝∗∗2 ) − 2𝛾

2𝑟𝑝∗∗2
, 0, 0,… , 0

)

,

and

𝜶̂∗∗ =

⎛

⎜

⎜

⎜

⎝

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟 +
𝑐𝑟2(𝑝

∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

,

𝑐𝑟2(𝑝
∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

𝑐𝑟1(𝑝
∗∗
1 )1−𝑟

(𝑝∗∗2 )𝑟 +
𝑐𝑟2(𝑝

∗∗
2 )1−𝑟

(𝑝∗∗1 )𝑟

, 0,… , 0

⎞

⎟

⎟

⎟

⎠

.

(ii) If 𝑐1 = 𝑐2, there exist multiple contest rules that generate the maximum expected quality of the winning product, and are the same as 
those stated in Proposition  3.

Analogous to Proposition  2, Proposition  4 states that the optimal R&D contest involves exactly two entrants. Further, it can be 
verified that the more competent firm stands a better chance to win the contest—i.e., 𝑝∗∗1 > 1∕2 > 𝑝∗∗2 —whenever the two most 
competent firms are heterogeneous; i.e., 𝑐1 < 𝑐2. It is noteworthy, however, that the optimal contest collects the entry fee only from 
firm 1 in this case. Similar to Proposition  2, the sponsor may choose to either cultivate a national champion or favor the underdog in 
the optimum, depending on the discriminatory power 𝑟 and the degree of firm heterogeneity 𝑐2∕𝑐1. We obtain the following result, 
which paves the way for more detailed discussion of the underlying logic.

Corollary 2 (Discriminatory Entry Fees Render a National Champion More Likely). Suppose that 𝑐1 < 𝑐2; then 𝛼∗∗1 < 𝛼∗∗1 .

By Corollary  2, the optimal contest with discriminatory entry fees awards a larger share of productive resources to the ex 
ante stronger firm—i.e., 𝛼∗∗1 < 𝛼∗∗1 —than its counterpart with uniform entry fees. Recall that the sponsor must factor in allocative 
efficiency, which tempts her to provide more resources to the more competent firm to tap its superior productivity. Discriminatory 
entry fees afford the sponsor more flexibility in this respect. Uniform entry fees favor a level playing field: The entry fee cannot 
exceed the surplus firm 2 is able to secure from the contest, so a more uneven race leaves rent to firm 1 and limits the eventual prize 
purse. However, awarding more resources to less productive firm 2 wastes productivity and jeopardizes the allocative efficiency of 
the contest. Discriminatory entry fees offer a solution. The sponsor can privilege the more competent firm 1 in resource allocation—
which advantages the firm in the competition—while confiscating its rent by charging a larger entry fee 𝜙1. In the optimal contest, 
firm 2 ends up with zero surplus and pays zero entry fee, which leaves it indifferent between participating in or staying out of the 
contest. A lopsided contest can increase firm 1’s surplus—which, however, is absorbed by a high entry fee; the revenue tops up 
the prize purse, which, in turn, motivates the two firms to invest in their effort. As a result, Corollary  1 states that firm 1 tends to 
receive more resources when the entry fee is not forced to be uniform.

Two remarks are in order before we close this section. First, in contrast to Proposition  3, a quality-maximizing sponsor strictly
benefits from the flexibility to charge discriminatory entry fees when the top two candidates are heterogeneous. Second, a closer 
look at (7) and (8) reveals that the optimal contest established in Proposition  4 not only maximizes the expected quality of the 
winning product but also the total effort of the R&D contest.17 The flexibility to impose identity-dependent entry fees allows the 
sponsor to fully extract surplus and maximizes the incentive the contest provides.

5. Discussions, implications, and conclusions

In this paper, we explore the design of an R&D contest by a sponsor who can (i) charge entry fees and (ii) allocate a fixed 
amount of productive resources across firms. To the best of our knowledge, this is the first paper in the literature to examine the 
joint contest design problem with the two popular and intuitive instruments. Our analysis sheds light on the roles played by these 
instruments in providing incentives and shaping optimal contests.

Our results generate useful implications for the practical design of contest mechanisms. First, we show that restricting entry is 
optimal in a broad context. The optimal contest involves two active firms regardless of the sponsor’s objective—maximizing either 
total effort or the expected quality of the winning product—which can be achieved by the combination of entry fees and strategic 
allocation of productive resources (Propositions  1 to 4 ).

Second, entry fees play subtle roles that could accrue to the benefit of a contest sponsor. The sponsor can use entry fees to select 
the optimal set of entrants and also elicit revenue to fund the prize purse, which strengthens the incentives provided to competing 

17 Note that there does not always exist a contest that maximizes both total effort and the expected quality of the winning product under the constraint of a 
uniform entry fee. By Corollary  1, a quality-maximizing contest cultivates a national champion and gives the most efficient firm a higher equilibrium winning 
probability when 𝑟 < 1∕2 and 𝑐 ∕𝑐 > 𝓁, while according to Proposition  1, an effort-maximizing contest would completely level the playing field.
2 1
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firms. Further, we show that the sponsor would be encouraged to favor the more competent firm when allocating her resources if 
she is able to charge an entry fee, as the discussion in Section 3.2 demonstrates.

Third, the conventional wisdom of leveling the playing field may not universally hold for quality maximization. The sponsor has 
to strike a balance between the competition effect—which requires a level playing field—and allocative efficiency, which requires 
that the ex ante more competent firm be prioritized in resource allocation. Creating a level playing field creates more competition, 
but compromises allocative efficiency. As a result, a sponsor must be alerted to the risk of wasting scarcely available resources on 
less productive candidates and carefully examine the technological nature of the research project and profile of the contenders.

