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Abstract This paper studies the effort-maximizing design of a complete-information
contest with endogenous entry. A fixed pool of homogenous potential players with
identical marginal bidding cost must incur an entry cost to enter the contest before
they bid for prize(s). The designer can flexibly adjust the impact function of a gener-
alized nested lottery contest and use a fixed budget to fund single or multiple prizes.
Applying Dasgupta and Maskin (Rev Econ Stud 53(1):1–26, 1986), we establish the
existence of symmetric equilibrium for all contest mechanisms concerned. A uniform
upper bound for expected overall bids is identified for any eligible contest, assuming
that potential bidders play symmetric equilibria. We show that the upper bound can
be achieved through a Tullock contest with a single contingent prize, which adopts
compatible bundles of success function and entry fees/subsidies. In particular, we
identify the conditions under which the optimum can be achieved by solely setting
the right discriminatory power in a Tullock contest with a single fixed prize. Finally,
our analysis characterizes the optimal shortlisting rule, which reveals that the contest
designer generally should exclude potential bidders to elicit higher bids.

Q. Fu
Department of Business Policy, National University of Singapore,
1 Business Link, Singapore 117592, Singapore
e-mail: bizfq@nus.edu.sg

Q. Jiao (B)
Lingnan College, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275,
People’s Republic of China
e-mail: jiaoq3@mail.sysu.edu.cn

J. Lu
Department of Economics, National University of Singapore, Singapore 117570, Singapore
e-mail: ecsljf@nus.edu.sg

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-014-0435-9&domain=pdf


388 Q. Fu et al.

Keywords Contest design · Endogenous entry · Entry cost · Stochastic entry

JEL Classification C7 · D8

1 Introduction

Economic agents are often involved in contests; they expend costly and nonrefund-
able effort to compete for a limited number of prizes. A wide variety of economic
activities exemplify such competitions, which include rent-seeking, lobbying, polit-
ical campaigns, R&D races, competitive procurement, college admissions, ascent of
organizational hierarchies, and movement within internal labor markets.

The vast wealth of literature on contests has delineated economic agents’ strategic
behaviors in contests from diverse perspectives and identified the various institutional
elements in contest design that affect bidding incentives. Most existing studies, how-
ever, focus on a setting in which a fixed number (n) of bidders participate. These
studies, under the “fixed-n paradigm,” typically abstract away from the ex ante par-
ticipation decisions of bidders and focus on their post-entry activities, assuming that
the actual number of active participants is commonly known. Our study complements
the existing literature by examining a setting in which a fixed pool of potential bidders
strategically decide whether to participate in a contest and then sink their bids upon
entering the contest.

In our setting, participation incurs a nontrivial (fixed) cost: It allows a bidder to
participate and is unrelated to his chances of winning. Each bidder weighs his expected
payoff in future competitions against the entry cost and participates if and only if the
former (at least) offsets the latter. As noted by Konrad (2009), a bidder often bears a
nontrivial (fixed) entry cost. For instance, to participate in an R&D race, a research
company may need to acquire necessary laboratory equipment, gather project-specific
information, or turn down other profitable tasks—while its chances of winning depend
on subsequent creative input. A nontrivial entry cost may lead potential bidders to
participate randomly. The actual number of participants thus remains uncertain. In our
setting, participants do not observe the actual entry decision of their opponents and
must take this uncertainty into account when placing their bids.1

This entry-bidding game exhibits distinctive characteristics, which significantly
complicate the equilibrium analysis. First, it exemplifies a discontinuous game with
two-dimensional action space (Dasgupta and Maskin 1986). With strategic and sto-
chastic entry, each potential bidder’s strategy involves two elements: (1) whether to
enter, and (2) how to bid upon entering.2 The game thus distinguishes itself from

1 We assume that the entrants do not observe the number of entrants. We consider this to be a reason-
able assumption in many scenarios. For example, in many open innovation challenges and crowdsourcing
contests, it is difficult for a participant to observe other potential candidates’ actual entry decisions. As we
discuss in the conclusion, there is no loss of generality to restrict our attention to optimal design of contests
that do not disclose the actual number of participants.
2 The literature on contests (Baye et al. 1994; Alcalde and Dahm 2010) recognizes that a well-defined
contest success function (e.g., a Tullock contest) can be discontinuous at its origin, i.e., when all bidders
bid zero.
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standard contests that are typically identified as unidimensional discontinuous games.
Conventional approaches to establishing the existence of equilibria in contest models
(e.g., Baye et al. 1994; Alcalde and Dahm 2010) or in auction games do not apply
to our settings. 3 This novel setting entails the application of Dasgupta and Maskin’s
(1986) general theorem onmultidimensional discontinuous games.We establish that a
symmetric entry-bidding equilibrium exists under a wide class of contest technologies,
while allowing for flexible prize structures that can be contingent on the actual number
of entrants: Each potential bidder enters with the same probability and adopts the same
(possibly mixed) bidding strategy upon entry.4 To our knowledge, our analysis pro-
vides the first application of the existence theorem formultidimensional discontinuous
games in the contest literature.

Second, endogenous and (possibly) stochastic entry leads to substantially more
extensive strategic interactions in bidding competitions. Our analysis sheds light on
two classical questions in the contest literature. First, towhat extent can the equilibrium
bidding strategies (conditional on their entry) be solved for explicitly? Second, under
what conditions would equilibria that do (or do not) involve pure-strategy bidding
exist?5 To place his bid, a participant must form a rational belief about the competing
bidders’ entry patterns and take into account all possible contingencies that could be
caused by the (endogenously determined) random entries. With this flavor, the general
property of a bidder’s overall expected payoff function cannot readily be discerned,
and results from existing studies do not carry over. Within a framework of Tullock
contest technology, our analysis reveals the nature of the strategic decision problemand
identifies the sufficient conditions under which participants do (or do not) randomize
their bids upon entry. In addition, we find that in our setting pure-strategy bidding can
take place under a wider range of conditions, than in a standard contest with free entry.

Endogenous (and potentially stochastic) entry and its impact on post-entry bidding
behavior pose new issues for contest design. Based on our equilibrium results, we
explore optimal contest design in a framework of generalized nested lottery contests
with a contingent prize allocation scheme. We investigate how relevant institutional
elements of a nested Tullock contest, e.g., the discriminatory power of the success
function and prize allocation scheme, would affect the bidding efficiency of the contest
and achieve the optimum. Our analysis demonstrates the extensive strategic trade-
offs triggered uniquely by endogenous and stochastic entry. The main findings are as
follows:

3 We elaborate on this issue in Sect. 4.
4 It should be noted that the two-dimensional (entry and bidding) game cannot be reduced to a single-
dimensional setting in which a bidder’s cost function includes a fixed component. In other words, the fixed
entry cost in our setting must be distinguished from the bidding cost. In our setting, to the extent that no
bidder enters the contest, the contest designer retains the prize and no bidder wins. To the extent that all
bidders enter but submit zero bids, they stand an equal chance of winning the prize. However, in a typical
single-dimensional (one-shot) setting, if all contestants stay inactive, i.e., submit zero bids, they still stand
an equal chance of winning, although no (fixed) cost is incurred.
5 It is well known that a bidder’s payoff maximization problem becomes irregular when the contest success
function is excessively elastic to effort, e.g.,when the discriminatory parameter r in aTullock contest exceeds
certain boundaries. Endogenous and stochastic entry compounds the complexity.
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• Focusing on the symmetric entry-bidding equilibria, we first identify a uniform
“upper bound” for expected overall bid in all eligible contests considered in this
paper.6 This upper bound applies universally regardless of the prevailing winner
selection mechanism (i.e., the contest success function) and prize structures.

• To achieve the upper bound, the contest mechanism induces potential bidders to
enter the contest with a unique optimal probability, which depends on various key
environmental factors such as the number of potential bidders and the size of entry
cost. We show that optimal contests and their associated prize allocation schemes
are not unique, and that the upper bound can be achieved under a continuum
of contest mechanisms.7 In particular, we demonstrate that the upper bound can
always be implemented through Tullock contests with a single contingent prize
when the designer is able to fine-tune the success function and supplement it with
properly set entry fees/subsidies.8 Further, we identify the conditions under which
the optimum can be achieved by adjusting only the contest success function in
a Tullock contest with a single fixed prize, i.e., setting the right discriminatory
power.

• Focusing on a Tullock contest success function, we show that the optimally chosen
discriminatory power r does not vary monotonically with key environmental fac-
tors, such as the number of potential bidders and the size of entry cost. The designer
may paradoxically prefer a “noisier” winner selection mechanism, which provides
a lower-power incentive in contests. The optimal contest may induce stochastic
entry, which causes a greater r to give rise to competing effects at different layers.
First, it gives rise to a trade-off between ex post bidding incentives and ex ante
entry incentives. A greater r intensifies competition but also leaves lesser rent for
participants and restricts bidders’ entry. Second, there is tension between the level
of participation and the incentive for individual bids. More active entry (under a
smaller r ) allows the contest to engage more bidders and tends to amplify their
overall contributions. However, it also leads individual participants to bid more
prudently, as they anticipate a lower chance of winning. To elicit the maximum
overall bid, the contest may require a nosier technology that optimally balance
these countervailing forces, in contrast to conventional wisdom in contests with
exogenous and deterministic participation.

• The literature conventionally holds that the overall bid of a contest always increases
with the number of bidders when their participation is deterministic. However, we
demonstrate in our setting that contest designers may prefer to limit competition
by inviting only a subset of potential bidders for participation; a contest may elicit
lower bids when a larger pool of potential bidders is involved. We explore the
functional relationship between the number of shortlisted potential bidders and
the expected overall bid of the contest under properly set mechanisms and find

6 Not surprisingly, this upper bound of effort decreases with entry cost.
7 Contest designer can flexibly adjust the combination of a contest success function and matching prize
allocation scheme. Either a single prize or multiple prizes may emerge as the optimum, depending on the
contest success functions adopted by the designer.
8 The value of the single prize depends on the designer’s initial budget and entry fees collected from
entrants or subsidies paid to entrants.
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it to be single-peaked. With this observation, we fully characterize the optimal
shortlisting rule.9

The rest of the paper proceeds as follows. In Sect. 2, we discuss our paper’s relation
to the literature on contests. In Sect. 3, we set up a generic entry-bidding game and
derive the upper bound of overall bid that can possibly be elicited in the game. Section 4
discusses the possibility of achieving the upper bound by structuring Tullock contests.
In Sect. 5, we discuss several possible extensions to widen the scope of our analysis.
Section 6 concludes the paper. All proofs are relegated to the Appendix.

2 Relation to the literature

Our paper complements the literature on contests in various ways.10 It provides a
formal account of equilibrium existence in the entry-bidding game for a large family
of contest technologies, which includes Tullock contests as a subfamily and all-pay
auctions as its limiting case. Szidarovszky andOkuguchi (1997) establish the existence
of pure-strategy equilibria when contestants have concave production functions. The
existence and properties of the equilibria remain a nagging problem for contests with
less well-behaved technologies. Baye et al. (1994) establish the existence of mixed-
strategy equilibria in two-player Tullock contests with r ≥ 2. Alcalde and Dahm
(2010) further the literature by showing that all-pay auction equilibria exist under a
wide class of contest success functions.11 Both studies apply the results of Dasgupta
and Maskin (1986) on unidimensional discontinuous games. Our paper contributes to
this literature by introducing bidders’ entry decisions, while allowing the number of
active bidders to be stochastic. These new flavors enrich our analysis by forming a
two-dimensional discontinuous game and provide a novel application of the general
result of Dasgupta and Maskin (1986) on multidimensional discontinuous games in
the contest literature.

There is a growing literature on contests with endogenous entry. In their pioneering
work, Higgins et al. (1985) study a tournament model in which each rent seeker bears a
fixed entry cost and randomly participates in equilibrium. In an all-pay auction model
with privately known entry costs, Kaplan and Sela (2010) provide a rationale for entry
fees in contests. They let participants know who else has entered, while we focus
mainly on uninformed participants.12 Two recent experimental studies by Cason et al.

9 We find that the maximum total effort from the optimally shortlisted players is also implementable in an
asymmetric entry equilibrium of the original set of players.
10 Our paper can also be related to the literature on standard oligopolistic competition; it echoes the
arguments of Dixit and Shapiro (1986) and Shapiro (1989) on firms’ behavior in oligopolistic markets.
Shapiro (1989) shows that a Bertrand competition, which is fiercer, can be more anti-competitive ex post
than a Cournot competition, which is ex ante more subdued, as the latter limits the contestability of the
market and discourages entries. We focus on the issue of mechanism design in our particular context. In
addition, the level of post-entry competition is a continuous variable and is considered to be a strategic
choice of the contest designer.
11 Wang (2010) also characterizes the equilibria in two-player asymmetric Tullock contests when r is
large.
12 We also discuss in the conclusion the ramifications of disclosure policy as an institutional element of
contests.
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(2010) and Morgan et al. (2012) also contribute to this research agenda by studying
bidders’ entries. Similar to Morgan et al. (2012) theoretical model, Fu and Lu (2010)
also assume that potential bidders enter sequentially, so that neither setting involves
stochastic participation. A handful of papers have examined contests with stochastic
participation.Themajority of these studies, however, assumeexogenous entry patterns.
Myerson and Wärneryd (2006) examine a contest with an infinite number of potential
entrants whose entry follows a Poisson process. Münster (2006), Lim and Matros
(2009) and Fu et al. (2011) assume a finite pool of potential contestants, with each
contestant entering the contest with a fixed and independent probability.