Fourth, Proposition  2 provides a guideline for allocating productive resources to competing firms. A national champion is more 
likely to emerge in the optimum when the contest pursues a more difficult or riskier project. For instance, compare a regular 
engineering solution that streamlines the production process—e.g., a project intensification project to achieve a higher-yield, more 
reliable pharmaceutical process—and a fundamental scientific discovery—e.g., a potentially revolutionary technology for cancer 
treatment. The former calls on more balanced resource allocation, while the latter should concentrate limited resources more on 
the industry leader. Echoing Boudreau et al. (2011), our paper emphasizes that the design of contests must take into account the 
nature of the research problem. Similarly, compare a project that serves a mature sector and one for a nascent industry: The former 
favors a level playing field, while the latter might require a frontrunner.

Further, more caution is required when a large gap exists between firms in terms of competence. An even race can lose its 
appeal in the face of substantial initial asymmetry: Balancing the contest requires allocating even more resources to less productive 
firms in order to close a wider competence gap. Sponsors must thoroughly assess the project’s nature to devise an effective resource 
allocation plan.

Last, discriminatory entry fees afford a contest sponsor more flexibility to boost the performance of the contest. The sponsor can 
further prioritize the ex ante more competent firm in resource allocation in order to tap its superior productivity, while expropriating 
its surplus through a higher entry fee. Discriminatory entry fees can easily be implemented by individualized invitations, cash 
subsidies to selected firms, or rebates.
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Appendix. Proofs

Proof of Proposition  1

Proof. Following Fu and Wu (2020), the first-order condition 𝜕𝜋𝑖 (𝒙;𝑉 , 𝜙,𝜶)∕𝜕𝑥𝑖 = 0 for a firm 𝑖 ∈   that chooses to exert a strictly 
positive effort can be expressed as follows: 

𝑥𝑖 = 𝑟𝑝𝑖(𝒙)
[

1 − 𝑝𝑖(𝒙)
]

× 𝑉
𝑐𝑖
. (9)

Note that the above condition continues to hold for a firm that opts out of the contest, since an inactive firm simply stands zero 
chance of winning.

Denote by +(𝒑) and 𝑘(𝒑), respectively, the set and number of firms with strictly positive equilibrium winning probabilities: 

+(𝒑) ∶=
{

𝑖 = 1,… , 𝑛 ∣ 𝑝𝑖 > 0
}

(10)

and 

𝑘(𝒑) ∶= 𝑏||
|

+(𝒑)
|

|

|

. (11)

Simple algebra would verify the following lemma, which establishes a correspondence between firms’ equilibrium winning 
probabilities 𝒑 ≡ (𝑝1,… , 𝑝𝑛) and the resource allocation profile 𝜶 ≡ (𝛼1,… , 𝛼𝑛).

Lemma 1. Consider a second-stage contest and ignore for now firms’ participation constraints; or equivalently, consider a second-stage 
research contest, with 𝜙 = 𝛾 = 0. Any profile of the equilibrium winning probabilities 𝒑 ≡

(

𝑝1,… , 𝑝𝑛
)

∈ 𝛥𝑛−1, with 𝑝𝑖 ≠ 1 for all 𝑖 ∈  , 
can be induced by the following resource allocation profile 𝜶 (𝒑) ≡

(

𝛼1(𝒑),… , 𝛼𝑛(𝒑)
)

:

𝛼𝑖(𝒑) =
⎧

⎪

⎨

⎪

⎩

𝑐𝑟𝑖 𝑝
1−𝑟
𝑖

(

1−𝑝𝑖
)𝑟 × 1

𝜂(𝒑) , if 𝑝𝑖 > 0,

0, if 𝑝𝑖 = 0,

where 𝜂 (𝒑) ∶= ∑
𝑐𝑟𝑗 𝑝

1−𝑟
𝑗

( )𝑟 .
𝑗∈+(𝒑) 1−𝑝𝑗

10 
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Lemma  1 enables us to reformulate the optimization problem and treat the distribution of equilibrium winning probabilities 𝒑
as the design variable, which is the central idea developed in Fu and Wu (2020). Instead of searching for the optimal (𝑉 , 𝜙,𝜶), the 
sponsor literally chooses (𝑉 , 𝜙,𝒑) to maximize 𝑍∗ as specified in (2), i.e.,

𝑍∗ ≡
∑

𝑖∈
𝑥𝑖 =

∑

𝑖∈

[

𝑟𝑝𝑖(1 − 𝑝𝑖)
𝑉
𝑐𝑖

]

,

subject to the following constraints: 
∑

𝑖∈
𝑝𝑖 = 1, and 𝑝𝑖 ≥ 0, for all 𝑖 ∈  , (12)

min
𝑖∈+(𝒑)

{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]

× 𝑉
}

≥ 𝜙 + 𝛾, (13)

and 
𝑉 − 𝑘(𝒑)𝜙 = 𝑏, (14)

where +(𝒑) and 𝑘(𝒑) are defined in (10) and (11), respectively. Constraint (12) simply requires that firms’ winning probabilities be 
nonnegative and sum to one; (13) is the participation constraint for an active firm, which can be implied by active firms’ first-order 
conditions (9); and (14) ensures budget balance, which requires that the prize be sufficiently funded by the sponsor’s initial prize 
purse 𝑏 and the revenues of entry fees, 𝑘(𝒑)𝜙, collected from the 𝑘(𝒑) entrants.