Our study contributes to this literature by exploring the optimal contest design
in a context with endogenous and potentially stochastic entries. First, our analysis
complements the literature on the proper level of precision in evaluating bidding
performance. Conventional wisdom says that a more precise evaluation mechanism
incentivizes bidders. Gershkov et al. (2009) and Giebe and Schweinzer (2011) provide
two novel applications of this principle, and both espouse the merits of a more precise
contest as incentive devices. A handful of studies, however, espouse low-powered
incentives in contests and demonstrate that a less “discriminatory” contest can improve
efficiency.One salient example is providedbyLazear (1989),whoargues that excessive
competition leads to sabotage. A more popular stream in the literature instead stresses
the handicapping effect of an imprecise performance evaluation mechanism in (two-
player) asymmetric contests.When contestants differ in their abilities, a noisier contest
balances the playing field. This effect encourages weaker contestants to bid more
intensely and deters stronger ones from shirking. O’Keeffe et al. (1984) were among
the first to formalize this logic. This rationale is further elaborated on by Che and
Gale (1997, 2000), Fang (2002), Nti (2004), Amegashie (2009), and Wang (2010). In
a recent study, Epstein et al. (2011) contend that contest designers still prefer all-pay
auctions to Tullock contests if they can strategically discriminate between bidders. In
contrast to these studies, our paper adopts a symmetric contest setting and stresses the
trade-off between ex post bidding incentives and ex ante entry incentives. In this regard,
it is more closely related to Cason, Masters, and Sheremeta’s (2010) experimental
study, which compares endogenous entries in all-pay auctions and lottery contests.

Our finding on optimal exclusion echoes a handful of pioneering studies by Baye
et al. (1993), Taylor (1995), Fullerton and McAfee (1999), and Che and Gale (2003).
These studies focus on heterogeneous contestants and concern themselves with select-
ing (usually two) players of the “right types.” Our result, however, obtains in a setting
of homogeneous players and concerns itself with creating a contest of the “right size.”
Dasgupta (1990) studies a two-stage procurement tournament, in which bidders invest
in cost reduction in the first stage and place their bids in the second. Wider compe-
tition may diminish bidders’ incentive to engage in R&D. Limiting the number of
competing firms may or may not benefit the principal. None of these studies involves
entry cost or endogenous entry. In contrast, an invited (potential) bidder in our setting
decideswhether to enter the subsequent contest, and the entry pattern in the equilibrium
remains endogenous and potentially stochastic.

Bidders’ endogenous entry has also been widely recognized as an important strate-
gic element in auction games. Myerson (1981) studies a revenue-maximizing auction
when bidders bear zero entry costs. Samuelson (1985),McAffee andMcMillan (1987),
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Engelbrecht-Wiggans (1987, 1993), and Levin and Smith (1994) further study effi-
cient and revenue-maximizing auctions when bidders have to bear some fixed entry
costs. These studies typically conclude that the revenue-maximizing auction requires a
lower reservation price than that of Myerson (1981) under endogenous entry: A lower
reservation price weakens ex post incentive to bid, while it encourages the ex ante
incentives for entry. The auction design problem addresses an adverse-selection prob-
lem, while our contest design problem primarily addresses a moral hazard problem.
Not surprisingly, our finding on optimal adoption of discriminatory power in a Tullock
contest only partially echoes insights from the auction literature: In our setting, the
optimal design can involve an ex ante incentive that is either weaker (i.e., a smaller r )
or stronger (i.e., a bigger r ) than that in the free–entry benchmark.

Shortlisting and exclusion have long been an important theme in auctions with
costly entry. In a setting with participation cost, Samuelson (1985) and Lu (2009) find
that the optimal revenue can either increase or decrease with the number of potential
bidders. In a setting with value discovery cost, Levin and Smith (1994) find that the
optimal revenue must decrease with the number of potential bidders to the extent that
optimal symmetric entry is in mixed strategy. Our setting resembles that of Sameulson
(1985) and Lu (2009) and differs from that of Levin and Smith (1994) in the ways
that the entry cost is modeled. However, our finding on the optimality of shortlisting
echoes Levin and Smith (1994) while diverging from Lu (2009): The maximum total
effort must drop with the number of potential players when optimal symmetric entry
gets to be stochastic.

3 Contest with endogenous entry

This section proceeds in three steps. First, we set up a generic entry-bidding game,
which allows for a wide class of contest technologies and a contingent prize allocation
scheme. In this game, a fixed pool of potential bidders make costly and endogenous
entry into a contest and compete for either a single or multiple (potentially contingent)
prize. Second, we establish that a symmetric entry-bidding equilibrium always exists
in this generic game. Third, focusing on such an equilibrium, we demonstrate that the
overall bid in the contest, regardless of the prevailing winner selection mechanism, is
subject to an upper limit.

3.1 Setup

A fixed pool of M(≥ 2) identical risk-neutral potential bidders simultaneously decide
whether to enter a contest. Each participant has to bear a fixed entry cost � > 0. To
accommodate bidders’ endogenous entry, we allow for a very flexible prize structure,
which can be contingent on the actual number of entrants N . Specially, when N ∈
{1, 2, ..., M} players enter, they compete for a series of prizes {v1N , ..., vn

N , ..., vN
N }

with v1N ≥ v2N ≥ ... ≥ vN
N ≥ 0. Each prize is allowed to be of zero value, but the total

prize money is capped by a fixed sum V (> 0), i.e.,
∑N

n=1 vn
N ≤ V for all possible N .
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Each entrant is eligible for exactly one prize. When nobody enters, the prize money
is kept by the contest designer.

The prizes are allocated to the entrants through a generalized multi-prize nested
lottery contest (see Clark and Riis 1996 and 1998, and Fu and Lu 2012) with a ratio-
form success function. Upon entry, participants simultaneously submit their bids xi

without observing the number of entrants. However, we assume that the number of
entrants is verifiable ex post, and thus the prize scheme can be contracted on it. If there
is only one entrant, he automatically wins the single prize v11 . Suppose N ≥ 2 players
indexed by {i1, i2, ..., iN } enter and their bidding entries are xN =(xi1 , xi2 , ..., xiN ).
Let ( j1, j2, ..., jN ) denote an arbitrary prize allocation outcome, i.e., player jn ∈
{i1, i2, ..., iN } wins the n-th highest prize vn

N , n = 1, 2, ..., N . If all entrants place
strictly positive bids, an allocation outcome ( j1, j2, ..., jN ) occurs with a probability

pN ( j1, j2, ..., jN ) =
N∑

n=1

g(x jn )
∑N

n′=n g(x jn′ )
, (1)

where g(·) is conventionally called the impact function of the contest mechanism. The
function g(·) is assumed to be continuous with g(0) = 0 and g′(·) > 0. The prize-
allocation mechanism builds on the widely used ratio-form contest success function,
which is axiomatized bySkaperdas (1996) andClark andRiis (1998). Fu andLu (2012)
further provide a micro-foundation for this multi-prize contest success function (1)
fromanoisy ranking perspective.13 This family of contest technologies includes nested
Tullock contests as an important and salient subclass, with g(xi ) = xr

i , r > 0. When
r → ∞, all-pay auctions are obtained as a limiting case.

Suppose that N0 ≤ N entrants place zero bids. They must win each of the low-
est N0 prizes with equal probability 1

N0
, while those with positive bid win the first

N − N0 highest prizes. Let ( j1, j2, ..., jN−N0) denote an arbitrary prize allocation
outcome among the players with positive bids, i.e., player jn ∈ { j1, j2, ..., jN−N0} ⊂
{i1, i2, ..., iN } wins the nth highest prize vn

N , n = 1, 2, ..., N − N0. The probability
that ( j1, j2, ..., jN−N0) occurs is

pN−N0( j1, j2, ..., jN−N0) =
N−N0∑

n=1

g(x jn )
∑N−N0

n′=n g(x jn′ )
.

A potential bidder i’s strategy is denoted by an ordered pair (qi , μi (xi )), where
qi is the probability of his entering the contest and the probability distribution μi (xi )

depicts his bidding strategy conditional on his entry. The distribution μi (xi ) reduces
to a singleton when the participant does not randomize his bids.

When bidding xi , a participating bidder i bears a cost c(xi ). A participant i’s
expected payoff is simply the expected amount of prize money he can win net of his
bidding cost.

13 Using a similar approach, Clark and Riis (1998) reveal the microeconomic underpinning of its single-
prize case.
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We assume that participants do not observe others’ actual moves in the entry stage.
Each participant bids based on his belief about others’ entry and bidding strategies,
which is derived by Bayes’ rule. Each player’s entry decision depends on his expected
payoff upon entry. We adopt the notion of Bayesian Nash equilibrium to solve the
game. An equilibrium is a strategy combination ×M

i=1(qi , μi (xi )) of all contestants,
which requires that the pair strategy (qi , μi (xi )) of each potential bidder i maximize
his expected payoff based on his belief based on Bayes’ rule and others’ strategy
profiles × j 	=i (q j , μ j (x j )). In this paper, we restrict our attention to bidding strategies
μi (xi ) that are independent of the entry probability qi .

Because of the symmetry among bidders, throughout the entire analysis we focus on
symmetric equilibria in which all potential bidders play the same strategy (q∗, μ∗(x)).
The existence of a symmetric equilibrium for a general impact function g(·) will be
established in Sect. 3.3. The issue of asymmetric equilibrium will be discussed in
Sects. 3.3 and 5.2.

We begin with a family of contest technologies as described by (1). It should be
noted, however, that our main analyses—e.g., the result of equilibrium existence in
Sect. 3.3, those in Sect. 3.4 on the maximal bid of generic entry-bidding game, and
those in Sect. 4 on the optimal contest design—can readily be extended to settings
with other contest technologies. Themain implications do not rely on the specific form
of ratio-form contest success function.

3.2 Some preliminaries

The following assumption focuses our analysis on the most relevant case, since no
entry is triggered if it costs more than the winner’s purse.

Assumption 1 � < V .

We define a critical cutoff probability, which is used repeatedly throughout the
analysis.

Definition 1 Let q0 ∈ (0, 1) be the unique solution to (1 − q)M−1V − � = 0.

The cutoff q0 defines a lower bound for entry probability in a contest with a single
prize V for any contest technology. Such a contest must induce players to enter with a
probability higher than q0 in a symmetric equilibrium. To see the logic, suppose that in
the equilibrium, every player enters with probability q ∈ (0, q0). An entrant can secure
a payoff (1 − q)M−1V − � > 0 from bidding zero when all other potential bidders
stay out of the contest, which occurs with a probability (1 − q)M−1. This conflicts,
however, with the fact that his payoff should be zero in a symmetric equilibrium with
random entry.

3.3 Existence of symmetric equilibrium

The entry-bidding game has two main features. First, the strategy of each player
involves two elements: entry and bidding. Second, a potential bidder’s payoff can be
discontinuous, since the contest success function can be discontinuous. For instance,
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the payoff function is discontinuous at the origin (see Baye et al. 1994, and Alcalde
and Dahm 2010), i.e., when all participants bid zero.

The conventional approach (in auctions with endogenous entry) to establishing
the existence of symmetric equilibria proceeds in two steps, which disentangles the
two elements in each player’s strategy and simplifies the analysis. In the first step,
potential bidders are assumed to enter the competition with given (symmetric) entry
probabilities. One establishes the existence of symmetric bidding equilibrium under
each given entry probability q. Bidders’ equilibrium payoff function in the auction
π(q) is obtained accordingly, which is typically continuous and monotonic in q. In
the second step, a (typically unique) entry probability is identified, which equalizes a
potential bidder’s expected payoff in the auction π(q) and his entry cost.

As will be further illustrated in Sect. 4.1, this disentangling approach has only
limited utility in our setting. The reasons are twofold. First, the existence of bidding
equilibrium in a contest conventionally relies on Dasgupta and Maskin’s (1986) theo-
rem on unidimensional games. This theorem, however, does not apply to games with
an uncertain number of players. Thus, the general existence of a symmetric bidding
equilibrium under a given entry probability q cannot readily be verified. Second, a
contest game with a fixed entry probability may not be well behaved, and the bidding
strategy is not universally solvable (as will be seen in Sect. 4.1). It remains difficult
to characterize the properties (e.g., continuity and monotonicity) of bidders’ expected
payoffs, even if an equilibrium exists.

As a result, the entry-bidding game in general should be recognized as a two-
dimensional discontinuous game, and thus it entails the application of Dasgupta and
Maskin’s (1986) equilibrium-existence theorem for discontinuous games with multi-
dimensional strategy space.

Theorem 1 (a) For any impact function g(·) with g(0) = 0 and g′(·) > 0, a symmet-
ric equilibrium (q∗, μ∗(x)) always exists. In the equilibrium, each potential bidder
enters with a probability q∗ ∈ (0, 1] and his bid follows a probability distribution
μ∗(x).

(b) If q∗ ∈ (0, 1), each potential bidder receives an expected payoff of zero in the
entry-bidding equilibrium. If q∗ = 1, a representative bidder’s equilibrium payoff
must be nonnegative.

To our knowledge, Theorem 1 and its proof provide the first application of Dasgupta
and Maskin’s (1986) equilibrium-existence result on two-dimensional discontinuous
games in the literature on contests. Two remarks are in order.

First, the equilibrium-existence result applies to broader contexts. We explicitly
adopt ratio-form contest success functions to economize on our presentation and facil-
itate subsequent discussion on contest design. However, the proof does not rely on the
specific properties of this contest mechanism. The analysis can readily be adapted
to contests with more broadly defined prize allocation mechanisms, such as those in
Alcalde and Dahm (2010), by redefining the discontinuity set slightly.

Second, it should be noted that asymmetric equilibria always exist in the entry-
bidding game, in which a subset of potential bidders stays inactive regardless, while
the others enter either randomly or deterministically. We mainly focus on the sym-
metric equilibrium primarily because a symmetric equilibrium, in which all players
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remain active, can arguably be viewed as a natural focal point of the game. Symmetric
equilibrium has conventionally been the focus of the majority of studies, both the-
oretical and experimental, in contest or auction games with symmetric players (see
Kuzmics et al. 2013). As Noussair and Silver (2006) and Barut et al. (2002) point
out, “a symmetric equilibrium is the most plausible equilibrium that might emerge in
a symmetric setting,” as “no obvious means to coordinate on an asymmetric equilib-
rium,” given that players have symmetric positions and their moves are simultaneous.
Kuzmics et al. (2013) contend that players, who are in symmetric positions, “may
have no cues or labels outside the description of the game, as given, that could serve,
via a norm or convention, to coordinate their actions on an asymmetric outcome.”14

3.4 Upper bound of overall bids

Central to contest literature is the question of how the institutional elements of the
contest affect bidding efficiency. As Gradstein and Konrad (1999) argue, “Contest
structures result from the careful consideration of a variety of objectives, one of which
is to maximize the effort of contenders.”We hereby demonstrate that the total bid from
each given contest is subject to a uniform upper bound, which provides the maximum
amount of overall bid a contest could possibly elicit, regardless of the governing
winner selection mechanism and prevailing prize allocation rule. We further impose
a regularity condition on the bidding cost function.

Assumption 2 The bidding cost function c(xi ) = xα
i is convex, with α ≥ 1.

Convex bidding cost is commonplace in contest literature. The equilibrium exis-
tence theorem does not rely on the assumption. It allows, however, for a more regular
and tractable analysis when characterizing equilibrium bidding behaviors and search-
ing for optimal contest structures.

Suppose that potential bidders enter with a probability q ∈ (0, 1] in a symmet-
ric equilibrium. When N of them participate, they compete for a series of prizes
{v1N , ..., vn

N , ..., vN
N }. As mentioned above, the sum of these prizes is capped by an

upper limit V (> 0), i.e.,
∑N

n=1 vn
N ≤ V , where V is the contest designer’s budget

constraint for prize money. As a result, the rent to be dissipated in the contest cannot
exceed [1 − (1 − q)M ]V .15 Hence, bidders receive an expected overall rent less than
[1 − (1 − q)M ]V , while they incur, on average, entry cost Mq�. The following fun-
damental equality must hold in a symmetric equilibrium, as the expected total payoff
of players must be positive:

[1 − (1 − q)M ]V ≥ Mq(� + E(xα)), (2)

14 To our knowledge, there exist no systematic studies of the robustness of symmetric vis-à-vis asymmetric
plays in experiments when players are symmetric and the game has multiple equilibria. Huck et al. (2002)
show in a sequential-move duopoly setting that a symmetric strategy profile (Cournot outcome) is played
by subjects, although the theory predicts a unique asymmetric equilibrium (Stakelberg outcome).
15 A detailed proof is available from the authors.
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where E(xα) denotes the equilibrium expected effort costs of an entrant. An upper
bound for equilibrium expected overall bidding cost can then be identified as follows:

Mq E(xα) ≤ [1 − (1 − q)M ]V − Mq�. (3)

The convexity of cost function (α ≥ 1) further implies the following important inequal-
ity that bounds the expected overall bid (Mq E(x)) from above:

(Mq E(x)) = Mq E[(xα)
1
α ] ≤ Mq[E(xα)] 1

α . (4)

By (3) and (4), we further obtain

(Mq E(x)) ≤ [Mq] α−1
α {[1 − (1 − q)M ]V − Mq�} 1

α . (5)

Apparently, an equality holds if and only if the behavioral bidding strategy upon
entry does not involve randomization, except for the knife-edge case of α = 1. The
inequality (5) yields important implications: Regardless of the equilibrium bidding
strategy upon entry, the expected overall bids that a contest could elicit in a symmetric
equilibrium with entry probability q will never exceed the upper limit as given by
RHS of (5). Denote this upper bound by

x̄T (q) � (Mq)
α−1
α

{
[1 − (1 − q)M ]V − Mq�

} 1
α

, (6)

with q ∈ (0, 1]. We further define the following cutoff.

Definition 2 Let q̄ = argmax(1−(1−q)M )V ≥Mq�,q∈[0,1]{q} .
Note that when V

M < �, q̄ < 1; when V
M ≥ �, q̄ = 1. It is clear that the entry-

bidding game cannot trigger an equilibrium, in which all potential bidders enter with a
probability more than q̄: They would otherwise end up with negative expected payoff
even if they exert zero effort.

Lemma 1 q0 < q̄ .

The function x̄T (q) has the following important properties.

Theorem 2 (a) The function x̄T (q) is single-peaked at a cutoff q̂ ∈ (q0, 1]. Specifi-
cally, if V

M < α
α−1�, then q̂ ∈ (q0, q̄); if V

M ≥ α
α−1�, then q̂ = 1. Moreover, q̂

decreases with M.
(b) The function x̄T (q) strictly increases with q when q ∈ (0, q̂), and strictly decreases

when q ∈ (q̂, 1].
The convex bidding cost function ensures that the function x̄T (·) is well behaved:

As shown by Theorem 2, it is single-peaked and uniquely maximized by q̂ ∈ (q0, 1].
By the theorem, in an entry-bidding game with M players, there is a uniform upper
bound x̄T (q̂) for the expected overall bid that can possibly be elicited from a symmetric
equilibrium, regardless of the prevailing contest mechanisms.
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Definition 3 Define x̄∗
T ≡ x̄T (q̂), which indicates themaximum amount of the overall

bid a contest can elicit in a symmetric-entry equilibrium.

The upper bound x̄∗
T can be achieved in a contest if and only if the following four

conditions hold.

1. The contest induces an equilibrium entry probability of exactly q̂ .
2. A total prize purse of V is distributed as long as some contestant(s) enter.
3. Each entrant ends up with a zero expected payoff.16

4. The contest must lead bidders to play a pure bidding strategy upon entry except
for the knife-edge case of α = 1.

Hence, the contest design problem ultimately boils down to one question: Can we
find winner selection mechanism and prize structure to organize a contest that satisfies
the above four conditions? The question is answered in the next section.

Before we proceed, we highlight the following corollary, which immediately arises
out of Theorem 2(a).

Corollary 1 When the bidding cost function is linear, i.e., α = 1, we have q̂ ∈ (q0, q̄).

Corollary 1 states that with linear bidding cost, a contest achieves the upper bound
x̄∗

T only if it induces random entry.

4 Achieving x̄∗
T by Tullock Contests

We now explore the optimal contest mechanism.We demonstrate that the upper bound
x̄∗

T can always be achieved in a well-structured Tullock contest with a proper prize
allocation scheme.

We consider three main instruments in designing the contest. A total budget V > 0
is at the contest designer’s disposal. First, assuming that she concentrates her entire
prize budget V to a single prize, we let her choose the discriminatory power parameter
r . We show that a properly chosen discriminatory power parameter r alone can be
adequate to achieve the objective in a wide range of settings. Second, we consider
entry fees/subsidies as an auxiliary instrument. A Tullock contest can always achieve
the upper bound x̄∗

T if the designer appropriately sets entry fees/subsidies,which are are
collected from entrants and used to augment the winner’s prize. Finally, we consider
the ramifications of multiple prizes.

In a single-prize Tullock contest with N ≥ 2 contestants, the probability of a
participating bidder i’s winning the prize is given by

pN (xi , x−i ) = xr
i

∑N
j=1 xr

j

if
N∑

j=1

xr
j > 0, with r > 0. (7)

16 This property automatically holds if property 1 holds and q̂ < 1.
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4.1 Contest design by discriminatory power parameter r

We now explore the optimal contest mechanism that achieves the upper bound x̄∗
T

solely through choosing an appropriate discriminatory power r of the contest. The
designer chooses the size of r and announces it to potential bidders as part of the
contest rules. An entry-bidding game ensues.

As shown by many existing studies, bidders’ performance in a Tullock contest
responds sensitively to the size of the power parameter r . The parameter reflects how
effectively one’s bid can be translated into win likelihood. The parameter thus has
conventionally been viewed as a measure of the level of precision, or discriminatory
power, of the winner selection mechanism in the contest literature (e.g., Nti (2004)
and Gershkov et al. 2009). A greater r implies that the winner selection mechanism
is related more closely to bids and less to various noisy factors. The level of preci-
sion or uncertainty in a contest can largely be manipulated as a strategic choice of
the contest designer to achieve her objective. For instance, the designer can mod-
ify the judging criteria of the contest to suit her strategic goals, e.g., adjusting the
weights of subjective components in contenders’ overall ratings or varying the mix
between experts and non-experts on judging committees in dancing contests (see
Amegashie 2009). Alternatively, the International Table Tennis Federation (ITTF) in
2000 increases ball size: A larger ball discounts players’ hitting power and reduces
the velocities of both its movement and spin, thereby slowing down the match. It
is widely held that the change substantially heightens the uncertainty in table tennis
matches, as this weakens the role played by superior skills or strength in determining
the winner. Conversely, the governing bodies of various sports have accepted Hawk-
Eye, a complex computer system, as a technological means of adjudication since 2006.
Hawk-Eye, “visually tracks the trajectory of the ball and displays a record of its statis-
tically most likely path as a moving image”. The system provides impartial opinions
and largely reduces human errors in judgment. Alternatively, as pointed out by Ger-
shkov et al. (2009), an organization’s monitoring effort largely affects the quality of
the information regarding workers’ effort, thereby determining the precision of perfor-
mance ranking. Moreover, in a procurement contest, the precision of quality ranking
between competing products can largely be subject to the technical expertise of the
procurement officer.

It is well known that a greater r increases the marginal return of a bid, thereby
incentivizing bidders in a symmetric contest with deterministic entry. This conven-
tional wisdom, however, is no longer straightforward in our context. As stated in the
Introduction, endogenous and stochastic entry gives rise to competing forces at two
levels. It remains ex ante unclear how the performance of the contest responds to
varying r . In addition, these trade-offs would be further complicated in the presence
of convex bidding costs. On the one hand, to elicit more bids, the optimal mechanism
must avoid excessive rent dissipation caused by costly entry, which encourages the
contest designer to limit entry. On the other hand, convex cost functions lead par-
ticipants to refrain from aggressive bidding. The contest designer is thus compelled
to engage more participants to even out their outlays, which mitigates the negative
impact of increasing marginal cost on each active bidder. The optimum must balance
these competing forces.
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In what follows, we first explore how bidders’ equilibrium behaviors respond to the
structural elements of the contest.We identify the conditions underwhich pure-strategy
bidding would (or would not) emerge, and solve for the equilibrium accordingly. The
results allow us to identify the optimal r∗.17

4.1.1 Equilibrium analysis

The following lemma depicts the main properties of a symmetric equilibrium with
pure-strategy bidding, if it exists.

Lemma 2 Suppose that a symmetric equilibrium (q∗, x∗) with pure-strategy bidding
exists. In such an equilibrium, the entry probability q∗ ∈ (0, 1] must satisfy

M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N V

N

(

1 − N − 1

N

r

α

){= �, if q∗ < 1;
≥ � if q∗ = 1.

. (8)

Each participating bidder places a bid x∗ =
[∑M

N=1 C N−1
M−1q∗N−1(1 − q∗)M−N N−1

N2

r V
α

] 1
α . The expected overall bid of the contest obtains as x∗

T = Mq∗x∗ =
Mq∗

[∑M
N=1 C N−1

M−1q∗N−1(1 − q∗)M−N N−1
N2

r V
α

] 1
α

.

We call equation (8) the break-even condition of the entry-bidding game with pure-
strategy bidding, which yields the following.

Lemma 3 (a) For any r > 0, there exists a unique q∗ ∈ (0, 1] that satisfies the
break-even condition (8). Hence, x∗ is also uniquely determined for any given r .

(b) The probability q∗ strictly decreases with r when q∗ < 1.