Note that constraint (13) must bind in the optimal R&D contest. The sponsor can otherwise increase 𝑉  and 𝜙 simultaneously—
while holding fixed 𝒑 ≡ (𝑝1,… , 𝑝𝑛) —which improves her payoff without violating constraints (13) and (14). As a result, for a given 
profile of equilibrium winning probabilities 𝒑 ≡ (𝑝1,… , 𝑝𝑛) the sponsor intends to induce, she sets the entry fee such that 

𝜙 = min
𝑖∈+(𝒑)

{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]}

× 𝑉 − 𝛾. (15)

Combining (14) and (15) yields 

𝑉 =
𝑏 − 𝑘(𝒑)𝛾

1 − 𝑘(𝒑)min𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]} , (16)

and 

𝜙 =
𝑏min𝑖∈+(𝒑)

{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]}

− 𝛾

1 − 𝑘(𝒑)min𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]} . (17)

For a given cost profile 𝒄 ≡ (𝑐1,… , 𝑐𝑛), the sponsor’s optimization problem can be simplified as the following:

max
𝒑∈𝛥𝑛−1 , 𝑘(𝒑)≥2

(𝒑, 𝒄) ∶=

(

∑

𝑖∈

𝑟𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

1 − 𝑘(𝒑)min𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]} ,

where 𝛥𝑛−1 is an (𝑛 − 1)-dimensional simplex as defined by (12).
To prove the proposition, it suffices to show that 

(𝒑, 𝒄) ≤
( 𝑏
2
− 𝛾

)

×
(

1
𝑐1

+ 1
𝑐2

)

, (18)

with the equality holding if, and only if, 𝑝1 = 𝑝2 =
1
2  and 𝑝3 = ⋯ = 𝑝𝑛 = 0.

Note that

(𝒑, 𝒄) ≡

(

∑

𝑖∈

𝑟𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

1 − 𝑘(𝒑) × min𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]}

≤

(

∑

𝑖∈

𝑟𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

1 −
∑

𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]}

=

(

∑

𝑖∈

𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

∑

𝑖∈+(𝒑)
[

𝑝𝑖(1 − 𝑝𝑖)
] . (19)

Let 𝑤𝑖 ∶= 𝑝𝑖(1−𝑝𝑖)
∑

𝑗∈+(𝒑)[𝑝𝑗 (1−𝑝𝑗 )]
 for all 𝑖 ∈  . It follows immediately that ∑𝑖∈ 𝑤𝑖 = 1 and

𝑤1 =
𝑝1(1 − 𝑝1)

∑

𝑗∈+(𝒑)
[

𝑝𝑗 (1 − 𝑝𝑗 )
] =

𝑝1(1 − 𝑝1)
𝑝1(1 − 𝑝1) +

∑

𝑗∈+(𝒑)⧵{1}
[

𝑝𝑗 (1 − 𝑝𝑗 )
]

≤
𝑝1(1 − 𝑝1)

𝑝1(1 − 𝑝1) +
∑

𝑗∈+(𝒑)⧵{1}
(

𝑝𝑗𝑝1
)

=
𝑝1(1 − 𝑝1)
2𝑝1(1 − 𝑝1)

= 1
2
, (20)
11 
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with the equality holding if, and only if, 𝑘(𝒑) = 2. Further, we have that
(

∑

𝑖∈

𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

∑

𝑖∈+(𝒑) 𝑝𝑖(1 − 𝑝𝑖)
= [𝑏 − 𝑘(𝒑)𝛾] ×

⎛

⎜

⎜

⎝

𝑤1
𝑐1

+
∑

𝑖∈⧵{1}

𝑤𝑖
𝑐𝑖

⎞

⎟

⎟

⎠

≤ [𝑏 − 𝑘(𝒑)𝛾] ×
⎛

⎜

⎜

⎝

𝑤1
𝑐1

+
∑

𝑖∈⧵{1}

𝑤𝑖
𝑐2

⎞

⎟

⎟

⎠

= [𝑏 − 𝑘(𝒑)𝛾] ×
(

𝑤1
𝑐1

+
1 −𝑤1
𝑐2

)

≤
( 𝑏
2
− 𝛾

)

×
(

1
𝑐1

+ 1
𝑐2

)

, (21)

where the first inequality follows from 𝑐2 ≤ ⋯ ≤ 𝑐𝑛; the second equality follows from ∑𝑖∈ 𝑤𝑖 = 1; and the second inequality follows 
from 𝑘(𝒑) ≥ 2, 𝑤1 ≤

1
2 , and 𝑐1 ≤ 𝑐2.

Combining (19) and (21) yields (18), with the equality holding if, and only if, 𝑝1 = 𝑝2 = 1
2  and 𝑝3 = ⋯ = 𝑝𝑛 = 0. From 

𝒑∗ ≡ (𝑝∗1 ,… , 𝑝∗𝑛) = ( 12 ,
1
2 , 0,… , 0) and (17), we can obtain the optimally designed entry fee as follows:

𝜙∗ =
𝑏(2 − 𝑟) − 4𝛾

2𝑟
,

which is positive if 𝑏 > 𝑏∗ ≡ 4𝛾
2−𝑟 . This concludes the proof.  ■

Proof of Proposition  2

Proof. By Lemma  1 and Eq.  (9), we can rewrite 𝑍∗∗ defined in (3) as the following: 

𝑍∗∗ ≡
∑

𝑖∈
𝛼𝑖 ⋅ 𝑥

𝑟
𝑖 =

∑

𝑖∈

[

𝛼𝑖𝑝
𝑟
𝑖 (1 − 𝑝𝑖)

𝑟 (𝑟𝑉 )𝑟

𝑐𝑟𝑖

]

=
(𝑟𝑉 )𝑟

𝜂(𝒑)
, (22)

where 𝜂(𝒑) is defined in Lemma  1. Combining (16) and (22), the optimization problem can be simplified as follows: 

max
𝒑∈𝛥𝑛−1 , 𝑘(𝒑)≥2

(𝒑, 𝒄) ∶=
[𝑏 − 𝑘(𝒑)𝛾]𝑟

(

∑

𝑖∈+(𝒑)
𝑐𝑟𝑖 𝑝

1−𝑟
𝑖

(1−𝑝𝑖)𝑟

)

(

1 − 𝑘(𝒑)min𝑖∈+(𝒑)
{

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]}

)𝑟
. (23)

From the rearrangement inequality, we can show that 𝑝1 ≥ ⋯ ≥ 𝑝𝑛 in the optimal research contest. Next, we show that +(𝒑) = {1, 2}. 
It is evident that 𝑘(𝒑) ≥ 2 in the optimum, which in turn implies that 𝑏 − 𝑘(𝒑)𝛾 ≤ 𝑏 − 2𝛾.