Lemma3establishes a unique correspondence between r and (q∗, x∗). The symmet-
ric equilibriumwith pure-strategy biddingmust be unique for each given r whenever it
exists. However, the strategy profile (q∗, x∗) in Lemma 2 may not constitute an equi-
librium. Consider an arbitrary participating bidder i’s payoff-maximization problem:
When all other bidders play the strategy (q∗, x∗), he has an expected payoff

π̃i (xi ) = πi (xi |q∗, x∗) =
M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N π N

i (xi ), (9)

17 Although the upper bound x̄∗
T can be achieved in equilibriawithmixed-strategy biddingwhen the bidding

cost function is linear, we focus on its implementation through equilibria with pure-strategy bidding. The
literature has provided little insight into bidding behaviors in mixed-strategy equilibria, e.g., in a Tullock
contest with a large but finite r . Due to the lack of handy solutions, it is analytically difficult in the current
context either to explicitly solve for an equilibrium when it involves mixed-strategy bidding or to verify the
existence of an equilibrium with mixed-strategy bidding under a particular entry pattern. This analytical
difficulty thus prevents us from identifying the correspondence between prevailing contest structures and
the resultant equilibrium behavior.

123



402 Q. Fu et al.

with π N
i (xi ) = xr

i
xr

i +(N−1)x∗r V − xα
i . The strategy profile (q∗, x∗) constitutes an equi-

librium if and only if x∗ is a global maximizer of π̃i (xi ). As is well known in the
literature, when r exceeds one the function π N

i (xi ) and the weighted sum π̃i (xi ) are
no longer be globally concave. The solution x∗ thus cannot be established as the global
maximizer without establishing discernible regularity of the function π̃i (xi )

18.
Define

r̄ =
(

1 + 1

M − 2

)

α, ∀ M ≥ 2.

The following sufficient condition is established.

Lemma 4 When r ∈ (1, r̄ ], the function π̃i (x) is single-peaked for xi > 0, and x∗ is
the unique interior local maximizer of π̃i (xi ) over (0,∞).

To establish x∗ as the global maximizer, a boundary condition π̃i (x∗) ≥ π̃i (0) has
to be satisfied as well. By the break-even condition, a participating bidder’s expected
payoff in the contest when bidding x∗, i.e., π̃i (x∗), would amount to exactly � if
q∗ < 1 and π̃i (x∗) ≥ � if q∗ = 1. However, an entrant can receive exactly a reserve
payoff (1 − q∗)M−1V from the contest by bidding zero: He wins V if and only if all
other potential bidders stay out of the contest, which leads to a rent of (1− q∗)M−1V .
The bidder has an incentive to bid x∗ if and only if (1− q∗)M−1V ≤ � when q∗ < 1,
and if and only if π̃i (x∗) ≥ 0 when q∗ = 1.

Recall the cutoff q0 depicted by Definition 1, which uniquely satisfies (1 −
q0)M−1V = �. The discussion following Definition 1 reveals that in any symmet-
ric equilibrium, the equilibrium entry probability q∗ never falls below q0. From the
break-even condition (8), we define the following cutoff of r .19

Definition 4 Define r0 ∈ (α(1+ 1
M−1 ), 2α] to be the unique solution to∑M

N=1 C N−1
M−1

q N−1
0 (1 − q0)M−N V

N(1 − N−1
N

r0
α

) = �.

By Lemma 3(b), the equation
∑M

N=1 C N−1
M−1q N−1(1 − q)M−N V

N (1 − N−1
N

r
α
) = �

requires that the corresponding q fall below q0 if r > r0. Suppose that an r > r0
induces pure-strategy bidding; the corresponding equilibrium entry probability must
then be strictly less than q0. However, by the discussion that follows Definition 1, the
equilibrium entry probability in any symmetric equilibrium cannot be less than q0.
Based on this logic, we conclude the following.

Theorem 3 A symmetric equilibrium with pure-strategy bidding does not exist if r >

r0. In the symmetric equilibria of the entry-bidding game, participating bidders must
randomize their bids upon entry.

Similar to contests with deterministic participation, pure-strategy bidding cannot
be sustained when r is excessively large. Theorem 3 provides a sufficient condition
under which randomized bidding must occur in this entry-bidding game.

18 r̄ = +∞,when M = 2.
19 The proof for r0 ∈

(
α
(
1 + 1

M−1

)
, 2α
]
is straightforward and thus omitted.
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Note that for anyq ≥ q0, an entrantwouldget a payoff (1−q)M−1V ≤ �bybidding
zero. Suppose that r is bounded from above by both r0 and r̄ . If

∑M
N=1 C N−1

M−1q N−1(1−
q)M−N V

N (1− N−1
N

r
α
) ≥ � forq = 1, thenq∗ = 1 and the corresponding x∗, as defined

by Lemma 2, must constitute the unique symmetric equilibrium by Lemma 3(b). If∑M
N=1 C N−1

M−1q N−1(1− q)M−N V
N (1− N−1

N
r
α
) < � for q = 1, then there must exist a

unique q∗ ∈ [q0, 1), which satisfies∑M
N=1 C N−1

M−1q N−1(1− q)M−N V
N (1− N−1

N
r
α
) =

�. Note that q∗ ≥ q0 because r ≤ r0. In both cases, Lemma 4 implies that x∗ must
be the global maximizer to π̃i (xi ), which establishes the strategy profile (q∗, x∗) as
the unique symmetric equilibrium with pure-strategy bidding. This is formally stated
as follows.

Theorem 4 For each r ∈ (0,min{r0, r̄}], the strategy profile (q∗, x∗), as charac-
terized by Lemma 2, constitutes the unique symmetric equilibrium with pure-strategy
bidding of the entry-bidding game.

Theorem 4 imposes a (conservative) upper limit on r for pure-strategy bidding.
Note that the condition r ≤ r̄ is sufficient but not necessary to establish x∗ as the
local maximizer of π̃i (xi ) for xi > 0. It remains obscure how the equilibrium would
behave if r̄ < r0 and r ∈ (r̄ , r0]. These concerns, however, can be dismissed when the
number of potential bidders is small.

Corollary 2 When M is small, i.e., M ≤ 3, a symmetric equilibrium with pure-
strategy bidding exists if and only if r ≤ r0.

In these instances, r̄ > r0 holds regardless of V and �, which guarantees that x∗
maximizes π̃i (xi ) for x > 0. When M ≥ 4, the cutoff r0 may exceed r̄ . Analytical
difficulty prevents us from fully characterizing the property of π̃i (xi ) when r exceeds
r̄ . We leave this to our future research.

When V
M < �, potential bidders must enter the contest randomly for any r >

0. In the case of V
M ≥ �, potential bidders may enter the contest either randomly

or deterministically,20 depending on the particular r . The next corollary focuses the
situations of V

M ≥ � and characterizes the condition for pure-strategy bidding with
deterministic vs. random entry.

Corollary 3 Assume V
M ≥ �. There exists a cutoff αM

M−1 (1− M�
V ) ≤ min{r0, r̄}. When

r ≤ αM
M−1 (1− M�

V ), there exists a unique symmetric equilibrium, in which all potential
bidders enter the contest with probability one and place their bids in pure strategy
upon entry. When r > αM

M−1 (1− M�
V ), there exists a unique symmetric equilibrium, in

which all potential bidders enter the contest with probability q∗ < 1 and place their
bids in pure strategy upon entry.

4.1.2 Optimal contest

Recall first Theorem2,which states that the upper bound x̄∗
T is achievedwhen potential

bidders enter with a probability q̂ and place their bids in pure strategy. The theorem

20 In a contest with M participants, the pure strategy equilibrium payoff of each contestant is
V
M

(
1 − M−1

M
r
α

)
, he will enter with probability one if and only if V

M

(
1 − M−1

M
r
α

)
≥ �.
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further shows that achieving this objective may require either random or stochastic
entry, depending on the specific environment, i.e., q̂ < 1 if V

M < α
α−1�, and q̂ = 1 if

V
M ≥ α

α−1�.
In the latter scenario, the optimal contest is straightforward. By Corollary 3, for

any r ≤ αM
M−1 (1 − M�

V ), potential bidders enter the contest with probability one and
place their bids in pure strategy. The following can be obtained.

Theorem 5 Suppose V
M ≥ α

α−1�. The contest designer can elicit the upper bound

x̄∗
T by setting r∗ = αM

M−1 (1 − M�
V ), which induces a symmetric equilibrium with

q∗ = q̂ = 1 and pure-strategy bidding.

This claim is straightforward. With r ≤ αM
M−1 (1 − M�

V ), entry decision is trivial:

Given V
M ≥ α

α−1� and a small r , the contest leaves sufficient rent to attract all potential
bidders to enter regardless. A greater r always provides a greater incentive to bid when
players enter deterministically, and the contest ends up with a greater amount of bid
when r rises. The contest designer, however, should not raise r above this level, as
that would lead to suboptimal random entry with q∗ < q̂ = 1. In this case, the contest
can reach its optimum simply by adjusting r and setting it to the optimal level of
αM

M−1 (1 − M�
V ).

We proceed to the scenario of V
M < α

α−1� , which requires that potential bidders
enter randomly in the optimum.

Definition 5 Let r(q̂) be the unique solution of r to the break-even condition

V
M∑

N=1

C N−1
M−1q̂ N−1(1 − q̂)M−N

[
1

N
− N − 1

N 2

r

α

]

= �, ∀q̂ ∈ (q0, q̄). (10)

Recall that when V
M < �, q̄ < 1; when V

M ≥ �, q̄ = 1. Thus r(q̂) is well defined
for q̂ ∈ (q0, q̄). Lemma 3(b) reveals a monotone correspondence between r and entry
probability q∗ in any symmetric equilibrium with pure-strategy bidding. The fact of
q̂ > q0 (Theorem 2(a)) and the definition of r0 (Definition 4) lead to the following.

Lemma 5 r(q̂) < r0.

When r(q̂) falls below the cutoff r̄ , the optimal contest is straightforward by The-
orem 4.

Theorem 6 Suppose V
M < α

α−1�. Whenever r(q̂) ≤ r̄ , the contest designer can
achieve the upper bound x̄∗

T by setting r = r(q̂). This induces a symmetric equilib-
rium with pure-strategy bidding. Potential bidders enter the contest with a probability
q̂ (< 1) in the symmetric equilibrium.

Consider a benchmark setting with a fixed number of M participants or free entry.
A higher r elicits higher bids whenever a pure-strategy equilibrium prevails, i.e.,
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Fig. 1 r(q̂) for various �
V , given M = 5, α = 1.5

whenever r ≤ α(1+ 1
M−1 ).

21 The conventional wisdom in the contest literature holds

that r = α(1+ 1
M−1 ) would emerge as the optimum. In our setting, the optimal cutoff

αM
M−1 (1 − M�

V ) must fall below α(1 + 1
M−1 ) when

V
M ≥ α

α−1�. As discussed above,
a higher r would lead to random entry and a suboptimal level of overall bids.

When V
M < α

α−1�, the optimum r(q̂)may either exceed or fall below α(1+ 1
M−1 ).

Figure 1 provides a sample of our numerical exercises that compares the two settings.
Each asterisk corresponds to a numerically computed r(q̂) for a given combination
of M and �

V . The observations in the left panel demonstrate the incidence of r(q̂) <

α(1 + 1
M−1 ) < r̄ : The optimal incentive is softer than that in the benchmark case. In

the right panel, the results illustrate the possibility of the opposite: The optimum r(q̂)

is found in the range (α(1 + 1
M−1 ), r̄). However, a higher-powered incentive beyond

r(q̂)would not pay off: By Theorem 2 and Lemma 3(b), the expected overall bid must
strictly decrease when r exceeds r(q̂), although it continues to induce pure-strategy
bidding, at least before r reaches the cutoff r̄ .

Further, note from Fig. 1 that r(q̂) is not monotonic with � for given V . We will
show in Sect. 5.3 that q̂ monotonically decreases with�. Similar patterns prevail when
M increases. We omit these graphs to save space.

However, recall that setting r to r(q̂) is optimal if and only if it leads to pure-strategy
bidding. The optimum becomes less than explicit when r(q̂) exceeds the cutoff r̄ .
An equilibrium with pure-strategy bidding is not guaranteed, which casts doubt on
the robustness of Theorem 6. As enlightened by Corollary 2, this concern can be
dismissed only in contests with small pools of potential participants, i.e., M = 2, 3.
The condition of r ≤ r̄ may not hold when M gets large. Technical difficulty prevents
us from providing a more complete analysis of this scenario. However, recall that r̄ is
a conservative sufficient condition to guarantee the regularity of the function π̃(xi ).
Our numerical exercises find in all observations that a regular payoff function remains
whenever r ∈ (r̄ , r0].

Despite the incomplete analytical account, we show subsequently that the upper
bound can always be achieved in a Tullock contest by allowing entry fees/subsidies.

21 In our setting, if entry does not involve a fixed entry cost, all the M potential bidders will participate.
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4.2 Contest design by entry fees/subsidies

We now consider entry fees or subsidies as an auxiliary instrument for contest design.
The designer is allowed to charge an entry fee F to participating bidders. The entry
fee is allowed to be negative, in which case it becomes an entry subsidy. The contest
designer commits to a contingent prize VN , which is a single prize to be awarded
to the winner when N entrants show up. The prize purse can be financed by the
revenue collected through entry fees. The designer is subject to a budget constraint
VN ≤ V + N F .

The contest designer chooses a combination of (r, F) to maximize the expected
overall bid of the contest. To maximize the overall expected bid, the contest designer
must exhaust her original budget V and the revenue collected through entry fees, i.e.,
VN = V + N F , in the optimum.

This family of contests is a subset of the general mechanisms studied in Sect. 3. It
deserves to be pointed out that an entry fee or subsidy can be viewed as a prize (positive
or negative) awarded to a participant. The mechanism is equivalent to a multi-prize
contest with a contingent prize schedule (vN

1 , . . . , vN
N ) with vN

1 = V + (N − 1)F and
vN

i = −F for all i 	= 1. Hence, our general existence theorem does not lose its bite. By
Theorem 2, the overall bid in such a contest is also bounded from above by x̄∗

T . Hence,
a contest mechanism with entry fees/subsidies must reach an optimum if it leads to an
equilibrium with an entry probability q̂ and pure-strategy bidding: The contest would
elicit an expected overall bid of x̄∗

T , which cannot be surpassed by other mechanisms
under symmetric entry. We show that achieving this upper bound is always feasible
with properly set (r, F).

Theorem 7 Consider a Tullock contest with a contingent prize scheme (vN
1 , . . . , vN

N )

where vN
1 = V + (N − 1)F and vN

i = −F for all i > 1. N denotes the number of
entrants, which is verifiable. For each given discriminatory power r ∈ (0, α), there
exists a unique entry fee/subsidy F(r) ∈ (− V

M ,∞), such that the Tullock contest
induces an equilibrium entry probability q̂ and pure-strategy bidding upon entry. The
contest elicits an expected overall bid of x̄∗

T .

When r falls below α, participating bidders have a concave payoff function regard-
less of entry probability q ∈ (0, 1], and pure-strategy bidding must result for the
above prevailing prize structure. When each r ∈ (0, α) is bundled with a properly
chosen entry fee/subsidy F(r) , an equilibrium with entry probability q̂ will emerge
and leave zero surplus to entrants, which elicits x̄∗

T . It should be noted that the opti-
mal combination (r, F(r)) is not unique. As implied by our proof, a lower (higher)
r can be complemented by a higher (lower) F to induce an equilibrium with entry
probability q̂ .

It should also be noted that themechanismdoes not require that the designer observe
the exact number of participants. The amount of entry fee/subsidy is not contingent
on the actual number of participants. The key for the contest designer is to commit to
topping up the prize purse by the entire revenue collected through entry fees/subsidies.

In this section, we allow the contest designer to choose a combination of
the discriminatory parameter r and a matching entry fee/subsidy. Finally, we
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include the following remark, which interprets our results from an alternative
perspective.

Remark 1 Theorem 7 establishes that the upper bound can always be achieved by
properly chosen combinations of (r, F). This analysis can be interpreted differently:
For each exogenously given r ≤ α, one can always identify a proper entry fee/subsidy
F(r), such that (r, F(r)) constitutes an optimal mechanism. This implies the suffi-
ciency of using prize structure as the sole instrument to achieve the optimum for given
r ≤ α.

4.3 Implementability of x̄∗
T by Multiple Fixed (Positive) Prizes

Section 4.2 shows that the upper bound x̄∗
T can always be achieved by a nested Tullock

contest with a contingent multi-prize scheme. In this section, we investigate to what
extent a prize scheme of multiple fixed positive prizes can achieve the same goal.

Let the designer split her total budget V into T ∈ {2, . . . , M} strictly positive prizes
denoted by (v1, . . . , vT ), with

∑T
i=1 vi = V . We obtain the following result.

Theorem 8 (i ) When V
M < α

α−1�, a contest with multiple fixed strictly positive prizes

can never achieve the upper bound x̄∗
T . (i i ) When V

M ≥ α
α−1�, a nested Tullock

contest with multiple fixed strictly positive prizes can achieve the upper bound x̄∗
T

when r ∈ ( αM
M−1 (1 − M�

V ), αM
M−1 ].

A dedicated proof is unnecessary. When V
M < α

α−1�, achieving the upper bound
x̄∗

T requires that the contest induce random entry in symmetric equilibrium. Recall the
second necessary condition in Sect. 3.4: A total rent V must be given away whenever
some bidder(s) enter(s). This condition can never be satisfied under a noncontingent
multi-prize schedule. To be more specific, suppose that potential bidders enter with
the contest with the same probability q. If the entire budget is concentrated on a
single prize, a rent of V is given away with a probability 1 − (1 − q)M−1, which
is the probability that at least one bidder enters. With multiple prizes, however, only
v1 is given away with this probability. A prize vt , t > 1, would not be awarded
if fewer than t bidders enter, in which case the rent allocated to the prize is not
fully utilized to incentivize bidding. Because of such rent “leakage,” a contest with
noncontingent multiple positive prizes is suboptimal and can never achieve the upper
bound x̄∗

T .
By contrast, when V

M ≥ α
α−1�, the above argument no longer bites. In this case,

the optimum requires deterministic entry, i.e., q̂ = 1. Rent leakage thus would not
occur. A multi-prize contest can turn out to be optimal for r ∈ ( αM

M−1 (1− M�
V ), αM

M−1 ]
in order to induce all players to enter with q̂ = 1.

5 Discussion and extensions

In this section, we discuss several remaining issues to expand the scope of our analysis.
First, we allow the contest designer to exclude a subset of potential bidders from
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the competition. We explore the optimal size of the pool of potential bidders when
exclusion is possible. Second, we discuss the issue of asymmetric equilibria. Third,
the role played by the entry cost � is explored in depth.

5.1 Optimal shortlisting

We now allow the contest designer to invite only a subset of the M potential bidders to
participate. We assume that only the invited bidders can decide whether to participate
in the contest, while they continue to play a symmetric equilibrium. The conventional
wisdom holds that a contest elicits higher bids when it involves a larger number of
contestants. In what follows, we demonstrate that in our setting, exclusion can improve
the efficiency of the contest in our setting.

The expected overall bid in a contest is bounded from above by x̄∗
T . The exact

amount of x̄∗
T , however, depends on the number (M) of potential bidders. Let x̄∗

T (M)

be the upper bound of overall bid for a contest with M potential bidders. The function
x̄∗

T (M) exhibits the following property.

Lemma 6 The upper bound x̄∗
T (M) decreases (increases) with M for all M that

satisfies V
M < (≥) α

α−1�.

Lemma 6 yields direct implications for the contest design: A contest is less able
to elicit bids if it involves too large a pool of potential bidders. When the contest
designer can structure the contest properly to implement the upper bound x̄∗

T , she can
be strictly better off by excluding potential bidders. Define M̄ �min( N | V

N < α
α−1�),

and assume M̄ < M without loss of generality. Lemma 6 means that the upper bound
x̄∗

T (M) is essentially single peaked, and it is maximized at either M̄ or M̄ − 1. We
obtain the following.

Theorem 9 Suppose M̄ < M. When the contest designer is allowed to exclude poten-
tial bidders, M∗(= M̄ or M̄ − 1) contestants would be invited.

By inviting M̄ or M̄ − 1 of potential bidders and adopting the optimal design
discussed in Sects. 4.1 and 4.2, the contest designer elicits an overall bid x̄∗

T (M̄) or
x̄∗

T (M̄ − 1), which, by Lemma 6, is unambiguously higher than what she can possibly
achieve if she engages the entire pool of M potential bidders.

Our result thus provides an alternative rationale for excluding players in a setting
with homogeneous bidders but endogenous entry. The logic resembles that underlying
the choice of optimal discriminatory power r . When a contest involves too many
potential bidders, each would enter the contest less often and bid less after entry, as
they anticipate a more intense competition and expect a smaller share of the rent.

However, it should be noted that in general it is difficult to pin down the exact
optimum, M̄ vis-à-vis M̄ − 1. The resultant overall bid of the contest varies discretely
between the two cases, as the former involves random entry, while the latter induces
deterministic entry. The comparison between the two discrete cases depends on various
environmental factors. The following examples demonstrate that either can be optimal.

Let K denote the number of invited bidders.
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Example 1 Consider a setting with M = 20, V = 10,� = 1.1,and α = 3. The M̄ is
7.When K = 7, the optimal contest elicits amaximal amount of overall bid 4.966with
q̂ = 0.866. When K = 6, the optimal contest elicits a maximal amount of overall bid
x̄∗

T (6) = 4.965 with q̂ = 1. Thus the optimum is achieved by inviting M∗ = M̄ = 7
potential bidders.

In this example, the contest designer prefers to induce an equilibrium with random
entry and does not further limit the pool of the potential bidders below the cutoff M̄ .

Example 2 Consider a setting with M = 20, V = 10,� = 1.1 and α = 1.5. The
M̄ is 4. When K = 4, the optimal contest elicits a maximal amount of overall bid
5.11 with q̂ = 0.797. When K = 3, the optimal contest elicits a maximal amount
of overall bid x̄∗

T (3) = 5.13 with q̂ = 1.Thus the optimum is achieved by inviting
M∗ = M̄ − 1 = 3 potential bidders.

Example 2 shows the possibility that the contest designer prefers to induce an
equilibrium with deterministic entry and further limits the pool to M̄ − 1 potential
bidders. Despite the ambiguity, the following is unequivocal in the case of linear
bidding cost.22

Corollary 4 When the bidding cost function is linear, i.e., α = 1, M̄ = 2, and the
optimal contest invites exactly M̄ = 2 potential bidders.

5.2 Asymmetric entry

Our analysis has so far focused on symmetric equilibria, in which potential bidders
enter the contest with the same probability. As mentioned previously, asymmetric
equilibria must arise in this game. One natural and intuitive candidate is the “semi-
symmetric” equilibrium, in which a subset of potential bidders enter the contest with
the same positive probability and play the same bidding strategy upon entry, while the
rest of them stay inactive.

Our results on symmetric equilibria could directly speak to these asymmetric equi-
libria in general. Let M ′(≤ M) be the number of active bidders involved in such
a semi-symmetric equilibrium, where “active bidders” are those who enter with a
positive probability. Theorem 2 immediately leads to the following corollary.

Corollary 5 Suppose that a semi-symmetric equilibrium with M ′(≤ M) active bid-
ders exists. In such an equilibrium, the expected overall bid of the contest must be
bounded from above by x̄∗

T (M ′), the upper bound for a hypothetical contest with M ′
potential bidders when they play any symmetric equilibrium.

Consider an arbitrary M-player contest. Corollary 5 implies that any semi-
symmetric equilibrium of the contest cannot strictly outperform the optimum under
symmetric entry achieved through optimal shortlisting, i.e., x∗

T (M∗) with M∗ = M̄
or M̄ − 1. The remaining question thus boils down to whether the optimum x∗

T (M∗)

22 This corollary is true, since effort elicited would be zero when only one player is invited.
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can indeed be implemented in a semi-symmetric equilibrium. The following theorem
answers this question.

Theorem 10 The optimal level of expected overall bid x∗
T (M∗), which is induced

under symmetric entry through optimal shortlisting, can also be generated in a semi-
symmetric equilibrium involving M∗ active players in a properly designed contest
with M potential bidders.

Theorem 10 is straightforward. Consider a contest with M potential bidders. Recall
our discussion in Sect. 4.When they play symmetric equilibrium, the optimum x∗

T (M∗)
can always be implemented by the contest designer by inviting M∗ potential bidders to
participate and imposing a set of properly designed contest rules, by either adjusting r
or supplementing it with appropriate entry fees/subsidies. Let�(M∗) denote this opti-
mal contestmechanism. In the optimum, the M∗ invited bidders enterwith a probability
q̂(M∗) and place their bids in pure strategy upon entry. The same objective can always
be achieved if the contest designer can effectively coordinate on asymmetric equilibria.
To see that, suppose that the designer imposes the same contest mechanism�(M∗).23
Then a semi-symmetric equilibrium must emerge, in which exactly M∗ play the same
strategy as the aforementioned M∗ invited bidders would do in a symmetric equilib-
rium after shortlisting. They also enter with a probability q̂(M∗) and play the same
bidding strategy. This strategy profilemust constitute an equilibrium:The M∗ potential
bidders end up with zero payoff, so the remaining bidders have no incentive to enter.24

In summary, in an M-bidder contest, the optimum x̄∗
T (M∗) can be achieved through

either a symmetric equilibrium by shortlisting M∗ potential bidders, or an asymmetric
(semi-symmetric) equilibrium with M∗ active bidder. Shortlisting, however, might
remain a preferred device: The symmetric equilibrium can arguably be viewed as a
natural focal point of a symmetric game, which requires less coordination between
players, while more coordination among players is required to support an asymmet-
ric equilibrium among symmetric players. This issue has been discussed previously
following Theorem 1 in Sect. 3.3.

5.3 Changes in entry cost �

We now explore how a change in entry cost � would affect optimal contest design.25

From (6), x̄T (q) decreases with � regardless of q. Hence, the upper bound x̄∗
T must

decrease with � for every given M . This implies that a larger entry cost is never
desirable to the contest designer, because it unambiguously weakens the potential to
elicit bids.