Fixing an arbitrary equilibrium winning probability profile 𝒑 = (𝑝1,… , 𝑝𝑛), with 𝑝1 ≥ ⋯ ≥ 𝑝𝑛 and 𝑝3 > 0, we construct 
𝒑† ∶= (𝑝†1,… , 𝑝†𝑛) as follows:

𝑝†𝑖 =

⎧

⎪

⎨

⎪

⎩

max
{

𝑝1, 1∕2
}

, for 𝑖 = 1,
min

{

1 − 𝑝1, 1∕2
}

, for 𝑖 = 2,
0, for 𝑖 ≥ 3.

It is straightforward to verify that 𝑝1 ≤ 𝑝†1, 𝑝2 < 𝑝
†
2, and 𝑝𝑖 ≤ 𝑝†2 ≤ 1∕2 ≤ 𝑝†1 for all 𝑖 ∈ {3,… , 𝑛}, from which we can obtain that 

𝑐𝑟1𝑝
1−𝑟
1

(

1 − 𝑝1
)𝑟 = 𝑝1

𝑐𝑟1
[

𝑝1(1 − 𝑝1)
]𝑟 ≥ 𝑝1

𝑐𝑟1
[

𝑝†1(1 − 𝑝
†
1)
]𝑟 = 𝑝1

𝑐𝑟1
(

𝑝†1𝑝
†
2

)𝑟 , (24)

𝑐𝑟2𝑝
1−𝑟
2

(

1 − 𝑝2
)𝑟 = 𝑝2

𝑐𝑟2
[

𝑝2(1 − 𝑝2)
]𝑟 > 𝑝2

𝑐𝑟2
[

𝑝†2(1 − 𝑝
†
2)
]𝑟 = 𝑝2

𝑐𝑟2
(

𝑝†1𝑝
†
2

)𝑟 , (25)

and 
𝑐𝑟𝑖 𝑝

1−𝑟
𝑖

(

1 − 𝑝𝑖
)𝑟 = 𝑝𝑖

𝑐𝑟𝑖
[

𝑝𝑖(1 − 𝑝𝑖)
]𝑟 ≥ 𝑝𝑖

𝑐𝑟2
[

𝑝†2(1 − 𝑝
†
2)
]𝑟 = 𝑝𝑖

𝑐𝑟2
(

𝑝†1𝑝
†
2

)𝑟 , for 𝑖 ≥ 3. (26)

Therefore, we have that
∑

𝑖∈+(𝒑)

𝑐𝑟𝑖 𝑝
1−𝑟
𝑖

(

1 − 𝑝𝑖
)𝑟 =

𝑐𝑟1𝑝
1−𝑟
1

(

1 − 𝑝1
)𝑟 +

∑

𝑖∈+(𝒑)⧵{1}

𝑐𝑟𝑖 𝑝
1−𝑟
𝑖

(

1 − 𝑝𝑖
)𝑟

>𝑝1
𝑐𝑟1

(

𝑝†𝑝†
)𝑟 +

∑

𝑖∈ (𝒑)⧵{1}
𝑝𝑖

𝑐𝑟2
(

𝑝†𝑝†
)𝑟
1 2 + 1 2

12 
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=𝑝1
𝑐𝑟1

(

𝑝†1𝑝
†
2

)𝑟 +
(

1 − 𝑝1
)

𝑐𝑟2
(

𝑝†1𝑝
†
2

)𝑟

≥𝑝†1
𝑐𝑟1

(

𝑝†1𝑝
†
2

)𝑟 + 𝑝
†
2

𝑐𝑟2
(

𝑝†1𝑝
†
2

)𝑟

=
𝑐𝑟1

(

𝑝†1
)1−𝑟

(

𝑝†2
)𝑟 +

𝑐𝑟2
(

𝑝†2
)1−𝑟

(

𝑝†1
)𝑟 =

∑

𝑖∈+(𝒑†)

𝑐𝑟𝑖
(

𝑝†𝑖
)1−𝑟

(

1 − 𝑝†𝑖
)𝑟 , (27)

where the first inequality follows from (24), (25), and (26) and the second inequality follows from 𝑐1 ≤ 𝑐2 and 𝑝1 ≤ 𝑝†1.
Next, note that 1 − 𝑝𝑘(𝒑) ≥ 1 − 𝑝†2 and

𝑘(𝒑)𝑝𝑘(𝒑) ≤ min

⎧

⎪

⎨

⎪

⎩

1,
𝑘(𝒑)

𝑘(𝒑) − 1
×

∑

𝑖∈⧵{1}
𝑝𝑖

⎫

⎪

⎬

⎪

⎭

= min
{

1,
𝑘(𝒑)

𝑘(𝒑) − 1
(

1 − 𝑝1
)

}

≤ min
{

1, 2
(

1 − 𝑝1
)}

= 2𝑝†2,

from which we can conclude that
1 − 𝑘(𝒑) × min

𝑖∈+(𝒑)

{

𝑝𝑖
[

1 − 𝑟
(

1 − 𝑝𝑖
)]}

=1 − 𝑘(𝒑)𝑝𝑘(𝒑)
[

1 − 𝑟
(

1 − 𝑝𝑘(𝒑)
)]

≥1 − 2𝑝†2
[

1 − 𝑟
(

1 − 𝑝†2
)]

=1 − 𝑘(𝒑†) × min
𝑖∈+(𝒑†)

{

𝑝†𝑖
[

1 − 𝑟
(

1 − 𝑝†𝑖
)]}

. (28)

Combining (27) and (28) yields (𝒑, 𝒄) < (𝒑†, 𝒄), which implies that +(𝒑) = {1, 2} in the optimally designed contest. 
Therefore, the sponsor’s optimization problem (23) boils down to

min
𝑝1+𝑝2=1, 𝑝1≥𝑝2>0

(

𝑐𝑟1𝑝
1−𝑟
1
𝑝𝑟2

+
𝑐𝑟2𝑝

1−𝑟
2
𝑝𝑟1

)

×
[

1 − 2𝑝2
(

1 − 𝑟𝑝1
)]𝑟 .