23 More precisely, the prize allocation scheme has to accomodate the possibility that more than M∗ players
enter. To rule out such a possibility, we assume that in this case all entrants will be penalized by a severe
negative prize.
24 Detailed proofs are available from authors upon request.
25 The entry fee/subsidy F in Sect. 4.2 plays a different role from the fixed sunk entry cost �: The contest
collects F from participants and commits to redistributing the revenue by topping up the prize purse, while
the entry cost � is purely sunk.
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We further consider its impact on the optimal level of entry probability q̂ . By the
proof of Theorem 2, q̂ is determined by the properties of the function

ξ(q,�) = (α − 1)
{
[1 − (1 − q)M ]V − Mq�

}
+ Mq[(1 − q)M−1V − �].

Theorem 2 implies (1) that q̂ ∈ (q0, 1) if V
M < α

α−1�, and q̂ = 1 if V
M ≥ α

α−1�, and
(2) that in the former case, q̂ is determined by ξ(q̂,�) = 0.We next show that q̂ drops
with �. For this purpose, it suffices to show that the solution q̂ of ξ(q̂,�) = 0 drops

with�. The proof of Theorem 2 indicates that ∂ξ(q,�)
∂q

∣
∣
∣
q=q̂

is strictly negative. Further,

∂ξ(q,�)
∂�

is obviously negative. As a result, dq̂
d�

< 0 must hold. To put it intuitively, a
larger entry cost causes additional rent dissipation, and therefore the optimal contest
must limit entry to avoid excessive waste.

Moreover, it is obvious to observe that M̄ decreases with � as well. Recall from
Sect. 5.1 that the optimal contest shortlists M∗ = M̄ or M̄ − 1 potential bidders. A
decreasing M̄ implies that a larger � tends to lower the optimal number of shortlisted
players as well.26 The following theorem collects the above observations.

Theorem 11 q̂ , x̄∗
T and M̄ all drop with entry cost �.

It remains to explore how a larger � would affect the required discriminatory
parameter r(q̂) defined in Sect. 4.1 to achieve the upper bound x̄∗

T . In the case of
V
M ≥ α

α−1� and thus q̂ = 1, r(q̂) drops with � because r(q̂) = αM
M−1 (1 − M�

V )

by Theorem 5. However, when V
M < α

α−1� and thus q̂ < 1, the results of Fig. 1 in
Sect. 4.1 show that r(q̂) does not change monotonically with �. Two effects come
into play when� increases. It first exercises a direct effect. More costly entry requires
that the contest leave more rent to participants for a given entry probability, thereby
demanding a less intense competition in the contest, i.e., a smaller r . An indirect effect
also emerges. As stated above, more costly entry requires a more limited entry pattern
in the optimum, i.e., a smaller q̂ . Further recall the inverse relation between r and q∗,
as stated by Lemma 3. This, in turn, forces r to increase in response to the smaller
q̂ . The two effects conflict with each other, which leads to the mixed observations in
Fig. 1.

6 Concluding remarks

Our study is one of the first to investigate the subtle and rich strategic interactions that
occur in contests with endogenous entry. We establish the existence of a symmetric
equilibrium for the well adopted family of generalized nested lottery contests with
contingent prize allocation schemes, and provide sufficient conditions under which
entrants engage in pure-strategy bidding in Tullock contests with a single winner
prize. Based on these equilibrium analyses, we identify optimal contest designs that

26 A simulation confirms this.

123



412 Q. Fu et al.

maximize total expected effort. Our results illustrate the unique and important impacts
of entry costs on equilibrium analysis and contest design.

In our analysis, we assume that the actual number of participants is unobservable
to participating bidders. One natural question is whether the contest designer could
improve the contest design by disclosing the actual number of participating bidders
when she is able to observe it. It deserves to be noted that the current setting causes
no loss of generality. The upper bound x̄∗

T established in Sect. 3.4 is independent of
prevailing contest rules, and it applies to contests with the actual number of partici-
pants being disclosed.27 Hence, whenever a mechanism can successfully achieve the
upper bound x∗

T , it must be optimal and (at least weakly) dominate all other possible
mechanisms. Hence, disclosure would not improve bidding efficiency further.

Also, our setting (characterized by a common entry cost and simultaneous entry)
is only one way to model contests that involve endogenous entry. Other examples
include the settings of Kaplan and Sela (2010), who consider all-pay auctions with
privately known entry costs, and Fu and Lu (2010), who assume that contestants enter
sequentially. Various questions about the optimal design of contests in these diverse
settings remain open, and they merit serious consideration in the future.
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Appendix

Proof of Theorem 1 Part (a) Existence of symmetric equilibrium:We will start by
considering the following auxiliary game, which differs from the original game in
terms of action space of players. The payoff structure of the auxiliary game duplicates
that of the original game considered in Sect. 3.1. We will establish that there is a
symmetric equilibrium for the auxiliary game. In addition, we show that it is also a
symmetric equilibrium of the original game.

The auxiliary game is defined as below. There are M contestants who simultane-
ously choose their two-dimensional actions, which are denoted by ai = (ai1, ai2) =
(qi , xi ) ∈ A, i = 1, 2, ..., M, where the uniform action space A = [0, 1] × [0, V 1/α]
is nonempty, convex and compact.28 Let x = (x1, x2, ..., xi , ..., xN ) denote the effort
profile.

Let k = (k1, k2, ..., ki , ..., kN ) denote the entry status of players, where ki is either
0 or 1. ki denotes the entry status of players with ki = 1 for entry of player i, and

27 The arguments are similar to that of Sect. 3.4.
28 This action space A is not for the original game of Sect. 3.1, but for the auxiliary game.
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ki = 0 for non-entry of player i . Let K to be the set of all possible k. Similarly, we
can define k−i and K−i , i = 1, 2, ..., M. Let N (k−i ) = 1 +∑ j 	=i k j , which is the
number of all entrants when i enters.

Given action profile a = {a1, a2, ..., aM } of the M players, the payoff of player i
is defined as

Ui (a)

= qi

⎧
⎨

⎩

∑

k−i ∈K−i

⎡

⎣

⎛

⎝
∏

j 	=i

q
k j
j (1−q j )

1−k j

⎞

⎠

⎛

⎝
N (k−i )∑

n=1

pi (n|k−i , x)vn
N (k−i )

⎞

⎠

⎤

⎦− xα
i −�

⎫
⎬

⎭
,

i = 1, 2, ..., M,

where pi (n|k−i , x) denotes the probability that entrant i wins the n-th highest prize
among prizes {vn

N (k−i )
}N (k−i )

n=1 when player j ( 	= i) enters if and only if k j = 1.
pi (n|k−i , x) is determined by the effort profile of player i and other players with
k j = 1 in k−i and the prize allocation rule that has been specified in Sect. 3.1.

Note that this game is a symmetric game as defined by Dasgupta and Maskin
(1986) in their Definition 7. We will apply their Theorem 6* in Appendix to establish
the existence of symmetric equilibrium in mixed strategy.

In what follows, we show that for each i , the discontinuities of Ui are confined to
a subset of a continuous manifold of dimension less than M as required by page 7 of
Dasgupta and Maskin (1986). Following the notations on page 22 of Dasgupta and
Maskin (1986). Let Q = {2}, D(i) = 1, and f 1i j to be an identity function. Following
their (A1) of page 22, we define manifold A∗(i) = {a ∈ A|∃ j 	= i, ∃k ∈ Q, ∃d, 1 ≤
d ≤ D(i) such that a jk = f d

i j (aik)}. Clearly, A∗(i) is of dimension less than M .
Let A∗∗(i) denote the set of discontinuous points of Ui (a). ∀a ∈ A∗∗(i), we must
have that qi > 0, xi = 0 and ∃ j 	= i, such that q j > 0 and x j = 0. Clearly, Ui (a)
A∗∗(i) ⊂ A∗(i), since any element in A∗∗(i) must satisfy the following conditions:
For k = 2 ∈ Q, ∃ j 	= i, such that x j = f 1i j (xi ), i.e., a j2 = f 1i j (ai2).

According to their Theorem 6*, we need to verify the following conditions hold.
First, as constructed above, Ui (a) is continuous except on a subset A∗∗(i) of A∗(i),

where A∗(i) is defined by (A1).

Second, clearly, we have
∑

i Ui (a) = ∑
k∈K[(∏ j q

k j
j (1 − q j )

1−k j )(
∑N (k)

n=1
vn

N (k−i )
)] −∑i qi (xα

i + �), which is continuous and thus upper semi-continuous.

Third, Ui (a) clearly is bounded on A = [0, 1] × [0, v1/α].
Fourth, we verify that Property (α∗) of page 24 is satisfied. Define B2 as the unit

circle with the origin as its center, i.e., B2 = {e = (q, x) | q2 + x2 = 1}. Pick
up any continuous density function v(·) on B2 such that v(e) = 0 iff e1 ≤ 0 or
e2 ≤ 0. Note that Ui (ai , a−i ) is continuous in ai1 and lower semi-continuous in ai2.
∀a = (āi , a−i ) ∈ A∗∗(i), clearly we have that for any e such that v(e) > 0 (i.e.,
min(e1, e2) > 0), lim infθ→0+ Ui (āi + θe, a−i ) > Ui (āi , a−i ) as θ > 0, e2 > 0
and qi > 0, xi = 0 in āi . This property holds as we have the following result: ∀a ∈
A∗∗(i), fix a−i and qi (> 0) in a, Ui (a) is discontinuous at xi = 0. In other words,
when xi increases from 0 to an ε > 0, Ui (a) has a jump upward. This leads to
that
∫

B2 [lim infθ→0+ Ui (āi + θe, a−i )v(e)de] > Ui (āi , a−i ),∀āi ∈ A∗∗
i (i), a−i ∈
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A∗∗−i (āi ), where A∗∗
i (i) is the collection of all āi of player i that appear in A∗∗(i),

A∗∗−i (āi ) is the collection of others’ actions a−i such that a = (āi , a−i ) ∈ A∗∗(i). This
confirms that Property (α∗) holds for the above game.

Thus according to Theorem 6* of Dasgupta and Maskin (1986), there exists a
symmetric mixed strategy equilibrium. Without loss of generality, we use μ1(q) to
denote the equilibrium probability measure of action q, and use μ2(x) to denote the
equilibrium probability measure of action x .

Next we show that for any strategy profile of players {(μi1(qi ), μi2(xi ))}.
The players’ payoffs are same from strategy profile of players that is defined as
{(Eμi1qi , μi2(xi ))}. The expected utility of player i from profile {(μi1(qi ), μi2(xi ))}
is

EUi (a)

= Eqi Eq−iEx

⎧
⎨

⎩
qi

⎡

⎣
∑

k−i ∈K−i

⎛

⎝
∏

j 	=i

q
k j
j (1 − q j )

1−k j

⎞

⎠

⎛

⎝
N (k−i )∑

n=1

pi (n|k−i , x)v
n
N (k−i )

⎞

⎠

⎤

⎦− xi
α−�]

⎫
⎬

⎭

= [Eqi ]ExEq−i

⎡

⎣
∑

k−i ∈ K−i

⎛

⎝
∏

j 	=i

q
k j
j (1 − q j )

1−k j

⎞

⎠

⎛

⎝
N (k−i )∑

n=1

pi (n|k−i , x)v
n
N (k−i )

⎞

⎠

⎤

⎦− xα
i − �]

= [Eqi ]Ex

⎡

⎣
∑

k−i ∈K−i

⎛

⎝
∏

j 	=i

(Eq j )
k j (1 − Eq j )

1−k j

⎞

⎠

⎛

⎝
N (k−i )∑

n=1

pi (n|k−i , x)v
n
N (k−i )

⎞

⎠

⎤

⎦−xα
i −�], ∀i.

The above result means that given others take strategy (Eμ1q, μ2(x)), the same
strategy is also the best strategy for player i . Otherwise, (μ1(q), μ2(x)) would not be
the optimal strategy for player i when others take the same strategy (μ1(q), μ2(x)).
Therefore, (Eμ1q, μ2(x)) is a symmetric equilibrium for the above game.

It is easy to see that (q∗, μ∗(x)) = (Eμ1q, μ2(x)) is a symmetric equilibrium for
our original game based on the way the auxiliary game is constructed. Ui (a) equals
player i’s expected payoffs when he enters with probability qi and exerts effort xi

when he enters, given that other bidder j enters with probability q j and exerts effort
x j whenhe enters. This claimalso holdswhen they adopt anyother entry strategieswith
measure {μi1(q), i = 1, 2, ..., M} due to (11). According to (11), only the expected
entry probabilities {Eμi1q, i = 1, 2, ..., M} count.

We must have q∗ = Eμ1q ∈ (0, 1] since q∗ = Eμ1q = 0 cannot be an entry
equilibrium when � < V (Assumption 1).