Substituting the solution to the above optimization problem—which we denote by (𝑝∗∗1 , 𝑝∗∗2 )—into (17), we can derive the 
corresponding entry fee as follows:

𝜙∗∗ =
𝑏𝑝∗∗2

(

1 − 𝑟𝑝∗∗1
)

− 𝛾

1 − 2𝑝∗∗2
(

1 − 𝑟𝑝∗∗1
) .

The entry fee is positive if 𝑏 > 𝑏∗∗ ≡ 𝛾
𝑝∗∗2 (1−𝑟𝑝∗∗1 ) . This concludes the proof. ■

Proof of Corollary  1

Proof. It is useful to state an intermediate result.

Lemma 2. Consider the following optimization problem:

min
𝑝1+𝑝2=1, 𝑝1≥𝑝2>0

(

𝑐†1𝑝
1−𝑟
1
𝑝𝑟2

+
𝑐†2𝑝

1−𝑟
2
𝑝𝑟1

)

,

where 𝑐†𝑖 ∶= (𝑐𝑖)𝑟, with 𝑖 ∈ {1, 2}. Denote the solution by 𝒑̃∗∗ ∶= (𝑝∗∗1 , 𝑝
∗∗
2 ) and the corresponding resource allocation rule derived from 

Lemma  1 by 𝜶̃∗∗ ∶= (𝛼∗∗1 , 𝛼
∗∗
2 ). Then ̃𝛼∗∗1 ≷ 𝛼∗∗2  if and only if 𝑟 ≶ 1

2 .

Proof. Taking the logarithm of the objective function in the lemma yields

𝜓(𝑝2, 𝑟) ∶= log

(

𝑐†1𝑝
1−𝑟
1
𝑝𝑟2

+
𝑐†2𝑝

1−𝑟
2
𝑝𝑟1

)

= log
(

𝑐†1 (1 − 𝑝2) + 𝑐
†
2𝑝2

)

− 𝑟 log
(

𝑝2(1 − 𝑝2)
)

.

Carrying out the algebra, we can obtain that
𝜕2𝜓
𝜕𝑝2𝜕𝑟

= −
1 − 2𝑝2
𝑝2(1 − 𝑝2)

< 0.

Therefore, 𝜓(𝑝2, 𝑟) is submodular in (𝑝2, 𝑟). By Topkis’s theorem, 𝑝∗∗2  is increasing in 𝑟, which in turn implies that

𝛼∗∗1
𝛼∗∗

=

(

𝑐1
)𝑟 (𝑝∗∗1

)1−𝑟 ∕
(

1 − 𝑝∗∗1
)𝑟

( )𝑟 ( ∗∗)1−𝑟 ( ∗∗)𝑟
=
𝑐†1𝑝

∗∗
1

† ∗∗
=
𝑐†1

(

1 − 𝑝∗∗2
)

† ∗∗

2 𝑐2 𝑝2 ∕ 1 − 𝑝2 𝑐2𝑝2 𝑐2𝑝2

13 
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is decreasing in 𝑟.
Therefore, to prove the lemma, it suffices to show that 𝛼∗∗1 = 𝛼∗∗2  when 𝑟 = 1

2 . In this case, the optimization problem can be 
written as

min
𝑝1+𝑝2=1, 𝑝1≥𝑝2>0

𝑐†1

√

𝑝1
𝑝2

+ 𝑐†2

√

𝑝2
𝑝1
.

From the AM-GM inequality, we have that

𝑐†1

√

𝑝1
𝑝2

+ 𝑐†2

√

𝑝2
𝑝1

≥ 2
√

𝑐†1𝑐
†
2 ,

with the equality holding if, and only if, 𝑐†1
√

𝑝∗∗1
𝑝∗∗2

= 𝑐†2

√

𝑝∗∗2
𝑝∗∗1
, from which we can conclude that

𝛼∗∗1
𝛼∗∗2

=
𝑐†1𝑝

∗∗
1

𝑐†2𝑝
∗∗
2

= 1.

This concludes the proof. ■

Now we can prove part (i) of the corollary. Consider the following function:

𝜁 (𝑝2; 𝜃) ∶= log

(

𝑐†1𝑝
1−𝑟
1
𝑝𝑟2

+
𝑐†2𝑝

1−𝑟
2
𝑝𝑟1

)

+ 𝜃𝑟 log
(

1 − 2𝑝2(1 − 𝑟𝑝1)
)

, with 𝜃 ∈ [0, 1].

It is evident that minimizing 𝜁 (𝑝2; 𝜃) is equivalent to minimizing the objective function (5) when 𝜃 = 1. Similarly, minimizing 𝜁 (𝑝2; 𝜃)
is equivalent to minimizing the objective function stated in Lemma  2 when 𝜃 = 0.

Moreover, carrying out the algebra, we can obtain that
𝜕2𝜁
𝜕𝑝2𝜕𝜃

=
2𝑟2

(

1 − 2𝑝2
)

− 2𝑟

1 − 2𝑝2
[

1 − 𝑟
(

1 − 𝑝2
)] < 0.

Therefore, 𝜁 (𝑝2; 𝜃) is submodular in (𝑝2, 𝜃). Again, by Topkis’s theorem, we have that 𝑝∗∗2 > 𝑝∗∗2 ; together with Lemma  2, we can 
conclude that 𝛼∗∗1 < 𝛼∗∗2  for 𝑟 ≥ 1∕2.