Part (b): The equilibrium payoff cannot be negative. When q∗ = Eμ1q ∈ (0, 1),
we must have the equilibrium payoffs of player to be zero as otherwise it cannot
be an equilibrium as the player would enter with probability 1 and earn a positive
payoff. ��

Proof of Lemma 1 Let f1(q) = [1−(1−q)M ]v−Mq�, and f2(q) = (1−q)M−1v−
� . Without loss of generality, we focus on the case where V

M < � such that q̄ ∈ (0, 1)
is defined as f1(q̄) = 0. The first order derivative of f1(q) is f ′

1(q) = M f2(q) , which
is a decreasing function of q. f ′

1(q) is positive when q = 0, and it is negative when
q = 1.
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q0 is defined as f2(q0) = 0. Therefore, f1(q) increases on [0, q0], and decreases
from [q0, 1). f1(q) thus has two zero points, i.e., {0, q̄}, and q0 < q̄ . ��
Proof of Theorem 2 Define an increasing transformation of x̄T (q) :


(q) = [x̄T (q)]α = (Mq)α−1
{
[1 − (1 − q)M ]V − Mq�

}

Note that 
(q)|q=0 = 0. We have

d
(q)

dq
= f (q) qα−2Mα−1,

where

f (q) = (α − 1)
{
[1 − (1 − q)M ]V − Mq�

}

︸ ︷︷ ︸
f1(q)

+ Mq[(1 − q)M−1V − �]
︸ ︷︷ ︸

f2(q)

.

We have

f ′ (q) = MV (1 − q)M−2 [α − (M + α − 1) q] − αM�.

Note that f ′ (0) = αMV −αM� > 0, f ′ (1) = −αM� < 0 and f ′ (q) decreases
with q ∈ (0, α

M+α−1 ]. Clearly, f ′ (q) < 0 when q ∈ [ α
M+α−1 , 1]. Then there exists

a unique qc ∈ (0, α
M+α−1 ), such that f ′ (qc) = 0, which means qc is the maximum

point of f (q).
(i) Since f (0) = 0, f (qc) > 0 and f (1) = (α − 1) V −αM� = α (V − M�)−

V < 0 when α−1
α

V
M < �, then there must exist a unique q̂ ∈ (qc, 1), such that

f
(
q̂
) = 0. Note that f ′ (q) < 0 on (qc, 1) . Clearly, f (q) > 0 when 0 < q < q̂;

and f (q) < 0 when q̂ < q < 1.
Since d
(q)

dq shares the same sign with f (q), we have that d
(q)
dq > 0 when 0 <

q < q̂; and d
(q)
dq < 0 when q̂ < q < 1. This implies q̂ = argmaxq
(q), i.e.,

q̂ = argmaxq x̄T (q).
Let f1(q) = [1− (1− q)M ]V − Mq�, and f2(q) = (1− q)M−1V −� . The first

order derivative of f1(q) is f ′
1(q) = M f2(q) , which is a decreasing function of q.

f ′
1(q) is positive when q = 0, and it is negative when q = 1. f2(q) decreases with q,

and q0 is defined as f2(q0) = 0. Therefore, f1(q) increases on [0, q0], and decreases
from [q0, 1). f1(q) thus must be nonnegative on [0, q0]. Thus, both f1(q) and f2(q)

are positive for q ∈ (0, q0]. Thus a zero point (q̂) of f (q) must fall in (q0, 1).
(ii) Since f (0) = 0, f (qc) > 0 and f (1) = (α − 1) V −αM� = α (V − M�)−

V ≥ 0 when α−1
α

V
M ≥ �. Then f (q) ≥ 0 when 0 < q ≤ 1. Since d
(q)

dq shares the

same sign with f (q), we have that d
(q)
dq ≥ 0 when 0 < q ≤ 1. This implies

argmaxq
(q) = 1, i.e., q̂ = 1.
The single-peakedness of x̄T (q) is clear based on the property of f (q) illustrated

above.

123



416 Q. Fu et al.

q̄ < 1 if and only if V
M < �. We can focus on this case to show q̂ < q̄ . By the proof

of Lemma 1, we know in this case both f1(q) and f2(q) are positive when q ∈ [0, q0]
and both are negative when q > q̄ . Thus the zero point (q̂) of f (q)must fall in [q0, q̄].

We next prove the monotonicity of q̂ with respect to M . For this purpose, we only
need to show this holds when M is high such that q̂ < 1. Note that in this case q̂ is
defined by f (q) = 0.

We have shown above that f ′ (q) |q=q̂ < 0 when q̂ < 1. Further note that

∂ f (q)

∂ M
|q=q̂ = − (α − 1)

[
(1 − q̂)M ln

(
1 − q̂

)
V + q̂�

]

+q̂
[
(1 − q̂)M−1V − �

]
+ Mq̂(1 − q̂)M−1 ln

(
1 − q̂

)
V .

When q = q̂, the last two terms are negative since q̂ ∈ (q0, 1) and f2(q0) = 0. The
first term has an opposite sign with the following expression:

(1 − q̂)M ln
(
1 − q̂

)
V + q̂�

> (1 − q̂)M ln
(
1 − q̂

)
V + q̂(1 − q̂)M−1V

= [(1 − q̂) ln
(
1 − q̂

)+ q̂
] · (1 − q̂)M−1V .

The first inequality holds since (1 − q̂)M−1V − � < 0. Define g(q) = (1 −
q) ln(1 − q) + q, q ∈ (0, 1). Since g′(q) = − ln (1 − q) > 0, g(0) = 0. Then
g(q̂) > 0. Therefore, the first term is negative at q = q̂ as well.

Since ∂ f (q)
∂q |q=q̂ < 0 and ∂ f (q)

∂ M |q=q̂ < 0, these gives q̂ decreases with M. ��
Proof of Lemma 2 Consider an arbitrary potential bidder i whohas entered the contest.
Suppose that all other potential bidders play a strategy (q, x)with x > 0. 29 He chooses
his bid xi to maximize his expected payoff

πi ( xi | q, x) =
M∑

N=1

C N−1
M−1q N−1(1 − q)M−N

[
xr

i

xr
i + (N − 1)xr

V − xα
i

]

.

Differentiating πi ( xi | q, x) with respect to xi yields

dπi ( xi | q, x)

dxi
=

M∑

N=1

C N−1
M−1q N−1(1 − q)M−N (N − 1)r xr−1

i xr V

[xr
i + (N − 1)xr ]2 − αxα−1

i .

Suppose that a symmetric equilibriumwith pure-strategy bidding exists. The (pure)
bidding strategy in the equilibriumcanbe solved by thefirst order condition dπi

dxi
|xi =x =

29 It is impossible to have all participating bidders bid zero deterministically in an equilibrium. When all
others bid zero, a participating bidder would prefer to place an infinitely small positive bid, which allows
him to win the prize with probability one.
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0 given the equilibrium entry probability q∗, while q∗ is characterized by the zero-
payoff condition of mixed-strategy equilibria.30

According to the first order condition dπi (xi )
dxi

= 0 and the symmetry condition
xi = x, x∗ must solve

M∑

N=1

C N−1
M−1q N−1(1 − q)M−N (N − 1)r V

N 2x∗ − αx∗α−1 = 0,

which yields

x∗(q) =
[

M∑

N=1

C N−1
M−1q N−1(1 − q)M−N N − 1

N 2

r V

α

] 1
α

.

The equilibrium expected payoff is

π∗(x∗(q), q) =
M∑

N=1

C N−1
M−1q N−1(1 − q)M−N V

N

−
[

M∑

N=1

C N−1
M−1q N−1(1 − q)M−N N − 1

N 2

r V

α

]

=
M∑

N=1

C N−1
M−1q N−1(1 − q)M−N V

N

(

1 − N − 1

N

r

α

)

.

By entering the contest and submit the bid x∗(q), every potential contestant i ends
up with an expected payoff

π∗(x∗(q), q) − �.

By Theorem 1 (b), each potential bidder receives a zero expected payoff for the
equilibrium entry q∗, i.e., π∗(x∗(q∗), q∗) = �.

The expected overall effort of the contest (x∗
T ) obtains as

x∗
T = Mq∗x∗(q∗) = Mq∗

[∑M

N=1
C N−1

M−1q∗N−1(1 − q∗)M−N N − 1

N 2

r V

α

] 1
α

.

��
Proof of Lemma 3 By Lemma 2, q∗ satisfies F(q∗, r) = ∑M

N=1 C N−1
M−1q∗N−1(1 −

q∗)M−N V
N (1 − N−1

N
r
α
) − � = 0. Apparently, F(q∗, r) is continuous in and differ-

entiable with both arguments. We first claim that F(q∗, r) strictly decreases with q∗.

30 Note that this two-step procedure is only valid when the contest induces pure-strategy bidding in the
equilibrium. As will be shown later, such an equilibrium would not exist if r is sufficiently high.
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Define πN = V
N (1 − N−1

N
r
α
). Taking its first order derivative yields

F(q∗, r)

dq∗ =
M∑

N=1

C N−1
M−1[(N − 1)q∗N−2(1 − q∗)M−N

−(M − N )q∗N−1(1 − q∗)M−N−1]πN

=
M∑

N=1

C N−1
M−1(N − 1)q∗N−2(1 − q∗)M−N πN

−
M∑

N=1

C N−1
M−1(M − N )q∗N−1(1 − q∗)M−N−1πN

= (M − 1)

{
M∑

N=2

C N−2
M−2q∗N−2(1 − q∗)M−N πN

−
M−1∑

N=1

C N−1
M−2q∗N−1(1 − q∗)M−N−1πN

}

= (M − 1)
M−1∑

N=1

C N−1
M−2q∗N−1(1 − q∗)M−N−1 (πN+1 − πN ) ,

which is obviously negative because πN = 1
N

[
1 − (1 − 1

N

) r
α

]
V ≥ 0 and it

monotonically decreases with N .
When all other potential contestants play q = 0, a potential contestant receives

a payoff V − � > 0, and he must enter with probability one. When all others play
q = 1, a participating contestant receives negative expected payoff since V

M < �,
which cannot constitute an equilibrium either. Hence, a unique q∗ ∈ (0, 1) must exist
that solves π∗(x∗, q) = �. Each potential contestant is indifferent between entering
and staying inactive when all others play the strategy. This constitutes an equilibrium.

Moreover, F(q∗, r) strictly decreases with r . Since it also strictly decreases with
q∗, the part (b) of the lemma is then verified. ��

Proof of Lemma 4 Denote ki = xα
i , k∗ = x∗α, t = r

α
∈ (0, r ], then π̃i (xi ) can be

rewritten as

π̃i (ki ) =
M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N kt

i

kt
i + (N − 1)k∗t

V − ki ,

Differentiating π̃i with respect to ki yields

dπ̃i

dki
=

M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N (N − 1)tkt−1

i k∗t V

[kt
i + (N − 1)k∗t ]2 − 1.
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Note

k∗ =
M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N N − 1

N 2 tV .

To verify that k∗ is the global maximizer of π̃i (ki ) given that all other par-

ticipants exert the same effort. Define pi (ki ,k−i ; N ) = kt
i

kt
i +(N−1)k∗t . One can

verify ξN (ki ) = ∂2 pi (ki ,k−i ;N )

∂k2i

∣
∣
∣
∣
k−i =k∗

= −(t+1)kt
i +(t−1)(N−1)k∗t

[kt
i +(N−1)k∗t ]3 tkt−2

i (N − 1)k∗t .

It implies that �N (ki ) = ∂pi (ki ,k−i ;N )
∂ki

∣
∣
∣
k−i =k∗ is not monotonic: It is positive if

kt
i < t−1

t+1 (N − 1)k∗t , and negative if kt
i > t−1

t+1 (N − 1)k∗t . Clearly t−1
t+1 (N − 1) ≤ 1 if

and only if t ≤ N
N−2 . Because t ≤ min{1 + 1

M−2 , 2}, we must have t−1
t+1 (N − 1) < 1

for all N ≤ M .
Let �(ki ) = ∑M

N=1 C N−1
M−1q∗N−1(1 − q∗)M−N ∂pi (ki ,k−i ;N )

∂ki
|k−i =k∗ , and ξ(ki ) =

∑M
N=1 C N−1

M−1q∗N−1(1 − q∗)M−N ∂2 pi (ki ,k−i ;N )

∂k2i
|k−i =k∗ . The above results imply that

kt
i > t−1

t+1 (N −1)k∗t when ki = k∗ for all N ≤ M , which means that ξ(ki )|ki =k∗ < 0.