Next, we prove part (ii) of the corollary. Recall 𝛼2∕𝛼1 = (𝑐†2𝑝2)∕(𝑐
†
1𝑝1). Define 𝑐 ∶= 𝑐†2∕𝑐

†
1 and 𝛼 ∶= 𝛼2∕𝛼1. It follows immediately 

that 𝑐 > 1 and 𝑐 = 𝛼×(𝑝1∕𝑝2) ≥ 𝛼. The logarithm of the objective function (5)—or equivalently, 𝜁 (𝑝2; 1)—can be viewed as a function 
of 𝛼 and expressed as

𝜂(𝛼, 𝑐) ∶= 𝜁 (𝑝2; 1) = log(1 + 𝛼) − log(𝑐 + 𝛼) + 𝑟 log
(

2𝑟 − 𝛼
𝑐
+ 𝑐
𝛼

)

.

Fixing 𝑐 > 1, the optimization problem stated in Proposition  2 boils down to one in which the sponsor chooses 𝛼 ∈ (0, 𝑐] to minimize 
𝜂(𝛼, 𝑐).

The proof consists of three steps. In the first step, we show that 𝛼∗∗ ∶= 𝛼∗∗2 ∕𝛼∗∗1  is strictly decreasing in 𝑐. In the second step, 
we show that 𝛼∗∗ = 𝑐 > 1 when 𝑐 is sufficiently close to 1. Last, we show that 𝛼∗∗ ≤ 1 when 𝑐 is sufficiently large. All together, the 
three steps imply that there exists a threshold 𝑐 such that 𝛼∗∗ ≡ 𝛼∗∗2 ∕𝛼∗∗1 > 1 if 𝑐 < 𝑐 and 𝛼∗∗ ≡ 𝛼∗∗2 ∕𝛼∗∗1 < 1 if 𝑐 > 𝑐.
Step I For 𝛼 > 0, we can obtain that

𝜕2𝜂
𝜕𝛼𝜕𝑐

=
𝑐4(1 − 2𝑟2) + 4𝑐3𝛼𝑟(2 − 𝑟) − 2𝑐2𝛼2(1 − 4𝑟 − 2𝑟2) + 4𝑐𝛼3𝑟2 + 𝛼4(1 + 2𝑟2)

(𝑐 + 𝛼)2
(

𝑐2 + 2𝑟𝑐𝛼 − 𝛼2
)2

≥2𝑐2𝛼2(
√

1 − 4𝑟4 + 4𝑟 + 2𝑟2 − 1)

(𝑐 + 𝛼)2
(

𝑐2 + 2𝑟𝑐𝛼 − 𝛼2
)2

> 0,

where the first inequality follows from the AM-GM inequality and the second inequality follows from 0 < 𝑟 < 1∕2. Therefore, 𝜂(𝛼, 𝑐)
is supermodular in (𝛼, 𝑐). By Topkis’s theorem, 𝛼∗∗ is strictly decreasing in 𝑐.
Step II Note that

𝜂(𝛼, 𝑐) − 𝜂(𝑐, 𝑐) = 𝑟 log
(

1 +
(𝑐 + 𝛼)(𝑐 − 𝛼)

2𝑟𝑐𝛼

)

− log
(

1 +
(𝑐 − 𝛼)(𝑐 − 1)
2𝑐(𝛼 + 1)

)

.

Next, we show that 𝜂(𝛼, 𝑐) > 𝜂(𝑐, 𝑐) for all 𝛼 ∈ (0, 𝑐) when 𝑐 < 2𝑟. Consider the following two cases depending on (𝑐+𝛼)(𝑐−𝛼)2𝑟𝑐𝛼  relative 
to 1.
Case I: (𝒄+𝜶)(𝒄−𝜶)𝟐𝒓𝒄𝜶 > 1. Then we have that

𝜂(𝛼, 𝑐) − 𝜂(𝑐, 𝑐) > 𝑟 log 2 − log
(

1 +
(𝑐 − 𝛼)(𝑐 − 1)
2𝑐(𝛼 + 1)

)

> 𝑟 log 2 − log(𝑐) > 0,

where the second inequality follows from the fact that (𝑐−𝛼)(𝑐−1) < 𝑐(𝑐−1) < 𝑐 − 1.
2𝑐(𝛼+1) 2𝑐

14 
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Case II: (𝒄+𝜶)(𝒄−𝜶)
𝟐𝒓𝒄𝜶 ≤ 𝟏. Then we have that

𝜂(𝛼, 𝑐) − 𝜂(𝑐, 𝑐) ≥𝑟 × (𝑐 + 𝛼)(𝑐 − 𝛼)
4𝑟𝑐𝛼

− log
(

1 +
(𝑐 − 𝛼)(𝑐 − 1)
2𝑐(𝛼 + 1)

)

≥ (𝑐 + 𝛼)(𝑐 − 𝛼)
4𝑐𝛼

−
(𝑐 − 𝛼)(𝑐 − 1)
2𝑐(𝛼 + 1)

=

[

𝑐 + (3 − 𝑐)𝛼 + 𝛼2
]

(𝑐 − 𝛼)
4𝑐𝛼(𝛼 + 1)

> 0,

where the first inequality follows from the fact that log(1 + 𝑥) ≥ 𝑥
2  for every 𝑥 ∈ [0, 1]; the second inequality follows from the 

fact that log(1 + 𝑥) ≥ 𝑥 for every 𝑥 > 0; and the third inequality follows from 𝑐 < 2𝑟 < 3.

Step III Carrying out the algebra, we have that

𝜂(𝛼, 𝑐) − 𝜂(1, 𝑐) = log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− 𝑟 log
⎛

⎜

⎜

⎝

1 +
(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

⎞

⎟

⎟

⎠

.

Next, we show that fixing 0 < 𝑟 < 1∕2, 𝜂(𝛼, 𝑐) − 𝜂(1, 𝑐) > 0 for every 𝛼 ∈ (1, 𝑐) when 𝑐 is sufficiently large.
Note that fixing 𝑟, there exists a threshold 𝛿 such that log(1 + 𝑟𝑥

3 ) > 𝑟 log(1 + 𝑥) for every 𝑥 > 𝛿. Consider the following two cases 
depending on 𝛼 relative to 2𝛿.
Case I: 𝜶 < 𝟐𝜹. Then we have that

𝜂(𝛼, 𝑐) − 𝜂(1, 𝑐) = log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− 𝑟 log
⎛

⎜

⎜

⎝

1 +
(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

⎞

⎟

⎟

⎠

> log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− log
⎛

⎜

⎜

⎝

1 +
𝑟(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

⎞

⎟

⎟

⎠

= log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− log
⎛

⎜

⎜

⎝

1 +
𝑟(𝛼 − 1)(𝑐 + 𝛼

𝑐 )

2𝛼𝑟 + 𝑐 − 𝛼2
𝑐

⎞

⎟

⎟

⎠

> log
(

1 +
(𝑐 − 1)(𝛼 − 1)
2(𝑐 + 2𝛿)

)

− log
⎛

⎜

⎜

⎝

1 +
𝑟(𝛼 − 1)(𝑐 + 2𝛿

𝑐 )

2𝑟 + 𝑐 − 4𝛿2
𝑐

⎞

⎟

⎟

⎠

,

where the first inequality follows from Bernoulli’s inequality, and the second inequality follows from 1 ≤ 𝛼 < 2𝛿.
Next, note that

lim
𝑐→∞

(𝑐 − 1)
2(𝑐 + 2𝛿)

= 1
2
> 𝑟 = lim

𝑐→∞

𝑟(𝑐 + 2𝛿
𝑐 )

2𝑟 + 𝑐 − 4𝛿2
𝑐

.

Therefore, there exists 𝑐1 such that

(𝑐 − 1)
2(𝑐 + 2𝛿)

>
𝑟(𝑐 + 2𝛿

𝑐 )

2𝑟 + 𝑐 − 4𝛿2
𝑐

, for every 𝑐 > 𝑐1,

which in turn implies that 𝜂(𝛼, 𝑐) > 𝜂(1, 𝑐) for every 𝑐 > 𝑐1.

Case II: 𝜶 ≥ 𝟐𝜹. Recall that log(1+ 𝑟𝑥
3 ) > 𝑟 log(1+𝑥) for every 𝑥 > 𝛿. Further, we have that 

( 𝑐𝛼 +
1
𝑐 )

2𝑟+ 𝑐
𝛼 −

𝛼
𝑐
>

𝑐
𝛼

1+ 𝑐
𝛼
> 1

2 , which in turn implies 
that

1 +
(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

> 1 + 𝛼 − 1
2

> 𝛿.

Therefore, we can obtain that

𝜂(𝛼, 𝑐) − 𝜂(1, 𝑐) = log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− 𝑟 log
⎛

⎜

⎜

⎝

1 +
(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

⎞

⎟

⎟

⎠

> log
(

1 +
(𝑐 − 1)(𝛼 − 1)

2(𝑐 + 𝛼)

)

− log
⎛

⎜

⎜

⎝

1 +
𝑟(𝛼 − 1)( 𝑐𝛼 + 1

𝑐 )

3(2𝑟 + 𝑐
𝛼 − 𝛼

𝑐 )

⎞

⎟

⎟

⎠

.

It suffices to show that
𝑟( 𝑐𝛼 + 1

𝑐 )
𝑐 𝛼 < 𝑐 − 1 ,
3(2𝑟 + 𝛼 − 𝑐 ) 2(𝑐 + 𝛼)
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for every 𝛼 ∈ [2𝛿, 𝑐) when 𝑐 is sufficiently large. Note that 
𝑐
𝛼 + 1

𝑐

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

−
1 + 1

𝑐
2𝑟

= −
(𝑐 − 𝛼)

[

(1 + 1
𝑐 )(1 +

𝛼
𝑐 ) − 2𝑟

]

2𝑟𝛼
(

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

) < 0. (29)

Therefore, we can obtain that
𝑟( 𝑐𝛼 + 1

𝑐 )

3
(

2𝑟 + 𝑐
𝛼 − 𝛼

𝑐

) <
1 + 1

𝑐
6

< 𝑐 − 1
4𝑐

< 𝑐 − 1
2 (𝑐 + 𝛼)

,

where the first inequality follows from (29); the second inequality holds for 𝑐 > 5; and the third inequality follows from 𝛼 < 𝑐
and 𝑐 > 1.

In summary, if 𝑐 > max{𝑐1, 5}, then 𝜂(𝛼, 𝑐) − 𝜂(1, 𝑐) > 0 for each 𝛼 ∈ (1, 𝑐), which in turn implies that 𝛼∗∗ ≤ 1. This completes the 
proof. ■

Proof of Proposition  3

Proof. Similar to the analysis in the proof of Proposition  1, the optimal contest design problem can be reformulated as follows: The 
sponsor chooses (𝑉 ,𝝓,𝒑) to maximize (2), subject to constraints (12), 

𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]

× 𝑉 ≥ 𝜙𝑖 + 𝛾, for all 𝑖 ∈ +(𝒑), (30)

and 
𝑉 −

∑

𝑖∈+(𝒑)
𝜙𝑖 = 𝑏. (31)

Constraint (30) provides participation constraints for firms. Constraint (31) requires a binding budget constraint. The optimization 
problem can be further simplified as follows:

max
𝒑∈𝛥𝑛−1 , 𝑘(𝒑)≥2

(

∑

𝑖∈

𝑝𝑖(1 − 𝑝𝑖)
𝑐𝑖

)

×
𝑏 − 𝑘(𝒑)𝛾

∑

𝑖∈+(𝒑)
{

𝑝𝑖(1 − 𝑝𝑖)
} .