This leads to that d2π̃i (ki )

dk2i

∣
∣
∣
∣
ki =k−i =k∗

= V ξ(ki )|ki =k∗ < 0. Hence, ki = k∗ must be at

least a local maximizer of when k−i = k∗.
Since when ki < [ t−1

t+1 ]1/t k∗, ξN (ki ) > 0 for all N ≤ M , we have ξ(ki ) > 0 when

ki < [ t−1
t+1 ]1/t k∗, which means that �(ki ) increases when ki < [ t−1

t+1 ]1/t k∗. Similarly,

ξ(ki ) < 0when ki > [ t−1
t+1 (M−1)]1/t k∗, whichmeans that�(ki ) decreaseswhen ki >

[ t−1
t+1 (M−1)]1/t k∗.Wenext show that there exists a unique k′ ∈ ([ t−1

t+1 ]1/t k∗, [ t−1
t+1 (M−

1)]1/t k∗) such that �(ki ) increases (decreases) if and only if ki < (>) k′. For this
purpose, it suffices to show that there exists a unique k′ ∈ ([ t−1

t+1 ]1/t k∗, [ t−1
t+1 (M −

1)]1/t k∗) , such that ξ(k′) = 0.
First, such k′ must exist by continuity of ξ(ki ). As have been revealed, ξ(ki ) > 0

when ki < [ t−1
t+1 ]1/t k∗ ; and ξ(ki ) < 0 when ki > [ t−1

t+1 (M − 1)]1/t k∗.
Second, the uniqueness of k′ can be verified as below. We have

∂3 pi (ki ,k−i ; N )

∂k3i

∣
∣
∣
∣
∣
k−i =k∗

= t (N − 1)k∗t

⎧
⎨

⎩

(t − 2)kt−3
i

−(t+1)kt
i +(t−1)(N−1)k∗t

[kt
i +(N−1)k∗t ]3

+kt−2
i

−t (t+1)kt−1
i [kt

i +(N−1)k∗t ]−3tkt−1
i [−(t+1)kt

i +(t−1)(N−1)k∗t ]
[kt

i +(N−1)k∗t ]4

⎫
⎬

⎭

= t (N − 1)k∗t kt−3
i

[kt
i + (N − 1)k∗t ]3

{
(t − 2)[−(t + 1)kt

i + (t − 1)(N − 1)k∗t ]
+−t (t+1)kt

i [kt
i +(N−1)k∗t ]−3tkt

i [−(t+1)kt
i +(t−1)(N−1)k∗t ]

[kt
i +(N−1)k∗t ]

}

= t (N − 1)k∗t kt−3
i

[kt
i + (N − 1)k∗t ]3

{
(t − 2)[−(t + 1)kt

i + (t − 1)(N − 1)k∗t ]
+ 2tkt

i
[kt

i +(N−1)k∗t ] [(t + 1)kt
i − (2t − 1)(N − 1)k∗t ]

}

.
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Recall ξN (ki ) = −(t+1)kt
i +(t−1)(N−1)k∗t

[kt
i +(N−1)k∗t ]3 tkt−2

i (N − 1)k∗t . We then have

∂3 pi (ki ,k−i ; N )

∂k3i

∣
∣
∣
∣
∣
k−i =k∗

= (t − 2)k−1
i ξN (ki )

+2t2(N − 1)k∗t k2t−3
i

[kt
i + (N − 1)k∗t ]4 [(t + 1)kt

i − (2t − 1)(N − 1)k∗t ].

We now claim [(t + 1)kt
i − (2t − 1)(N − 1)k∗t ] is negative for all ki ≤ [ t−1

t+1 (M −
1)]1/t k∗. A detailed proof is as follows. From ki ≤ [ t−1

t+1 (M − 1)]1/t k∗, we have
(t + 1)kt

i ≤ (t − 1)(M − 1)k∗t . To show (t + 1)kt
i − (2t − 1)(N − 1)k∗t < 0, it

suffices to show (t − 1)(M − 1) < (2t − 1)(N − 1) when N = 2, which requires
(t − 1)(M − 1) < (2t − 1). This always holds when M = 2, 3. And t < 1 + 1

M−3

holds as t ≤ 1 + 1
M−2 when M > 3.

We thus have at any ki ∈ ([ t−1
t+1 ]1/t k∗, [ t−1

t+1 (M − 1)]1/t k∗) such that ξ(ki ) = 0,

ξ(ki )must be locally decreasing, because ∂ξ(ki )
∂ki

= (t −2)k−1
i

∑M
N=1 C N−1

M−1q∗N−1(1−
q∗)M−N ξN (ki ) + ∑M

N=1 C N−1
M−1q∗N−1(1 − q∗)M−N AN (ki ) = (t − 2)k−1

i ξ(ki ) +
∑M

N=1 C N−1
M−1q∗N−1(1−q∗)M−N AN (ki ) =∑M

N=1 C N−1
M−1q∗N−1(1−q∗)M−N AN (ki )

< 0 as AN (ki ) = 2t2(N−1)k∗t k2t−3
i

[kt
i +(N−1)k∗t ]4 [(t + 1)kt

i − (2t − 1)(N − 1)k∗t ] < 0.

We are ready to show the uniqueness of k′ by contradiction. Suppose that there
exists more than one zero points k′ and k′′ with k′ 	= k′′ for ξ(ki ). Because ξ(ki ) must
be locally decreasing, then there must exist at least another zero point k′′′ ∈ (k′, k′′) at
which ξ(ki ) is locally increasing. Contradiction thus results. Hence, such a zero point
k′ of ξ(ki ) must be unique.

Recall �(ki ) increases (decreases) if and only if ki < (>) k′ and it reaches its
maximum at k′. Note ∂π̃i (ki )

∂ki
= V �(ki ) − 1 and �(0) = 0. Therefore ∂π̃i (ki )

∂ki
|ki =0

< 0. Thus ∂π̃i (ki )
∂ki

has exactly two zero points with the smaller one (ks) being the local

minimum point of π̃i (ki ). Note ki = k∗ must be a zero point for ∂π̃i (ki )
∂ki

by definition.
Since ki = k∗ is a local maximum point of π̃i (ki ), it is higher than other zero point
(ks) of

∂π̃i (ki )
∂ki

which is a local minimum point of π̃i (ki ).

Note xm = (ks)
1/α is the unique local minimum of π̃i (xi ), and note x∗ = (k∗)1/α

is the unique inner local maximum of π̃i (xi ). Note xm < x∗. The results of Lemma 4
are shown. ��

Proof of Lemma 5 Proof of Lemma 3 has shown that F(q, r) = ∑M
N=1 C N−1

M−1q N−1

(1 − q)M−N V
N (1 − N−1

N
r
α
) − � decreases with both q and r . Thus F(q, r) = 0

uniquely defines r as a decreasing function of q. Since F(q0, r0) = 0 and q̂ > q0, we
must have r(q̂) < r0. ��

Proof of Theorem 6 According to Lemma 5, Theorem 4 thus means that contest r(q̂)

would induce entry equilibrium q̂ and pure-strategy biddingwhenever r(q̂) ≤ r . Since
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we have a pure-strategy bidding, an overall effort of x̄T (q̂) clearly is induced at the
equilibrium.

Consider any other r 	= r(q̂). If r induces equilibrium entry q(r) and pure-strategy
bidding, then the total effort induced is x̄T (q(r)). Note that by Lemma 3, equilibrium
q(r) decreases with r . Thus r 	= r(q̂) means q(r) 	= q̂ . x̄T (q) is single peaked at q̂
according to Theorem 2. Thus for any r 	= r(q̂), we must have x̄T (q(r)) < x̄T (q̂). If
r induces equilibrium entry q(r) and mixed-strategy bidding, then the total expected
effort induced is strictly lower than x̄T (q(r)) when α > 1, based on the arguments
deriving this boundary in Sect. 3.4. Therefore the total effort induced must be strictly
lower than x̄T (q̂). ��
Proof of Theorem 7 We first present two lemmas that lead directly to the main theo-
rem. The proof of Lemma 7 is standard and thus omitted. The proof of Lemma 8 is
presented separately.

Lemma 7 Consider a winner-take-all Tullock contest with impact function xr , r ∈
(0, α) and contingent prizes VN = V + N × F, where VN is a winner prize that is
contingent on the actual number of entrants and F(> − V

M ) is a uniform entry fee. This
contest induces a unique symmetric equilibrium. The equilibrium entry probability q∗
satisfies

M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N VN

N
(1 − N − 1

N

r

α
) = � + F. (11)

Each participating bidder, upon his entry, places a bid

x∗ =
[

M∑

N=1

C N−1
M−1q∗N−1(1 − q∗)M−N N − 1

N 2

r VN

α

] 1
α

. (12)

With r
α

≤ 1, the expected payoff function of an entrant is concave, which leads to
a unique pure-strategy bidding equilibrium. We further obtain the following.

Lemma 8 The equilibrium entry probability q∗ strictly decreases with entry fee F,
with limF→+∞ q∗ = 0.

We then prove the theorem. Recall Theorem 2(a), if V
M ≥ α

α−1�, then q̂ = 1
can be implementable by some entry fee/subsidy while making sure the payoff of
entrants is zero. If V

M < α
α−1�, then q̂ ∈ (q0, 1); We conclude that x̄∗

T can always be
achieved through a properly structured Tullock contest. Let q̃ be the equilibrium entry
probability if there are N > 1 entrants and each gets an entry subsidy contingent on
number of entrants, i.e., F = − V

N , clearly r (< r(q̂)) induces a higher q̃ (> q̂) based
on similar arguments in the proof of Lemma 8 and equilibrium effort is zero. For this
r ∈ (0, α), Lemma 8 means that there exists a unique entry fee F (> − V

M ≥ − V
N )

such that the lemma 7 contest induces equilibrium entry q̂ . Note that for the Lemma
7 contest with impact function xr , r ∈ (0, α) and entry fee F , equation (2) still
holds. Since the contest induces entry q̂ and pure-strategy bidding, it must induces an
expected overall bid of x̄∗

T . ��
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Proof of Lemma 8 Entry equilibrium q∗ from (11) is the solution of

�(q) =
M−1∑

N=0

C N
M−1q N (1 − q)(M−1)−N ζN+1 = �, (13)

where ζN = V
N (1 − N−1

N
r
α
) − N−1

N
r
α

F,∀N ≥ 1. Let t = 1
N , then ζt = tV (1 −

(1 − t) r
α
) − (1 − t) r

α
F .

Note ∂ζt
∂t = (1 − r

α

)
V + (F + 2V t) r

α
> 0 since r < α and F > − V

M > − 2V
N .

Thus ζN strictly decreases with N .

�′(q) = (M − 1)
M−2∑

N=0

C N
M−2q N (1 − q)(M−2)−N (ζN+2 − ζN+1) < 0.

Since �′(q) < 0,∀q > 0 and �′(F) < 0,∀F ≥ − V
M , we must have dq

d F < 0.
When F is big, only ζ1 is positive and ζN , N ≥ 2 are very negative. Thus �(q) = �

means a very small q. ��
Proof of Lemma 6 By definition, x̄∗

T

(
M

′) = x̄T (q̂(M
′
); M

′
)

=
⎧
⎨

⎩

(M ′q̂(M ′)) α−1
α

{
[1 − (1 − q̂(M ′))M ′ ]V − M ′q̂(M ′)�

} 1
α

when V
M < α

α−1�

M ′ ( V
M ′ − �

) 1
α when V

M ≥ α
α−1�.

When V
M < α

α−1�, q̂(M
′
) ∈ (0, 1). By Envelope Theorem, dx̄T (q̂(M

′
);M

′
)

d M ′ =
∂ x̄T (q;M

′
)

∂ M ′ |q=q̂(M ′
)
. We have

∂ x̄T (q; M
′
)

∂ M ′ |q=q̂(M ′
)

= ∂

[

(M
′
q̂(M

′
))

α−1
α

{
[1 − (1 − q̂(M

′
))M

′ ]V − M
′
q̂(M

′
)�
} 1

α

]

/∂ M
′

= α − 1

α
M

′− 1
α

[
q̂(M

′
)
] α−1

α
{
[1 − (1 − q̂(M

′
))M

′ ]V − M
′
q̂(M

′
)�
} 1

α

+ 1

α
(M

′
q̂(M

′
))

α−1
α

{
[1 − (1 − q̂(M

′
))M

′ ]V − M
′
q̂(M

′
)�
} 1

α
−1

×[−(1 − q̂(M
′
))M

′
V ln(1 − q̂(M

′
)) − q̂(M

′
)�],

which has the same sign as

λ = (α − 1)
{
[1 − (1 − q̂(M

′
))M

′ ]V − M
′
q̂(M

′
)�
}

+M
′ [−(1 − q̂(M

′
))M

′
V ln(1 − q̂(M

′
)) − q̂(M

′
)�].
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Because − ln(1 − q̂(M
′
)) <

q̂(M
′
)

1−q̂(M ′
)
, we have M

′ [−(1 − q̂(M
′
))M

′
V ln(1 −

q̂(M
′
)) − q̂(M

′
)�] < q̂(M

′
)[M

′
(1 − q̂(M

′
))M

′−1V − M
′
�]. Hence, λ < (α −

1)
{
[1 − (1 − q̂(M

′
))M

′ ]V − M
′
q̂(M

′
)�
}
+q̂(M

′
)[M

′
(1−q̂(M

′
))M

′−1V −M
′
�] =

0 (by the definition of q̂(M
′
)). We then have dx̄T (q̂(M

′
);M

′
)

d M ′ < 0.

When V
M ≥ α

α−1�, q̂(M
′
) = 1. We have

∂ x̄∗
T

(
M

′)

∂ M ′ =
(

V

M ′ − �

) 1
α − V

α

1

M ′

(
V

M ′ − �

) 1
α
−1

,

∂2x∗
T

(
M

′)

∂ M ′2 = V 2

α

(
1

α
− 1

)
1

M ′3

(
V

M ′ − �

) 1
α
−2

< 0.

Since x∗
T

(
M

′)
is concave in M

′
. x∗

T

(
M

′)
achieves its maximum value

x∗
T

(
M̂ ′
)

=
(

1 − 1

α

)
V

�

(
V

(
1 − 1

α

) V
�

− �

) 1
α

when M
′ = M̂ ′ = (1 − 1

α

) V
�

. Therefore, x̄∗
T

(
M

′)
increases with M

′
when M

′ ≤
(
1 − 1

α

) V
�
. ��
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