Denote by ̂𝒑∗ ≡ (𝑝∗1 ,… , 𝑝∗𝑛) the equilibrium winning probabilities in the optimum with discriminatory entry fees. Recall that we have 
shown (21) in the proof of Proposition  1, from which we can conclude that the maximum can be reached by an arbitrary profile of 
equilibrium winning probabilities 𝒑 ∈ 𝛥𝑛−1 such that +(𝒑) = {1, 2}. Therefore, we must have that +(𝒑̂

∗) = {1, 2}.
Next, we solve for 𝑉 ∗ and 𝝓̂∗

. Because (30) must bind for all active firms, we have that 
𝜙∗
𝑖 = 𝑝∗𝑖

[

1 − 𝑟(1 − 𝑝∗𝑖 )
]

× 𝑉 ∗ − 𝛾, for 𝑖 ∈ {1, 2}. (32)

Plugging (32) into (31) yields that

𝑉 ∗ = 𝑏 +
[

𝑝∗1(1 − 𝑟𝑝
∗
2) × 𝑉

∗ − 𝛾
]

+
[

𝑝∗2(1 − 𝑟𝑝
∗
1) × 𝑉

∗ − 𝛾
]

,

which in turn implies that 

𝑉 ∗ =
𝑏 − 2𝛾

1 − 𝑝∗1(1 − 𝑟𝑝
∗
2) − 𝑝

∗
2(1 − 𝑟𝑝

∗
1)

=
𝑏 − 2𝛾
2𝑟𝑝∗1𝑝

∗
2
. (33)

Substituting (33) into (32) yields that

(𝜙∗
1 , 𝜙

∗
2) =

(

𝑝∗1(1 − 𝑟𝑝
∗
2) × 𝑉

∗ − 𝛾, 𝑝∗2(1 − 𝑟𝑝
∗
1) × 𝑉

∗ − 𝛾
)

=

(

𝑏(1 − 𝑟𝑝∗2) − 2𝛾

2𝑟𝑝∗2
,
𝑏(1 − 𝑟𝑝∗1) − 2𝛾

2𝑟𝑝∗1

)

.

It is straightforward to verify that there exists at least one tuple (𝑝∗1 , 𝑝∗2), with 𝑝∗1 ≥ 0, 𝑝∗2 ≥ 0, and 𝑝∗1 + 𝑝∗2 = 1, such that 𝜙∗
1 ≥ 0 and 

𝜙∗
2 ≥ 0 if 𝑏 > 𝑏∗ ≡ 4𝛾

2−𝑟 . This concludes the proof. ■

Proof of Proposition  4

Proof. The optimization problem can be simplified as follows: 

max
𝒑∈𝛥𝑛−1 , 𝑘(𝒑)≥2

𝑏 − 𝑘(𝒑)𝛾
(

∑

𝑖∈ (𝒑)
𝑐𝑟𝑖 𝑝

1−𝑟
𝑖

𝑟

)

{

1 −
∑

𝑖∈ (𝒑) 𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]

}𝑟
. (34)
+ (1−𝑝𝑖) +

16 
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By the same argument as in establishing (20), we have that
1 −

∑

𝑖∈+(𝒑)
𝑝𝑖
[

1 − 𝑟(1 − 𝑝𝑖)
]

= 𝑟 ×
∑

𝑖∈+(𝒑)

[

𝑝𝑖(1 − 𝑝𝑖)
]

≥ 2𝑝1(1 − 𝑝1)𝑟.

Denote by ̂𝒑∗∗ ≡ (𝑝∗∗1 ,… , 𝑝∗∗𝑛 ) the equilibrium winning probabilities in the quality-maximizing research contest with discriminatory 
entry fees. The above inequality, together with (27), implies that +(𝒑̂

∗∗) = {1, 2}. The objective (34) can then be simplified as
𝑏 − 2𝛾

(2𝑟)𝑟 ×
[

𝑐𝑟1𝑝1 + 𝑐
𝑟
2(1 − 𝑝1)

] ,

which strictly increases with 𝑝1 if 𝑐1 < 𝑐2 and remains constant if 𝑐1 = 𝑐2. In the case in which 𝑐1 < 𝑐2, the constraint 𝜙∗∗
2 ≥ 0 must 

bind, which gives (8) when 1𝑟 − 2𝛾
𝑟𝑏 < 1, or equivalently, when 𝑏 < 2𝛾

1−𝑟 . In the case in which 𝑐1 = 𝑐2, it is evident that any tuple 
(𝑝1, 𝑝2) can achieve the maximum, given that entry fees for the two firms are nonnegative, and the analysis closely follows that of 
Proposition  3. This concludes the proof. ■

Proof of Corollary  2

Proof. It suffices to show that 𝑝∗∗1 < 𝑝∗∗1 . By (8), we have that ̂𝑝∗∗1 = 1
𝑟 −

2𝛾
𝑟𝑏 . By the assumption of 𝑏 > 𝑏

∗, (4), and (6) , we can obtain 
that 𝑝∗∗1 > 1∕2 and 𝑏𝑝∗∗2 (1 − 𝑟𝑝∗∗1 ) ≥ 𝛾. For the case in which 𝑝∗∗2 = 1

2 , we have that 𝑝∗∗1 > 1
2 = 𝑝∗∗1 . For the case in which 𝑝∗∗2 < 1

2 , we 
have that 𝑏2 (1 − 𝑟𝑝∗∗1 ) > 𝑏𝑝∗∗2 (1 − 𝑟𝑝∗∗1 ) ≥ 𝛾, which in turn implies that 𝑝∗∗1 < 1

𝑟 −
2𝛾
𝑟𝑏 = 𝑝∗∗1 . This concludes the proof. ■
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